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The representation theory of a connected smooth affine group scheme over a field
k of characteristic p > 0 is faithfully captured by that of its family of Frobenius
kernels. Such Frobenius kernels are examples of infinitesimal group schemes, affine
group schemes G whose coordinate (Hopf) algebra k[G] is a finite dimensional local
k-algebra. This paper presents a study of the cohomology algebra H∗(G, k) of an
arbitrary infinitesimal group scheme over k.

We provide a geometric determination of the “cohomological support variety”
|G| ≡ Spec Hev(G, k) analogous to that given by D. Quillen for the cohomology
of finite groups [Q]. We further study finite dimensional rational G-modules M
for arbitrary infinitesimal group schemes G over k. In a manner initiated by J.
Alperin and L. Evens [A-E] and J. Carlson [C1] for finite groups, we consider
the variety |G|M ⊂ |G| of the ideal IM = ker{Hev(G, k) → Ext∗G(M,M)} and
provide a geometric description of this variety which is analogous to that given by
G. Avrunin and L. Scott for finite dimensional modules for finite groups [A-S].

This paper is a continuation of our recent work establishing the finite generation
of H∗(G, k) [F-S] and investigating the infinitesimal 1-parameter subgroups ofG [S-
F-B]. Earlier work of E. Friedlander and B. Parshall [FP1], [FP2], [FP3], [FP4] and
J. Jantzen [J1] concerning the cohomology of restricted Lie algebras are forerunners
of the results presented here: finite dimensional restricted Lie algebras are in 1-1
correspondence with infinitesimal group schemes of height ≤ 1. Our main theorems
(Theorems 5.2 and 6.7 below) when restricted to infinitesimal group schemes of
height ≤ 1 significantly strengthen previously known cohomological information for
restricted Lie algebras.

An interesting aspect of our work is the extent to which infinitesimal 1-parameter
subgroups ν : Ga(r) → G for infinitesimal group schemes G of height ≤ r play
the role of elementary abelian p-subgroups (and their generalizations, shifted sub-
groups) for finite groups. Indeed, much of our effort is dedicated to proving that co-
homology classes are detected (modulo nilpotence) by such 1-parameter sub groups.
This is first done in §1 for unipotent infinitesimal group schemes, using an induc-
tion argument made possible by a structure theorem present in §1. This structure
theorem is the analogue in our context of a theorem of J.-P. Serre characterizing
elementary abelian p-groups [S].
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The proof of the detection theorem for arbitrary infinitesimal group schemes over
k relies upon a generalization of a spectral sequence introduced by H. Andersen and
J. Jantzen [A-J] which presents the cohomology of an infinitesimal kernel G(r) of a
reductive algebraic group in terms of the cohomology of the infinitesimal kernel of
a Borel subgroup. Our generalized spectral sequence is presented in §3, enabling
the proof in §4 of the general detection theorem (Theorem 4.3).

The detection theorem demonstrates the essential injectivity of the natural map
considered in [S-F-B]

ψ : Hev(G, k)→ k[Vr(G)],

where Vr(G) is the scheme of infinitesimal 1-parameter subgroup schemes ν :
Ga(r) → G of an infinitesimal group scheme G over k of height ≤ r. The es-
sential surjectivity of ψ (more precisely, surjectivity onto pr-th powers) is a main
result of [S-F-B]. This is formalized in Theorem 5.2 which presents a geometric, non-
cohomological description of the cohomological support variety |G| of G. Corollary
6.8 gives a similarly geometric, non-cohomological identification of |G|M ⊂ |G| for
any finite dimensional rational G-module M . We conclude in §7 with a few appli-
cations of these descriptions, applications analogous to results obtained previously
for the cohomology of finite groups.

E. Friedlander gratefully acknowledges the hospitality of the University of Hei-
delberg.

§1. 1-parameter cohomomorphisms.

In this section, we investigate properties associated to homomorphisms G →
Ga(s), homomorphisms which we call 1-parameter cohomomorphisms. Even though
the main theorems of this paper concern the interpretation of the cohomology of an
(infinitesimal) group schemeG in terms of 1-parameter homomorphisms Ga(r) → G,
such 1-parameter cohomomorphisms arise in our inductive analysis of a unipotent
group scheme G.

We remind the reader that an affine group scheme is said to be unipotent if it
admits an embedding as a closed subgroup scheme of some UN , the group scheme
of strictly upper triangular matrices of GLN .

Lemma 1.1. Let G be an affine group scheme over k.
a. H1(G, k) = HomGr/k(G,Ga) (as abelian groups).
b. If G is infinitesimal of height ≤ r, then H1(G, k) = HomGr/k(G,Ga(r)).
c. HomGr/k(G,Ga(1)) = ker{F : H1(G, k) → H1(G, k)}, where F is induced by

the Frobenius map F : Ga → Ga using the identification of (a.).
d. If G is a non-trivial unipotent group scheme, then H1(G, k) 6= 0.

Proof. Part (a.) can be seen directly from the standard cobar resolution used to
compute H∗(G, k). Part (b.) then follows formally from (a.). Part (c.) follows from
the short exact sequence 0→ Ga(1) → Ga

F→ Ga → 0. Finally, to establish part (d.),
embed G as a closed subgroup of some UN ⊂ GLN . Denote by Xi,j (1 ≤ i, j ≤ N)
the standard coordinate functions on GLN . Find an integer n > 0 such that all
functions Xi,j with 0 < j − i < n vanish on G and such that there exists some
Xi0,j0 with j0 − i0 = n which is non trivial on G. It is clear that Xi0,j0 : G→ Ga

is a desired non trivial group homomorphism.
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We shall employ the following familiar result.

Lemma 1.2. Let ψ : G → H be a surjective homomorphism of unipotent group
schemes. If ψ∗ : H1(H, k) → H1(G, k) is an isomorphism and if ψ∗ : H2(H, k) →
H2(G, k) is injective, then ψ is an isomorphism.

Proof. The Hochschild-Serre spectral sequence assoicated to the extension of group
schemes

1→ N → G
ψ−→ H → 1

gives the exact sequence

0→ H1(H, k)
ψ∗
−→ H1(G, k)→ H1(N, k)H → H2(H, k)

ψ∗
−→ H2(G, k).

Thus, our hypotheses imply thatH1(N, k)H = 0. SinceH is unipotent, we conclude
that H1(N, k) = 0 and thus by Lemma 1.1.d that N is the trivial group scheme.

For future reference, we recall the following computation of the cohomology of
Ga and its infinitesimal subgroups Ga(r).

Theorem 1.3 [CPSvdK].
1. Assume that p 6= 2. Then the cohomology algebra H∗(Ga, k) is a tensor product

of a polynomial algebra k[x1, x2, ...] in generators xi of degree 2 and an exterior
algebra Λ(λ1, λ2, ...) in generators λi of degree one. If p = 2, then H∗(Ga, k) =
k[λ1, λ2, ...] is a polynomial algebra in generators λi of degree 1; in this case, we
set xi = λ2

i .
2. Let F : Ga → Ga denote the Frobenius endomorphism, then F ∗(xi) = xi+1,

F ∗(λi) = λi+1.
3. Let s be an element of k and use the same notation s for the endomorphism

(multiplication by s) of Ga. Then s∗(xi) = sp
i

xi, s
∗(λi) = sp

i−1
λi.

4. Restriction of xi and λi to Ga(r) is trivial for i > r. Denoting the restrictions
of xi and λi (for i ≤ r) to Ga(r) by the same letter we have

H∗(Ga(r), k) =k[x1, ..., xr]⊗ Λ(λ1, ..., λr) p 6= 2

H∗(Ga(r), k) =k[λ1, ..., λr] p = 2.

Lemma 1.4. Denote by m : Ga ×Ga → Ga the addition homomorphism. Then
a. m∗(λi) = λi ⊗ 1 + 1⊗ λi.
b. m∗(xi) = xi ⊗ 1 + 1⊗ xi.
Proof. The first statement is evident. In proving the second one it suffices (in
view of Theorem 1.3.2) to consider the case i = 1. Moreover we may assume,
extending scalars if necessary, that the field k is infinite. Theorem 1.3.3 shows that
the element m∗(x1)− x1 ⊗ 1− 1⊗ x1 ∈ H1(Ga, k)⊗H1(Ga, k) has weight p with
respect to the diagonal action of Gm. On the other hand, the weights appearing
in H1(Ga, k) ⊗ H1(Ga, k) are of the form pi + pj with 0 ≤ i, j. This implies
immediately that the above element is trivial unless p = 2. However in the case
p = 2 our statement is trivial since in this case x1 = λ2

1.

Remark 1.4.1 Alternatively in case p 6= 2 one could use the formula xi = −βP0(λi)
[M] and the properties of the Steenrod operations.
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Corollary 1.5. For any φ : G→ Ga(1), set

xφ ≡ φ∗(x1) ∈ H2(G, k).

Then
a. xtφ = tpxφ for any t ∈ k.
b. xφ+φ′ = xφ + xφ′ for any φ, φ′ : G→ Ga(1).

Proof. Part (a.) follows immediately from Theorem 1.3.3. Part (b.) follows from
Lemma 1.4.b.).

The proof of the following theorem is inspired by the original argument of J.-
P. Serre characterizing elementary abelian p-groups in terms of their cohomology
algebras [S].

Theorem 1.6. Let G be an infinitesimal unipotent group scheme of height ≤ r
with the property that HomGr/k(G,Ga(1)) is 1-dimensional spanned by some φ :
G→ Ga(1). Then either G = Ga(s) for some s ≤ r or xφ ∈ H2(G, k) is nilpotent.

Proof. Let s be the least integer such that F s : H1(G, k) → H1(G, k) is 0. Then
φ can be written as φ = F s−1(ψ) for some ψ ∈ H1(G, k). Moreover it’s clear
that s ≤ r and the elements ψ, F (ψ), ..., F s−1(ψ) = φ form a basis of H1(G, k).
The homomorphism ψ : G → Ga(s) induces an isomorphism ψ∗ : H1(Ga(s), k) →
H1(G, k): the basis λ1, λ2, . . . , λs is mapped to the basis ψ, F (ψ), . . . , F s−1(ψ).
Lemma 1.2 implies that either ψ is an isomorphism or the ideal

I = Ker{ψ∗ : H∗(Ga(s), k)→ H∗(G, k)}

contains a non-zero element of degree 2. Since ψ∗ is a map of modules for the Steen-
rod algebra [D], [P], I is stable with respect to action of the Steenrod operations
Pi, βPi for p 6= 2 and Sqi for p = 2.

Observe that xφ = ψ∗(xs) ∈ H2(G, k). Thus, the theorem follows from the
following proposition.

Proposition 1.7. Let I ⊂ H∗(Ga(s), k) be a k-submodule stable with respect to the
action of the Steenrod operations Pi, βPi for p 6= 2 and Sqi for p = 2. If I contains
a non-zero element of degree 2, then some power of xs lies in I.

Proof. We first assume that p 6= 2. Here is a tabulation of the actions of Pi, βPi
on the generators x1, . . . , xs, λ1, . . . , λs.
a. P0(xi) = F ∗(xi); P0(λi) = F ∗(λi)
b. Pj(xi) = 0, j > 1, βPj(xi) = 0, j ≥ 1; Pj(λi) = 0 = βPj(λi), j ≥ 1
c. P1(xi) = xpi
d. βP0(λi) = −xi; βP0(xi) = 0
e. Pm(xks) = xpks if m = k; Pm(xks) = 0 if m 6= k.
where (a.) and (c.) are among the defining axioms of the Steenrod algebra action
and (b.) follows from the dimension axiom. The first part of (d.) is proved in
[M] using the theory of Massey products, whereas the second statement follows by
applying the Adem relation. Finally, (e.) follows from the Cartan formula using
induction on m.
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Let x =
∑
i<j ai,jλiλj +

∑
b abxb be a non-zero element in I ∩ H2(Ga(s), k).

Assume first that all coefficients ai,j are 0. Find the smallest ` such that a` 6= 0.
Applying (P0)s−` = F ∗s−` to x, we conclude that xs = a−ps−`

` (P0)s−`(x) ∈ I.
If some coefficient ai,j 6= 0, then by applying to x an appropriate power of P0

we may assume that ai,j = 0 for j < s; thus,

x =
∑
i<s

ai,sλiλs +
∑
b

abxb.

Now apply the operation βP1βP0. Using the Cartan formula

βPi(u · v) =
i∑

j=0

βPj(u) · Pi−j(v) + (−1)dimuPj(u) · βPi−j(v)

and the above tabulation, we easily compute that

−βP1βP0(x) =
∑
i<s

ap
2

i,sxi+1x
p
s .

Using the Cartan formula and (e.) above, we conclude that Pp applied to the right
hand side of the above equality yields

Pp((
∑
i<s

ap
2

i,sxi+1)xps) = P0(
∑
i<s

ap
2

i,sxi+1) · Pp(xps) = (
∑
i<s

ap
3

i,sxi+2) · xp2s .

Successively applying the operations Pp2 ,Pp3 , . . . , we conclude that xp
s−i+1
s ∈ I

provided that i is the least integer for which ai,s 6= 0.
For p = 2, the proof has exactly the same form with Ppk

replaced by Sq2
k+1

and
βPpk

replaced by Sq2
k+1+1.

§2. The detection theorem for

unipotent infinitesimal group schemes

We prove in Theorem 2.5 below forG/k a unipotent infinitesimal group scheme of
height ≤ r and z ∈ H∗(G, k) that z is nilpotent provided that its restrictions via all
1-parameter homomorphims ν : Ga(r)⊗kK → G⊗kK are nilpotent where K is an
arbitrary field extension of k. We prove this theorem for the cohomology algebra
H∗(G,Λ), where Λ is an associative unital rational G-algebra. Consideration of
such Λ of the form Ind

GLn(r)

G k will be required in our proof (in §4) of the detection
theorem for H∗(G, k) for arbitrary infinitesimal group schemes G.

Throughout this section, G will denote an infinitesimal group scheme over k and
Λ an associative, unital rational G-algebra (i.e., Λ has structures of an associative
unital k-algebra and of a rational G-module which are compatible in the sence that
1Λ ∈ ΛG and the multiplication map Λ⊗k Λ → Λ is a homomorphism of rational
G-modules).

The following lemma is an explicit statement of the usual graded commutativity
of the cohomology of a Hopf algebra.
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Lemma 2.1. H∗(G,Λ) is a graded H∗(G, k)-algebra with the property that

ρΛ(x) · y = (−1)nmy · ρΛ(x) , x ∈ Hn(G, k), y ∈ Hm(G,Λ)

where ρΛ : H∗(G, k)→ H∗(G,Λ) is induced by the unit 1Λ : k → Λ. In particular,
ρΛ(Hev(G, k)) is contained in the center of H∗(G,Λ).

We next give an explicit statement of the multiplicative nature of the Hochschild-
Serre spectral sequence (cf. [E]).

Lemma 2.2. Let
1→ N → G→ H → 1

be an extension of affine group schemes. Then the Hochschild-Serre spectral se-
quence

Ep,q2 = Hp(H,Hq(N,Λ)) =⇒ Hp+q(G,Λ)

has a natural algebra structure. In particular,

F i(Hn(G,Λ)) · F j(Hm(G,Λ)) ⊂ F i+j(Hn+m(G,Λ))

where F i(Hn(G,Λ)) is the (decreasing) filtration associated to this spectral se-
quence.

The following proposition is a reformulation of the “Quillen-Venkov Lemma”
[Q-V] in our context.

Proposition 2.3. Let f : G → Ga(1) be a non-trivial homomorphism of affine
group schemes, and let z ∈ Hn(G,Λ) satisfy z|Ker f = 0. Then z2 is divisible by
ρΛ(xf ) ∈ H2(G,Λ).

Proof. Denote Kerf by N and consider the Hochschild-Serre spectral sequence for
the group scheme extension

1→ N → G
f−→ Ga(1) → 1

Ep,q2 = Hp(Ga(1), H
q(N,Λ)) =⇒ Hp+q(G,Λ).

This spectral sequence admits an action of H∗(Ga(1), k) compatible with the action
of H∗(Ga(1), k) on H∗(G,Λ).

The periodicity of the cohomology of Ga(1) with respect to multiplication by
x1 ∈ H2(Ga(1), k) shows that the natural map x1 : Ep,q2 → Ep+2,q

2 is surjective
for p ≥ 0 and bijective for p ≥ 1. An easy induction on r shows further that
x1 : Ep,qr → Ep+2,q

r is surjective for p ≥ 0 and bijective for p ≥ r − 1. Thus
x1 : Ep,q∞ → Ep+2,q

∞ is surjective for all p ≥ 0. In other words,

F p+2(Hn+2(G,Λ)) = ρΛ(xf ) · F p(Hn(G,Λ)) + F p+3(Hn+2(G,Λ)).

Using descending induction on p, we conclude that for p ≥ 0

F p+2(Hn+2(G,Λ)) = ρΛ(xf ) · F p(Hn(G,Λ)).

Finally, the kernel of Hn(G,Λ)→ Hn(N,Λ) coincides with F 1(Hn(G,Λ)), so that
z ∈ F 1(Hn(G,Λ)). Lemma 2.2 implies now that

z2 ∈ F 2(H2n(G,Λ)) = ρΛ(xf ) ·H2n−2(G,Λ).
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Lemma 2.4. Assume that r ≥ s and consider the canonical projection Ga(r) →
Ga(s). For any rational Ga(s)-module M , the induced map in cohomology
H∗(Ga(s),M)→ H∗(Ga(r),M) is injective.

Proof. Let ui ∈ k[Ga(r)]# = (k[t]/tp
r

)# (0 ≤ i ≤ r− 1) be a linear function defined
by ui(tj) = δpi,j . The algebra k[Ga(r)]# is equal to k[u0, ..., ur−1]/(u

p
0, ..., u

p
r−1) -see

[S-F-B] Corollary 1.4. In the same way, k[Ga(s)]# = k[u0, ..., us−1]/(u
p
0, ..., u

p
s−1).

The homomorphism k[Ga(r)]# → k[Ga(s)]# takes ui to the generator denoted by
the same letter if i ≤ s − 1 and to zero otherwise. The statement follows since
there is an evident splitting of k-algebras k[Ga(s)]# → k[Ga(r)]# (which is not a
homomorphism of Hopf algebras).

Theorem 2.5. Let G be a unipotent infinitesimal group scheme over k of height
≤ r and let Λ be an associative unital rational G-algebra. If z ∈ Hn(G,Λ) satisfies
the property that for any field extension K/k and any group scheme homomorphism
ν : Ga(r)⊗kK → G⊗kK over K the cohomology class ν∗(zK) ∈ Hn(Ga(r)⊗kK,ΛK)
is nilpotent, then z is itself nilpotent.

Proof. Observe that if zL ∈ Hn(GL,ΛL) is nilpotent for some field extension L/k
then z is itself nilpotent. Thus we may assume, extending scalars, that the field k
is algebraically closed.

The theorem is trivially valid if dimkk[G] = 1. Proceeding by induction on
dimkk[G], we may assume that the theorem has been proved for all unipotent
infinitesimal group schemes H over fields K/k with dimKK[H] < dimkk[G]. For
notational convenience, we shall abuse notation in the remainder of this proof by
writing xφ for ρΛ(xφ).

Assume first that dimkHomGr/k(G,Ga(1)) = 1 and let φ : G → Ga(1) be a
non-trivial homomorphism. If G = Ga(s) for some s ≤ r, then the theorem follows
immediately by employing the canonical projection ν : Ga(r) → Ga(s) - see Lemma
2.4. If G is not isomorphic to Ga(s) for any s ≤ r, Theorem 1.6 implies that
xφ ∈ H2(G, k) is nilpotent. Let H = Ker φ ⊂ G. By induction, z|H ∈ Hn(H,Λ)
is nilpotent; say (z|H)N = 0 ∈ HnN (H,Λ). Proposition 2.3 now implies that xφ
divides z2N , so that z is nilpotent.

Assume now that dimkHomGr/k(G,Ga(1)) > 1 and let φ1, φ2 : G → Ga(1) be
linearly independent homomorphisms. Set φ equal to

φ ≡ Y 1/p
1 φ1 + Y

1/p
2 φ2 : G⊗k K → Ga(1) ⊗k K

where K = k(Y 1/p
1 , Y

1/p
2 ) is a finite purely inseparable extension of the rational

function field k(Y1, Y2). Our induction hypothesis implies that there exists N > 0
such that (zNK )|Ker φ = 0 and also (zN )|Ker φi

= 0. Proposition 2.3 shows now that
xφ divides z2N

K and also xφi divides z2N .
We write z2N

K ∈ H2nN (G⊗k K,ΛK) as

z2N
K = xφ · (

m∑
i=1

aivi) =
m∑
i=1

ai · {(Y1xφ1 + Y2xφ2) · vi}
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and write

z2N = xφ1 · (
m∑
i=1

bivi)

for some elements ai ∈ K, bi ∈ k and some linearly independent elements v1, . . . , vm
∈ H2nN−2(G,Λ). We may consider the first of the above formulas as a system of
linear equations in variables a1, ..., am with coefficients in the field k(Y1, Y2). Since
this system has a solution in K, it really has a solution in k(Y1, Y2) as well (i.e. the
ai may be chosen in k(Y1, Y2)). Eliminating denominators, we conclude that there
exist polynomials P1, ..., Pm, Q ∈ k[Y1, Y2], Q 6= 0 such that

Q(Y1, Y2) · z2N =
m∑
i=1

Pi(Y1, Y2) · {(Y1xφ1 + Y2xφ2) · vi} ∈ H2nN (G,Λ)⊗k k[Y1, Y2].

(2.5.1)
Replacing Pi and Q by their appropriate homogenous components we may even
assume that Pi and Q are homogenous and deg Pi + 1 = deg Q for all i.

Define the k-vector space

W = {w ∈ H2nN (G,Λ) : z`w = 0 for some ` > 0}.

To prove that z is nilpotent, it suffices to show that z2N ∈W . Since z2N is a linear
combination of xφ1 · vi, it suffices to show that xφ1 · vi ∈W for all i = 1, ...,m.

If xφ1 · v, xφ2 · v are linearly dependent modulo W for some v ∈ H2nN−2(G,Λ),
then

t1xφ1 · v + t2xφ2 · v = (x
t
1/p
1 φ1+t

1/p
2 φ2

) · v ∈W

for some 0 6= (t1, t2) ∈ k2. Applying our induction hypothesis to Ker ψ, where

ψ = t
1/p
1 φ1 + t

1/p
2 φ2 : G→ Ga(1)

and using Proposition 2.3 we conclude that xψ divides an appropriate power of z.
Since xψ · v ∈ W , we conclude further that z` · v = 0 for some ` > 0 and hence
xφ1 · v, xφ2 · v ∈W . In other words, if xφ1 · v, xφ2 · v are linearly dependent modulo
W , then both xφ1 · v and xφ2 · v belong to W .

Modifying the linearly independent set v1, . . . , vm of H2nN−2(G,Λ), we may
assume that xφ1 · v1, . . . , xφ1 · vj are linearly independent modulo W whereas xφ1 ·
vj+1, . . . , xφ1 · vm belong to W (and hence xφ2 · vj+1, ..., xφ2 · vm ∈ W ). We want
to show that j = 0. Assume to the contrary that j > 0. Reducing the equation
(2.5.1) modulo W we obtain the following equation in H2nN (G,Λ)/W ⊗k k[Y1, Y2]:

Q · z2N =
j∑
i=1

Pi · {Y1(xφ1 · vi) + Y2(xφ2 · vi)}. (2.5.2)

Dividing both sides of (2.5.2) by the greatest common divisor of Q,P1, . . . , Pj , we
may assume that g.c.d.(Q,P1, . . . , Pj) = 1. If deg Q = 0 so that each Pi = 0,
then z2N ∈ W ; this implies that z is nilpotent and hence W = H2nN (G,Λ),
thereby contradicting the hypothesis that j > 0. If deg Q > 0, we use the fact
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that k is algebraically closed to find 0 6= (t1, t2) ∈ k2 such that Q(t1, t2) = 0 and
Pi(t1, t2) 6= 0 for some i (1 ≤ i ≤ j). Then

j∑
i=1

Pi(t1, t2){t1xφ1 · vi + t2xφ2 · vi} = t1xφ1 · v + t2xφ2 · v = 0 ∈ H2nN (G,Λ)/W

where v =
∑j
i=1 Pi(t1, t2)vi. As seen above, this implies that xφ1 · v ∈ W . On the

other hand, this contradicts the assumed linear independence of xφ1 ·v1, . . . , xφ1 ·vj
modulo W .

§3. A spectral sequence for Frobenius kernels

In [A-J], H. Andersen and J. Jantzen introduced a spectral sequence for a reduc-
tive (smooth) group scheme G and a rational G-module M

Ep,q2 = Hp(G(r)/B(r),L(Hq(B(r),M))) =⇒ Hp+q(G(r),M)

which relates the cohomology of the Frobenius kernel G(r) to that of the Frobenius
kernel of the Borel subgroup B ⊂ G. As we observe below, this immediately
generalizes to arbitrary smooth group schemes. The purpose of this section is to
further generalize this spectral sequence so that it applies to rational G(r)-modules
M which are not necessarily modules for G.

Let G/k be a reduced (=smooth) affine group scheme. We recall that when k is
algebraically closed the Borel subgroup B ⊂ G is defined to be a closed, reduced,
connected, solvable subgroup scheme of maximal possible dimension. In general,
we will say that B ⊂ G is a Borel subgroup iff B⊗k k is a Borel subgroup of G⊗k k
(where k denotes the algebraic closure of k). Note that when k is not algebraically
closed not every reduced group scheme has Borel subgroups. Throughout this
section (if not specified otherwise) G will denote a connected reduced affine group
scheme over k and B will denote its Borel subgroup (thus we assume that Borel
subgroups in G exist).

The following proposition is a straight-forward generalization of a fundamental
theorem of E. Cline, B. Parshall, L. Scott, and W. van der Kallen [CPSvdK] (see
also [K]).

Proposition 3.1. For any rational G-module M , the restriction map

H∗(G,M)→ H∗(B,M)

is an isomorphism.

Proof. Since rational cohomology commutes with flat base change , it suffices to
assume that k is algebraically closed. If G is semisimple, then our statement is
precisely the theorem proved in [CPSvdK]. In the general case, let R(G) denote the
radical of G and compare the two Hochschild-Serre spectral sequences

Ep,q2 = Hp(G/R(G), Hq(R(G),M)) =⇒ Hp+q(G,M)

Ep,q2 = Hp(B/R(G), Hq(R(G),M)) =⇒ Hp+q(B,M).

The proposition now follows since B/R(G) is a Borel subgroup of the semisimple
group G/R(G).
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Proposition 3.2. Let G be an arbitrary affine group scheme over k. Let further
H ⊂ G be a closed subgroup scheme and let X = G/H denote the quotient scheme
with quotient map p : G → X. Then the functor M 7→ Γ(G, p∗M) defines an
equivalence of categories between the category of quasi-coherent OX-modulesM and
the category of k-vector spaces M provided with the structures of a left k[G]-module
and of a rational H-module which are compatible in the sense that the multiplication
map k[G] ⊗M → M is a homomorphism of rational H-modules (H acts on k[G]
via the right regular representation).

Proof. Since p : G→ X is a faithfully flat, quasi-compact morphism, the theory of
faithfully flat descent [SGA1] tells us that the functor p∗ is an equivalence of the
category of quasi-coherent OX -modules and the category of quasi-coherent OG-
modules N equipped with descent data: an isomorphism ψ : q∗

1(N ) ∼−→ q∗
2(N ) of

OG×XG-modules (where q1, q2 : G ×X G → G are the projections) satisfying the
usual compatibility property: q∗

23(ψ)q∗
12(ψ) = q∗

13(ψ). Moreover, since the scheme
G is affine, the category of quasi-coherent OG-modules is equivalent (via the functor
M 7→ M̃) to the category of left k[G]-modules.

The cartesian square (cf. [D-G;III.1.2.4])

G×H pr1−−−−→ G

m

y yp
G

p−−−−→ X

enables us to identify q1, q2 : G×X G → G with m, pr1 : G×H → G. This shows
that descent data on M̃ is equivalent to the data of a homomorphism

φ : M →M ⊗ k[H]

satisfying the following properties:
(a.) φ is a homomorphism of k[G]-modules provided that M ⊗ k[H] is made into a
k[G]-module via the homomorphism m∗ : k[G]→ k[G]⊗ k[H].
(b.) The induced homomorphism of k[G]⊗ k[H]-modules

(k[G]⊗ k[H])⊗m∗ M →M ⊗ k[H]

is an isomorphism.
(c.) The following diagram (in which ∆ denotes the diagonal map of the Hopf
algebra k[H]) commutes

M
φ−−−−→ M ⊗ k[H]

φ

y 1M ⊗∆

y
M ⊗ k[H]

φ⊗1k[H]−−−−−→ M ⊗ k[H]⊗ k[H].

Finally it is not hard to see that conditions (a.),(b.),(c.) are equivalent to the fact
that φ gives M a structure of a rational H-module compatible with its structure
as a k[G]-module.
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Remark 3.3. Let N be a rational H-module. The k[G]-module k[G]⊗kN has a
natural structure of a rational H-module (H acts in the given way on N and right
regularly on k[G]). This H-module structure is clearly compatible with the k[G]-
module structure in the sence described above and hence we get a quasicoherent
sheaf on G/H which we’ll denote by L(N). The theory of faithfully flat descent
shows that L(N) is a locally free OG/H -module and it is coherent if and only if N
is finite dimensional. It’s easy to see that this construction gives the same result as
the one used in [J].

Proposition 3.4. Assume the notation and conventions of (3.2). Then for any
quasi-coherent OX-moduleM, the Zariski cohomology H∗

Zar(X,M) is naturally iso-
morphic to the rational cohomology H∗(H,Γ(G, p∗(M))).

Proof. It is well known (cf. [Mi,III.3.7]) that Zariski cohomology with coefficients
in a quasi-coherent sheaf coincides with fppf-cohomology. Starting with the fppf-
covering p : G→ X of a scheme X, we may construct its nerve (i.e. the simplicial
scheme X• with Xn = G ×X ... ×X G (n + 1 times) and the standard face and
degeneracy operators). In a familiar way, this nerve determines a spectral sequence

Epq2 = Hp
fppf (Xq,M) = Hp

Zar(Xq,M) =⇒ Hp+q
fppf (X,M) = Hp+q

Zar (X,M).

The scheme Xq may be identified with G × Hq and in particular is affine. Thus
the above spectral sequence degenerates, thereby identifying H∗

Zar(X,M) with the
cohomology of the complex

Γ(G, p∗(M)→ Γ(G, p∗(M))⊗ k[H]→ Γ(G, p∗(M))⊗ k[H]⊗2 → ... (3.4.1)

Finally (3.4.1) is the Hochschild complex computing the rational cohomology groups
of H with coefficients in Γ(G, p∗(M)).

Let F r : G → G(r) be the r-th power of the Frobenius map, where G(r) is the
r-th Frobenius twist of G (see, for example, [F-S;§1]). The kernel of F r, G(r), is an
infinitesimal group scheme of height r and F r induces an isomorphism

F r : G/G(r)−̃→G(r).

Proposition 3.5. For any rational G(r)-module M and any q ≥ 0, the cohomology
group Hq(B(r), Ind

G
G(r)

(M)) has the natural structures of a rational B(r)-module
and of a k[G(r)]-module which satisfy the compatibility condition of (3.2).

Proof. Recall that the induced module IndGG(r)
(M) is defined to be (k[G]⊗M)G(r) ,

where G(r) acts via the given action on M and via the right regular representation
on k[G] and where IndGG(r)

(M) is given the structure of a rational G-module via the
left regular representation of G on k[G] and the trivial action on M . For any q ≥ 0,
Hq(B(r), Ind

G
G(r)

(M)) has the structure of a rational B-module on which B(r) ⊂ B
acts trivially, hence the structure of a rational B(r)-module. Moreover, the action
of k[G(r)] = k[G]G(r) on IndGG(r)

(M) (by B(r)-linear transformations) determines an
action on Hq(B(r), Ind

G
G(r)

(M)). One readily verifies that the multiplication map

k[G(r)]⊗Hq(B(r), Ind
G
G(r)

(M))→ Hq(B(r), Ind
G
G(r)

(M))
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is a homomorphism of rational B(r)-modules provided that B(r) acts on k[G(r)]
via the left regular representation. To get the compatibility we need to change
the k[G(r)]-module structure using the automorphism of k[G(r)] induced by the
automorphism of the scheme G(r)

σ : G(r) → G(r) : σ(x) = x−1.

Definition 3.5.1. We denote by Hq(B(r),M) the quasicoherent sheaf on X(r) =
G(r)/B(r) associated in view of Proposition 3.2 to Hq(B(r), Ind

G
G(r)

(M)) with the
above structures.

Theorem 3.6. For any rational G(r)-module M there is a natural spectral sequence

Ep,q2 = Hp(X(r),Hq(B(r),M)) =⇒ Hp+q(G(r),M)

where X(r) = G(r)/B(r).

Proof. Following [FP4], we consider the Hochschild-Serre spectral sequence

Ep,q2 = Hp(B(r), Hq(B(r), Ind
G
G(r)

(M))) =⇒ Hp+q(B, IndGG(r)
(M)).

By Proposition 3.1, the abutment may be identified with Hp+q(G, IndGG(r)
(M)).

Since G/G(r) = G(r) is affine, this can be identified with Hp+q(G(r),M) (cf.
[J;I.5.12]). Proposition 3.4 implies that the Ep,q2 term can be identified as

Hp(B(r), Hq(B(r), Ind
G
G(r)

(M))) = Hp(X(r),Hq(B(r),M)).

Remark 3.6.1 If M in (3.6) is the restriction of a rational G-module (this is
the case considered in [A-J]), then the tensor identity (see [J]) shows that the
quasi-coherent sheaf Hq(B(r),M) is canonically isomorphic to the locally free sheaf
L(Hq(B(r),M)).

§4. The detection theorem for infinitesimal group schemes

In this section, we extend Theorem 2.5 to an arbitrary infinitesimal group scheme.
Our strategy is to use the spectral sequence of the previous section, valid for Frobe-
nius kernels of smooth group schemes, to reduce the detection theorem for Frobenius
kernels to the unipotent case. We then extend the validity of the detection theo-
rem to arbitrary infinitesimal group schemes G by embedding G in some Frobenius
kernel GLn(r) and identifying H∗(G,Λ) with H∗(GLn(r), Ind

GLn(r)

G (Λ)).
We begin with the detection theorem for Frobenius kernels.
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Theorem 4.1. Let G denote a connected, smooth affine group scheme over k and
assume that there exists a Borel subgroup B ⊂ G. Let Λ be an associative unital
rational G(r)-algebra. If z ∈ Hn(G(r),Λ) satisfies the property that for any field
extension K/k and any group scheme homomorphism ν : Ga(r) ⊗k K → G ⊗k K
(over K) the cohomology class ν∗(zK) ∈ Hn(Ga(r) ⊗k K,ΛK) is nilpotent, then z
is itself nilpotent.

Proof. As in the proof of Proposition 3.1, it suffices to assume that k = k. (Since
G has a k-rational point - namely, the identity - G ⊗k k is connected.) Consider
the spectral sequence of Theorem 3.6:

Hp(X(r),Hq(B(r),Λ)) =⇒ Hp+q(G(r),Λ).

This spectral sequence appears as the Hochschild-Serre spectral sequence corre-
sponding to the group extension

1→ B(r) → B → B(r) → 1.

By Lemma 2.2,

F i(Hn(G(r),Λ)) · F j(Hm(G(r),Λ)) ⊂ F i+j(Hn+m(G(r),Λ)).

On the other hand F i(H∗(G(r),Λ)) = 0 for i > dim X. This shows that the
ideal F 1(H∗(G(r),Λ)) is nilpotent and hence it suffices to show that the image of
z in H0(X(r),Hn(B(r),Λ)) is nilpotent. The k-algebra H0(X(r),H∗(B(r),Λ)) =
H0(B(r), H∗(B(r), Ind Λ)) is a subalgebra of the k[G(r)]-algebra H∗(B(r), Ind Λ)
(here and in the sequel we abbreviate the notation IndGG(r)

to Ind). Thus it suffices

to show that the image
∼
z of z in H∗(B(r), Ind Λ) is nilpotent.

Denote by I• the standard G(r)-injective resolution of Λ: Im = Λ⊗k[G(r)]⊗(m+1)

(here G(r) acts on Im via the right regular representation on the last tensor factor).
Note that I• is naturally a differential graded k-algebra. The differential graded
k[G(r)]-algebra J• = (Ind I•)B(r) satisfies H∗(J•) = H∗(B(r), Ind Λ). Let g be
any point of G and let g(r) be the image of g in G(r). Consider the differential
graded k(g(r))-algebra J• ⊗k[G(r)] k(g(r)) and tensor it over k(g(r)) with k(g). To
understand the structure of the resulting differential graded k(g)-algebra assume
first that the point g is k-rational.

For any rational G(r)-module M , there is a canonical G(r)-equivariant homo-
morphism εM : Ind M → M : f ⊗m 7→ f(1) ·m. This homomorphism is clearly
k[G(r)]-linear if we make M into a k[G(r)]-module via the evaluation at 1 ∈ G(r)(k)
map k[G(r)]→ k. Consider further the composition

Ind M
g−1

−−→ Ind M
εM−−→M.

This homomorphism takes (Ind M)B(r) ⊂ Ind M to Mg−1B(r)g ⊂M . Furthermore,
this homomorphism is k[G(r)]-linear if we make M into a k[G(r)]-module via the
evaluation at g(r) ∈ G(r)(k) map. Thus we get a natural homomorphism

θM : ((Ind M)B(r) ⊗k[G(r)] k(g
(r)))⊗k(g(r)) k(g)→Mg−1B(r)g
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The homomorphism θk[G(r)] is an isomorphism as one sees from the Cartesian square

g−1B(r)g\G(r) −−−−→ Spec k

x 7→gx

y g(r)

y
B(r)\G −−−−→ G(r)\G = G(r)

(4.1.1)

(To check that (4.1.1) is Cartesian, one realizes this square as the sheafification
in the fppf topology of a pull-back square of presheaves of sets of the same form
in which the indicated quotients are quotients as presheaves). Hence, θM is an
isomorphism for any injective G(r)-module M . This implies that

(J• ⊗k[G(r)] k(g
(r)))⊗k(g(r)) k(g) = (I•)g

−1B(r)g.

Using extension of scalars, one sees easily that the same kind of an answer holds
for any point g ∈ G. More precisely, we have the following general formula:

(J• ⊗k[G(r)] k(g
(r)))⊗k(g(r)) k(g) = (I• ⊗k k(g))g−1(B(r)⊗kk(g))g.

In this formula, we use the same notation g for the k(g)-rational point determined
by the point g ∈ G. This formula implies, in particular, that

H∗(J• ⊗k[G(r)] k(g)) =H∗(g−1(B(r) ⊗k k(g))g,Λ⊗k k(g)) ⊂
⊂ H∗(g−1(U(r) ⊗k k(g))g,Λ⊗k k(g)).

A direct computation shows that the image of
∼
z in this cohomology algebra coin-

cides with the restriction of zk(g) ∈ Hn(G(r) ⊗k k(g),Λk(g)) to g−1(U(r) ⊗k k(g))g.
Thus, we get a cohomology class of the unipotent group g−1(U(r) ⊗k k(g))g with
coefficients in the associative unital rational algebra Λ ⊗k k(g) which restricts
nilpotently (according to our assumptions on z) to all one parameter subgroups
of g−1(U(r) ⊗k k(g))g. Theorem 2.5 shows that this cohomology class is nilpotent.
Since extension of scalars from k(g(r)) to k(g) gives an injective map in cohomology,
we conclude that the image of

∼
z in the cohomology of J• ⊗k[G(r)] k(x) is nilpotent

for each point x ∈ G(r). Finally we can use the following result.

Proposition 4.2. Let A be a commutative noetherian ring of finite Krull dimen-
sion and let J• be an associative unital differential graded A-algebra. Assume that
z ∈ Hn(J•) is a cohomology class such that for each prime ideal µ ∈ Spec A the
image of z in H∗(J• ⊗A k(µ)) is nilpotent. Then z is nilpotent.

Proof. We proceed by induction on d = dim A. Assume first that d = 0 (i.e., A
is an artinian ring). Since every artinian ring is (canonically) a product of local
artinian rings : A =

∏
Ai and similarly J• =

∏
J•
i , where J•

i is a differential
graded Ai-algebra we may further assume that A is local. In this case, we use an
additional induction on the length of the maximal ideal M(A) of A. If this length
is equal to zero, then A is a field and there is nothing to prove. Otherwise, choose
any nonzero element t ∈M(A). Applying the induction hypothesis to A/tA and a
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differential graded A/tA-algebra J•/tJ•, we see that there exists N > 0 such that
the image of zN in J•/tJ• is a boundary. Replacing z by zN we my assume that
z is a cohomology class of a cycle of the form tu (u ∈ Jn). Since t is nilpotent the
statement is clear in this case.

Assume now that d > 0 and the statement has been proved already for differential
graded algebras over commutative rings of dimension < d. Consider the following
chain of ideals in A

AnnAz ⊂ AnnAz2 ⊂ AnnAz3 ⊂ ...
Since A is noetherian this chain eventually stabilizes. Replacing z by its appropriate
power we may assume in the sequel that

AnnAz = AnnAz
2 = ...

Denote this ideal by I. Let µ ∈ Spec A be a prime ideal of height < d. Applying the
induction hypothesis to Aµ and J•

µ we conclude that the image of z in H∗(J•
µ) =

H∗(J•)µ is nilpotent which implies readily that I 6⊂ µ. This shows that the only
prime ideals which could possibly contain I are maximal ideals of height d. Since
d > 0 we can find t ∈ I such that dim A/tA < d. Applying the induction hypothesis
to A/tA and J•/tJ•, we conclude that (after replacing z by an appropriate power
of z) we may assume that z is a cohomology class of a cycle of the form tu with
u ∈ Jn. Note that t ·du = 0 and hence t ·d(u2) = t · (u∪du+du∪u) = 0. Thus tu2

is a cycle. Denoting the cohomology class of this cycle by y we obtain the equality
z2 = ty and hence the vanishing z3 = z ∪ z2 = z ∪ ty = tz ∪ y = 0.

Remark 4.2.1 The proof of Theorem 4.1 can be much simplified provided that
one assumes that Λ is a rational G-algebra. In this case it suffices to show that
the image of z ∈ Hn(G(r),Λ) in H0(X(r),L(Hn(B(r),Λ))) is nilpotent. One checks
readily that the fiber of the vector bundle L(Hn(B(r),Λ)) at a rational point x(r) =
g(r)B(r) ∈ X(r) (g ∈ G(k)) coincides with Hn((Bg)(r),Λ). Furthermore the image
of z ∈ Hn(G(r),Λ) under the composition

Hn(G(r),Λ)
ρ−→ H0(X(r),L(Hn(B(r),Λ)))→ Hn((Bg)(r),Λ)

coincides with z|(Bg)(r)
. Now the proof is easily concluded using Theorem 2.5 and

induction on the dimension of the support of the section

ρ(z) ∈ H0(X(r),L(Hn(B(r),Λ).

In [S-F-B], we introduced for any affine group scheme G/k an affine scheme Vr(G)
of finite type over k, whose A-points for any commutative k-algebra A are in one
to one correspondence with group scheme homomorphisms (over A) Ga(r) ⊗k A→
G ⊗k A. Let s ∈ Vr(G) be a point. This point defines a canonical k(s)-point of
Vr(G) and hence an associated group scheme homomorphism over k(s) which we
denote

νs : Ga(r) ⊗k k(s)→ G⊗k k(s).
Note that if K/k is a field extension and ν : Ga(r)⊗kK → G⊗kK is a group scheme
homomorphism, then this data defines a point s ∈ Vr(G) and a field embedding
k(s) ↪→ K such that ν is obtained from νs by extending scalars from k(s) to K.
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Theorem 4.3. Let G be an infinitesimal group scheme of height ≤ r over k and
let Λ be an associative unital rational G-algebra. Then the following conditions on
a cohomology class z ∈ Hn(G,Λ) are equivalent:
(a.) z is nilpotent.
(b.) For every field extension K/k and every group scheme homomorphism over K
ν : Ga(r) ⊗k K → G ⊗k K, the cohomology class ν∗(zK) ∈ Hn(Ga(r) ⊗k K,ΛK) is
nilpotent.
(c.) For every point s ∈ Vr(G), the cohomology class ν∗

s (zk(s)) ∈ Hn(Ga(r) ⊗k
k(s),Λk(s)) is nilpotent.

Proof. The equivalence of conditions (b.) and (c.) is obvious from the discussion
above. Clearly (a.) implies (b.). We now proceed to prove the converse.

Embed G in some G′ = GLn(r) and set Λ′ = IndG
′

G (Λ). Thus, Λ′ is an asso-
ciative, unital rational G′-algebra. Moreover, H∗(G,Λ) = H∗(G′,Λ′) as graded
algebras. By Theorem 4.1, it suffices to show that the element z′ ∈ Hn(G′,Λ′)
which corresponds to z under the above identification satisfies the condition that
ν′∗(z′) ∈ Hn(Ga(r) ⊗k K,Λ′

K) is nilpotent for every field extension K/k and every
group scheme homomorphism ν′ : Ga(r)⊗kK → G′⊗kK. We consider the cartesian
square

Ga(s) ⊗k K ν−−−−→ G⊗k Ky y
Ga(r) ⊗k K ν′

−−−−→ G′ ⊗k K.
(4.3.1)

where the upper left corner is of the indicated form (with s ≤ r) because it is a
K-subgroup of Ga(r) ⊗k K. For notational convenience, we re-write (4.3.1) as

H
ν−−−−→ GKy y

H ′ ν′
−−−−→ G′

K .

Consider the homomorphism of rational H ′-modules

θ : Λ′
K = Ind

G′
K

GK
(ΛK)→ IndH

′
H (ΛK)

determined by the adjointness of Ind and Res. This homomorphism is surjective.
To prove this consider the following commutative diagram of schemes

H ′ ν′
−−−−→ G′

K

pH

y pG

y
H ′/H ν′−−−−→ G′

K/GK .

According to our definitions, IndG
′
K

GK
(ΛK) = Γ(G′

K/GK ,L(ΛK)) and IndH
′

H (ΛK) =
Γ(H ′/H,L(ΛK)) (cf. (3.3) and (3.4)). Observe that (pH)∗(ν′∗(L(ΛK))) =
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= ν′∗(p∗
G(L(ΛK))) = ν′∗( ˜K[G′]⊗K ΛK) = ˜K[H ′]⊗K ΛK = (pH)∗(L(ΛK)). This

together with Proposition 3.2 shows that ν′∗(L(ΛK)) = L(ΛK). Now, it suffices to
observe that ν′ is a closed embedding.

We rewrite θ (as a map of K-algebras) as

θ : (K[G′]⊗K ΛK)GK = Ind
G′

K

GK
(ΛK)→ IndH

′
H (ΛK) = (K[H ′]⊗K ΛK)H .

Since Ker{K[G′]→ K[H ′]} is contained in the maximal ideal of the local artinian
ring K[G′], it is nilpotent. From this we conclude immediately that I = Ker θ
is also nilpotent. Now consider the following portion of the exact cohomology
sequence

Hn(H ′, I)→ Hn(H ′,Λ′
K)→ Hn(H ′, IndH

′
H (ΛK)) = Hn(H,ΛK).

To prove that ν′∗(z′
K) ∈ Hn(H ′,Λ′

K) is nilpotent, we first observe that its image
in Hn(H,ΛK) is nilpotent by our original hypothesis on z and Lemma 2.4, for this
image equals ν∗(zK). Thus, replacing z by its appropriate power, we may assume
that ν′∗(z′

K) ∈ Hn(H ′, I) . Since I is nilpotent, the ring without unit H∗(H ′, I) is
also nilpotent and thus ν′∗(z′

K) is nilpotent.

Since Ext∗G(M,M) = H∗(G,Endk(M)) for a rational G-module M and and as
Endk(M)K = EndK(MK) if M is finite dimensional, Theorem 4.3 has the following
immediate corollary.

Corollary 4.4. Let G be an infinitesimal group scheme of height ≤ r over k and
let M be a finite dimensional rational G-module. Then the following conditions on
an extension class e ∈ ExtnG(M,M) are equivalent:
a. e is nilpotent.
b. For every field extension K/k and every group scheme homomorphism over K
ν : Ga(r) ⊗k K → G⊗k K, the extension class ν∗(eK) ∈ ExtnGa(r)⊗kK

(MK ,MK)
is nilpotent.

c. The extension class ν∗
s (ek(s)) ∈ ExtnGa(r)⊗kk(s)

(Mk(s),Mk(s)) is nilpotent, for ev-
ery point s ∈ Vr(G).

§5. Support schemes

In [S-F-B], we introduced and analyzed a natural ring homomorphism
ψ : Hev(G, k) → k[Vr(G)] and the associated morphism of schemes Ψ : Vr(G) →
Spec Hev(G, k). In the special case G = GLn(r), we identified the composition

Vr(GLn(r))
Ψ−→ Spec Hev(GLn(r), k)

Φ−→ Vr(GLn(r))

as the r-th Frobenius twist morphism (cf. [S-F-B;5.2] by identifying ψ applied to
the universal classes e(r−i)i ∈ H2pr−i

(GLn(r), gl
(r)
n ) introduced in [F-S]. This result

implies immediately that for any infinitesimal group scheme G of height ≤ r the
morphism Ψ is finite and universally injective. As we shall see in this section, our
detection theorem together with this result enables us to demonstrate that

Ψ : Vr(G)→ |G| ≡ Spec Hev(G, k)
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is a (universal) homeomorphism.
Throughout this section, r will denote a fixed positive integer and G will denote

an infinitesmal group scheme over k of height ≤ r.
The following proposition is a somewhat sharper version of Theorem 4.3 in case

of the cohomology algebra with trivial coefficients.

Proposition 5.1. For any z ∈ H2n(G, k), z is nilpotent whenever ψ(z) ∈ k[Vr(G)]
is nilpotent.

Proof. Consider some z ∈ H2n(G, k) with ψ(z) nilpotent. By Theorem 4.3, it suf-
fices to prove for every field extension K/k and every group scheme homomorphism
over K, ν : Ga(r) ⊗k K → G⊗k K that ν∗(zK) ∈ H2n(Ga(r) ⊗k K,K) is nilpotent.
Furthermore, it suffices to restrict attention to fields K which are algebraically
closed. Write

ν∗(zK) =
∑

i1+...+ir=n

ai1,... ,irx
i1
1 · ... · xirr ∈ K[x1, ..., xr] = H∗(Ga(r) ⊗k K,K)red.

According to definitions, (see [S-F-B]) the coefficient a0,...,0.n coincides with ψ(z)(s),
where s ∈ Vr(G) is the point defined by ν. Since ψ(z) is nilpotent, its value at each
point is trivial and hence a0,... ,0,n = 0.

Let γc : Ga(r) ⊗k K → Ga(r) ⊗k K denote the composition

Ga(r) ⊗k K ∆−→ (Ga(r) ⊗k K)×r c1,c2◦F,... ,cr◦F r−1

−−−−−−−−−−−−→ (Ga(r) ⊗k K)×r m−→ Ga(r) ⊗k K
where m denotes the group operation (addition) of Ga(r) ⊗k K. We easily verify
that

γ∗
c (xi) = cp

i

1 xi + cp
i

2 xi+1 + · · ·+ cp
i

r−i+1xr

using (1.3.2), (1.3.3) and (1.4). Let ν′ = ν ◦ γc : Ga(r) ⊗k K → G ⊗k K. The
coefficient of xnr in ν′∗(z) ∈ H2n(Ga(r) ⊗k K,K) equals∑

i1+...+ir=n

ai1,... ,ir (c
p
r)
i1 · ... · (cpr

1 )ir

which equals 0 by our assumption on z. Since c is an arbitrary r-tuple in the
algebraically closed field K, we conclude that each ai1,... ,ir equals 0 and thus that
ν∗(z) = 0 as required.

As shown in [S-F-B;5.2], the image of the homomorphism ψ : Hev(G, k) →
k[Vr(G)] contains the pr-th power of each element of k[Vr(G)]. This, together with
Proposition 5.1, immediately implies the following theorem.

Theorem 5.2. Let G be an infinitesimal group scheme of height ≤ r. Then the
kernel of the canonical homomorphism

ψ : Hev(G, k)→ k[Vr(G)]

is nilpotent and its image contains the pr-th power of each element of k[Vr(G)].
Consequently, the associated morphism of schemes

Ψ : Vr(G)→ |G| = Spec Hev(G, k)

is a finite universal homeomorphism.
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Proposition 5.3. Let G be a closed subgroup of GLn(r). Then the homomorphism

Res ◦ φ : S∗(⊕ri=1gl
#(r)
n [2pi−1])→ Hev(G, k)red

induced by the universal cohomology classes e(r−1)
1 , . . . , er ∈ H∗(GLn(r), gl

(r)
n ) has

image containing all pr-th powers. Consequently the associated morphism of
schemes

|G| → |GLn(r)| Φ−→ Vr(GLn(r)) ⊂ gl×rn
is finite and (universally) injective.

Proof. Recall that the closed embedding G ↪→ GLn(r) defines a closed embedding
Vr(G) ↪→ Vr(GLn) (cf. [S-F-B;1.5]), so that the induced map on coordinate algebras
k[Vr(GLn(r))]→ k[Vr(G)] is surjective. Consider the commutative diagram

k[Vr(GLn(r))]
φ−−−−→ Hev(GLn(r), k)

ψ−−−−→ k[Vr(GLn(r))]

=
y Res

y y
k[Vr(GLn(r))]

Res◦φ−−−−→ Hev(G, k)
ψ−−−−→ k[Vr(G)].

For any cohomology class z ∈ Hev(G, k), consider ψ(z) ∈ k[Vr(G)] and lift it to
a (homogenous) element y′ ∈ k[Vr(GLn(r))] = k ⊗Fp Fp[Vr(GLn(r))]. Applying to
k-coefficients of y′ the r-th power of the Frobenius endomorphism, we get an element
y ∈ k[Vr(GLn(r))] whose r-th Frobenius twist is y′pr

. Commutativity of the above
diagram and the fact (discussed above) that the composition of the homomorphisms
of the top row is the r-th Frobenius twist immediately implies that the image of
zp

r−Res(φ(y)) in k[Vr(G)] is trivial and hence (by Proposition 5.1) zp
r−Res(φ(y))

is nilpotent.

Since the map Res ◦ φ of Proposition 5.3 factors through Hev(GLn(r), k), we
conclude that the restriction map

Hev(GLn(r), k)red → Hev(G, k)red
has image containing all pr-th powers. This immediately implies the following.

Corollary 5.4. Let G be an infinitesimal group scheme of height ≤ r and let H be
a closed subgroup scheme of G. Then the homomorphism

Hev(G, k)red
Res−−→ Hev(H, k)red

has image containing all pr-th powers. Consequently, for each z ∈ Hev(H, k) there
exists N ≥ 0 such that zp

N

may be lifted to Hev(G, k).

Corollary 5.4.1. In conditions and notations of Corollary 5.4, the associated mor-
phism of support schemes |H| → |G| is finite and universally injective.

Remark 5.5 As seen above, the morphism Φ : |GLn(r)| → Vr(GLn(r)) induced by
φ is a universal homeomorphism, the topological inverse to Ψ. Taken in conjunc-
tion with Theorem 5.2, this implies that Φ restricts to a topological homeomor-
phism from |G| to Vr(G)(r). In [S-F-B], we asked whether Φ(|G|) ⊂ Vr(GLn(r))
is contained scheme-theoretically in Vr(G)(r) and whether the morphism ΦG :
|G| → Vr(G)(r) which would then be determined is independent of the embedding
G ↪→ GLn(r). We see that these questions have an affirmative answer if weakened
to set-theoretic statements.
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§6. Support varieties for modules

The purpose of this section is to give a non-cohomological, geometric interpre-
tation of the cohomological support variety |G|M of a finite dimesnional, rational
G-module M for an infinitesimal group scheme G . Indeed, Theorem 6.7 presents
the appropriate analogue of Proposition 5.1 with k replaced by M ; this easily im-
plies in Corollary 6.8 a homeomorphism between |G|M and the non-cohomological
Vr(G)M ⊂ Vr(G). The key ingredient in our analysis is the detection result of
Theorem 4.3 for H∗(G,Λ), where Λ = Endk(M). This, however, is not sufficient,
for we must carefully analyze the special case G = Ga(r).

Throughout this section, G will denote an infinitesimal group scheme of height
≤ r and M a finite dimensional rational G-module. Moreover, Λ will denote
Endk(M) = M ⊗M#, a finite dimensional, associative, unital rational G-algebra.

We recall that the (cohomological) support variety of M (denoted |G|M ) is de-
fined as the Zariski closed subset of |G| = Spec Hev(G, k) defined by the ideal
IM = Ker(Hev(G, k)

ρΛ−→ Hev(G,Λ)). (In particular, |G|M may be considered as
a reduced k-scheme.)

We begin by introducing a closed subset Vr(G)M ⊂ Vr(G) which we shall show
maps homeomorphically onto |G|M .

Proposition 6.1. Let G be an infinitesimal group scheme over k and M a finite
dimensional rational G-module. Then

Vr(G)M = {s ∈ Vr(G) : M ⊗k k(s) is not projective over the subalgebra

k(s)[ur−1]/u
p
r−1 ⊂ k(s)[u0, ..., ur−1]/(u

p
0, ..., u

p
r−1) = k(s)[Ga(r)]#}

is a Zariski closed conical subset in Vr(G).

Proof. Let A denote the coordinate algebra k[Vr(G)] and consider the canonical
morphism of group schemes over A Ga(r) ⊗k A→ G⊗k A. Using this homomor-
phism, we make MA into a rational module over Ga(r) ⊗k A, i.e. into a module
over A[Ga(r)]# = A[u0, ..., ur−1]/(u

p
0, ..., u

p
r−1). Observe that MA is evidently a free

A-module. Using this fact, one checks easily that if M ⊗k k(s) is projective (=free)
over k(s)[ur−1]/u

p
r−1 ⊂ k(s)[Ga(r)]# for some point s ∈ Vr(G), then M ⊗k As is a

free As[ur−1]/u
p
r−1-module. Here As denotes the localization of A at a prime ideal

µs corresponding to s. Since the rank of M ⊗k A is finite, this implies immediately
the existence of a ∈ A \ µs such that M ⊗k Aa is a free Aa[ur−1]/u

p
r−1-module.

Hence, for all points s′ of the principal open set Spec Aa ⊂ Spec A, the module
M ⊗k k(s′) is free over k(s′)[ur−1]/u

p
r−1.

Let Vr(G)M also denote the closed reduced subscheme of Vr(G) associated to
this closed subset. Then field valued points Spec K → Vr(G)M are in one to one
correspondence with group scheme homomorphisms ν : Ga(r) ⊗k K → G⊗k K for
whichMK is not projective overK[ur−1]/u

p
r−1 ⊂ K[Ga(r)]#. To prove that Vr(G)M

is conical, it suffices to show that if s ∈ Vr(G)M (K) is a field valued point and c ∈ K,
then c · s ∈ Vr(G)M (K). For c = 0, this is evident since the point 0 · s ∈ Vr(G)(K)
corresponds to the trivial group scheme homomorphism Ga(r) ⊗k K → G ⊗k K.
Assume next that c 6= 0. The morphism νc·s : Ga(r) ⊗k K → G ⊗k K is given
by the composition Ga(r) ⊗k K c−→ Ga(r) ⊗k K νs−→ G. One checks immediately
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that the homomorphism c∗ : K[Ga(r)]# → K[Ga(r)]# takes ui to cp
i

ui. Thus a
K[ur−1]/u

p
r−1-module structure on M , corresponding to the point c · s, is obtained

from the module structure corresponding to s via the ring homomorphism

K[ur−1]/u
p
r−1

ur−1 7→cpr−1
ur−1−−−−−−−−−−−→ K[ur−1]/u

p
r−1.

Since this ring homomorphism is clearly an isomorphism, the statement follows.

In the unipotent case, one can give a slightly different description of the support
of a module using the following lemma.

Lemma 6.2. Let M be a finite dimensional rational module over an infinitesi-
mal group scheme G. Denote by JM the annihilator of the left Hev(G, k)-module
H∗(G,M). Then
a. IM ⊂ JM .
b. If G is unipotent then

√
IM =

√
JM .

Proof. We have a natural left action of Hev(G,Λ) on H∗(G,M) and the action
of Hev(G, k) on H∗(G,M) is obtained from this one via the homomorphism ρΛ :
Hev(G, k)→ Hev(G,Λ). This makes the first statement obvious.

Assume now that G is unipotent. In this case M# admits a filtration of length
d = dimkM with trivial one-dimensional factors. Assuming now that z ∈ H2n(G, k)
annihilates H∗(G,M) we conclude easily that zd annihilates H∗(G,M ⊗M#) =
H∗(G,Λ), i.e. zd ∈ IM .

The following proposition is a special case (namely, G is assumed to have height
1) of our main Theorem 6.7.

Proposition 6.3. Let G be an infinitesimal group scheme of height 1 and let M be
a finite dimensional rational G-module. The following conditions on a cohomology
class z ∈ H2n(G, k) are equivalent:
(a.) z ∈ √IM
(b.) The function ψ(z) ∈ k[V1(G)] takes zero value at all points s ∈ V1(G)M .

Proof. The statement is trivial for zero dimensional classes, so we assume that
n > 0. By definition z ∈ √IM if and only if ρ(z) ∈ H2n(G,Λ) is nilpotent.
By Theorem 4.3, ρ(z) is nilpotent if and only if ν∗

s (ρ(z)k(s)) = ρ(ν∗
s (zk(s))) ∈

H2n(Ga(1) ⊗k k(s),Λk(s)) is nilpotent for every point s ∈ V1(G). Lemma 6.2 shows
further that this last condition is equivalent to the condition that for every s ∈
V1(G) a sufficiently high power of ν∗

s (zk(s)) annihilates H∗(Ga(1) ⊗k k(s),Mk(s)).
By definition, ν∗

s (zk(s)) = ψ(z)(s) · xn1 . Thus the previous condition means that
either ψ(z)(s) = 0 or a sufficiently high power of x1 ∈ H2(Ga(1) ⊗k k(s), k(s))
annihilates H∗(Ga(1)⊗k k(s),Mk(s)). Since multiplication by x1 defines periodicity
in the cohomology of any rational Ga(1) ⊗k k(s)-module, either ψ(z)(s) = 0 or
Hi(Ga(1) ⊗k k(s),Mk(s)) = 0 for i ≥ 2 so that Mk(s) is a projective k(s)[Ga(1)]# =
k(s)[u1]/u

p
1-module.

Proposition 6.3 admits the following formulation in terms of support varieties.
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Corollary 6.3.1. Let M be a finite dimensional rational module over an infinites-
imal group scheme G of height one. Then

Ψ−1(|G|M ) = V1(G)M .

Proof. Let k[V1(G)M ] denote the coordinate algebra of the reduced closed sub-
scheme of V1(G) associated to the closed subset V1(G)M ⊂ V1(G) and let IM
denote the kernel of the surjective homomorphism k[V1(G)]→ k[V1(G)M ]. Propo-
sition 6.3 asserts that ψ−1(IM ) =

√
IM . Since Ψ : V1(G)→ |G| is the map induced

by ψ, we conclude that Ψ−1(|G|M ) = V1(G)M .

To compute the support varieties for modules over Ga(r) we need the following
lemma. A very similar result has been proved by J. Carlson in the context of
elementary abelian groups (cf. [C1;6.4]).

Lemma 6.4. Let M be a finite dimensional vector space over k equipped with
an r-tuple of commuting p-nilpotent endomorphisms α1, ..., αr. Furthermore, let
f ∈ k[X1, ..., Xr] be a polynomial without constant and linear terms. Set

∼
α1 =

α1 + f(α1, ..., αr). If M is a projective k[u]/up-module with the action of u being
given by α1, then it’s also projective over k[u]/up with the action of u being given
by

∼
α1 (and vice versa).

Proof. The general case is immediately reduced to the case
∼
α1 = α1 + α2α3 and if

p 6= 2 is reduced further to the case
∼
α1 = α1 + α2

2. We shall assume that p 6= 2,
the case p = 2 may be treated similarly. We use the notation Hi(α1,M) for the
cohomology of k[u]/up with coefficients in M , where u acts on M via α1. To verify
that M is projective over k[α1 + α2

2] it suffices to check that
Ker(α1 + α2

2)/Im(α1 + α2
2)
p−1 = H2(α1 + α2

2,M) is a trivial vector space. Fur-
thermore, since the action of α2 on H2(α1 + α2

2,M) is nilpotent it suffices to show
that the homomorphism

α2 : H2(α1 + α2
2,M)→ H2(α1 + α2

2,M)

is injective. So let x ∈ Ker(α1 + α2
2) be an element such that

α2(x) = (α1 + α2
2)
p−1(y) for some y ∈M . Note the formula

(X + Y )p−1 =
Xp + Y p

X + Y
= Xp−1 −Xp−2Y + ...−XY p−2 + Y p−1. (6.4.1)

Using this formula, we get

(α1 + α2
2)
p−1 =

p−1∑
i=[ p

2 ]

(−1)iαi1α
2(p−1−i)
2

and further

α1(x) = −α2
2(x) = −α2(

p−1∑
i=[ p

2 ]

(−1)iαi1α
2(p−1−i)
2 y) =

= α1(
p−1∑
i=[ p

2 ]

(−1)i−1αi−1
1 α

2(p−1−i)+1
2 y).
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Thus x−∑p−1
i=[ p

2 ](−1)i−1αi−1
1 α

2(p−1−i)+1
2 y ∈ Ker α1 = Im αp−1

1 and hence

x =
p−1∑
i=[ p

2 ]

(−1)i−1αi−1
1 α

2(p−1−i)+1
2 y + αp−1

1 z

for some z ∈M . Applying α2 to this formula and taking into account that α2(x) =
(α1 + α2

2)
p−1(y), we conclude
p−1∑
i=[ p

2 ]

(−1)iαi1α
2(p−1−i)
2 y =

p−2∑
i=[ p

2 ]−1

(−1)iαi1α
2(p−1−i)
2 y + α2α

p−1
1 z.

The term corresponding to i = [p2 ]− 1 on the right vanishes and the above formula
simplifies to αp−1

1 y = αp−1
1 α2z. Hence y − α2(z) ∈ Ker αp−1

1 = Im α1; in other
words, y = α2z + α1t for some t ∈ M . Now, one checks easily that x = (α1 +
α2

2)
p−1(z − α2t) and hence x = 0 ∈ H2(α1 + α2

2,M).

Proposition 6.5. Let M be a finite dimensional rational Ga(r)-module. Then

Ψ−1(|Ga(r)|M ) = Vr(Ga(r))M .

Proof. Since k[Ga(r)]# = k[u0, ..., ur−1]/(u
p
0, ..., u

p
r−1) = k[G×r

a(1)]
#, the category

of rational Ga(r)-modules is equivalent to the category of rational G×r
a(1)-modules.

For any rational Ga(r)-module M , we shall denote by
∼
M the same module consid-

ered as a rational G×r
a(1)-module. Note that for any M we have a natural isomor-

phism H∗(Ga(r),M) = H∗(G×r
a(1),

∼
M). Moreover the isomorphism H∗(Ga(r), k) =

H∗(G×r
a(1), k) is an isomorphism of k-algebras and the isomorphism H∗(Ga(r),M) =

H∗(G×r
a(1),

∼
M) is compatible with the action of H∗(Ga(r), k) = H∗(G×r

a(1), k) on both

sides. Thus we get a natural isomorphism of support schemes |Ga(r)| ∼→ |G×r
a(1)| and

this isomorphism takes |Ga(r)|M onto |G×r
a(1)|∼M for each M .

In [S-F-B;§1], we exhibited an identification of the scheme Vr(Ga(r)) with the
affine space Ar. This identification takes a point with coordinates (a0, ..., ar−1) to
the endomorphism νa of Ga(r) given by the additive polynomial a0T + a1T

p + ...+
ar−1T

pr−1
. With this identification,

ν∗
a(xi) = a0xi + . . .+ ap

r−i

r−1 xr ∈ H2(Ga(r), k).

We can also identify Ar with V1(G×r
a(1)), this time identifying a point (b0, ..., br−1)

with a morphism Ga(1) → G×r
a(1) (t 7→ (b0t, ..., br−1t)). The map h : Vr(Ga(r)) →

V1(G×r
a(1)) making the following square commute

Ar = Vr(Ga(r))
ΨGa(r)−−−−→ |Ga(r)|

h

y ∼=

y
Ar = V1(G×r

a(1))
ΨG×r

a(1)−−−−→ |G×r
a(1)|
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is given by the formula h(a0, . . . , ar−1) = (ar−1, ..., a
pr−2

1 , ap
r−1

0 ), where |Ga(r)| ∼=
|G×r
a(1)| is the isomorphism described above. The discussion above and Corollary

6.3.1 show that

Ψ−1
Ga(r)

(|Ga(r)|M ) = h−1(V1(G×r
a(1)) ∼

M
) =

= {(a0, ..., ar−1) : M is not projective over k[u]/up, with the action of u on M

being given by the formula u ·m = (ar−1u0 + apr−2u1 + ...+ ap
r−1

0 ur−1) ·m}.

We want to show that the set we get on the right of the above formula equals
Vr(Ga(r))M . Consider the action of k[u]/up = k[ur−1]/u

p
r−1 on M , corresponding

to the morphism νa : Ga(r) → Ga(r). A straightforward computation shows that

(νa)∗(ur−1) =
pr−1∑
i=0

∑
i0 + i1 + ...+ ir−1 = i

i0 + pi1 + ...+ pr−1ir−1 = pr−1

(i0, ..., ir−1)(ai00 · ... · air−1
r−1 ) · vi

(6.5.1)
where (i0, . . . , ir−1) = (i1+···+ir−1)!

i0!···ir−1!
and v0, ..., vpr−1 is the standard basis of

k[Ga(r)]#. We proved in [S-F-B] the following formula for vi:

vi =
ui

(0)

0 · ... · ui(r−1)

r−1

i(0)! · ... · i(r−1)!
(6.5.2)

where i = i(0) + i(1)p+ ...+ i(r−1)pr−1 (0 ≤ i(j) ≤ p− 1) is the p-adic expansion
of i. This formula shows that each vi is a monomial in u0, ..., ur−1 of degree s(i) =
sum of digits of i. It is clear that the coefficient at v0 = 1 in (6.5.1) is equal to
zero. Next we look at coefficients at u0 = v1, u1 = vp, ..., ur−1 = vpr−1 . Assume
that i0 + ... + ir−1 = pl, i0 + pi1 + ... + pr−1ir−1 = pr−1. Consider the p-adic
expansions of i0, ..., ir−1:

i0 = i
(0)
0 + i

(1)
0 p+ ...+ i

(r−1)
0 pr−1, . . . , ir−1 = i

(0)
r−1 + i

(1)
r−1p+ ...+ i

(r−1)
r−1 pr−1.

One checks easily that (i0, ..., ir−1) 6≡ 0 mod p⇐⇒ i
(j)
0 + ...+ i

(j)
r−1 ≤ p− 1 for all

0 ≤ j ≤ r − 1. Thus, non-zero terms in the coefficient at ul correspond to those
i0, ..., ir−1 for which

pl = i0 + ...+ ir−1 = (i(0)0 + ...+ i
(0)
r−1) + ...+ (i(r−1)

0 + ...+ i
(r−1)
r−1 )pr−1

is the p-adic expansion of pl. This implies readily that all ij exept one has to
be zero and the only non zero one equals pl. Looking finally at the equation
i0 + i1p+ ...+ ir−1p

r−1 = pr−1 we conclude that ir−l−1 = pl, ij = 0 (j 6= r− l− 1).
All in all the coefficient at ul equals ap

l

r−l−1. Thus, the linear term in (6.5.1) equals

ar−1u0 + apr−2u1 + ...+ ap
r−1

0 ur−1.
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It is easy to check that for r = 2 there are no nonlinear terms in (6.5.1). However
for r ≥ 3 nonlinear terms really appear in (6.5.1). For example for r = 3 the
formula looks as follows:

(νa)∗(u2) = a2u0 + ap1u1 + ap
2

0 u2 +
p−1∑
i=1

a
p(p−i)
0 ai1 · ui0up−i1 /(i!(p− i)!).

Nevertheless the proposition follows using Lemma 6.4.

The following lemma follows immediately from the definitions of |G|M and
Vr(G)M .

Lemma 6.6. Let f : H → G be a homomorphism of infinitesimal group schemes
of height ≤ r and let M be a finite dimensional, rational G-module (considered also
as a rational H-module via f). Denote by f∗ : Vr(H)→ Vr(G) and f∗ : |H| → |G|
the associated morphisms of schemes. Then

|H|M ⊂ f−1
∗ |G|M , Vr(H)M = f−1

∗ (Vr(G)M ).

Theorem 6.7. Let G be an infinitesimal group scheme of height ≤ r and let M be
a finite dimensional rational G-module. Let further z ∈ H2n(G, k) be a cohomology
class. The following conditions are equivalent:

a. z ∈ √IM .
b. The function ψ(z) ∈ k[Vr(G)] takes zero value at all points s ∈ Vr(G)M .

Proof. Assume first that z ∈ √IM and let s be any point of Vr(G)M . As usual we’ll
use the notation νs for the group scheme homomorphism Ga(r)⊗k k(s)→ G⊗k k(s)
corresponding to s. The cohomology class ν∗

s (zk(s)) obviously belongs to
√
IM,s,

where IM,s = Ker{H∗(Ga(r) ⊗k k(s), k(s)) → H∗(Ga(r) ⊗k k(s),Λk(s))}. Propo-
sition 6.5 implies now that the function ν∗

s (ψ(z)k(s)) = ψ(ν∗
s (zk(s))) ∈ k(s)[Vr(G)]

takes zero value at all points of Vr(Ga(r) ⊗k k(s))Mk(s) and, in particular, at the
unit point 1 ∈ Vr(Ga(r) ⊗k k(s)) of the monoid scheme Vr(Ga(r) ⊗k k(s)). However
ν∗
s (ψ(z)k(s))(1) = ψ(z)(s) ∈ k(s).

Assume now that ψ(z) takes zero value at all points of Vr(G)M . Let s be
any point of Vr(G). Using Lemma 6.6 we conclude immediately that the function
ψ(ν∗

s (zk(s))) = ν∗
s (ψ(z)k(s)) vanishes at all points of Vr(Ga(r)⊗k k(s))Mk(s) . Propo-

sition 6.5 implies that ν∗
s (zk(s)) ∈

√
IM,s. In other words, the cohomology class

ν∗
s (ρ(z)k(s)) ∈ H2n(Ga(r) ⊗k k(s),Λk(s)) is nilpotent. Since this holds for all points
s ∈ Vr(G) we conclude from Theorem 4.3 that ρ(z) is nilpotent, i.e. z ∈ √IM .

The following corollary follows from Theorem 6.7 exactly as Corollary 6.3.1 fol-
lows from Proposition 6.3.

Corollary 6.8. Assuming the conditions and notations of Theorem 6.7,

Ψ−1(|G|M ) = Vr(G)M .

In other words, Ψ induces a homeomorphism Ψ : Vr(G)M
∼−→ |G|M .
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Example 6.9. Let G be an infinitesimal algebraic group scheme and let M be a
finite dimensional rational G-module. If M has dimension not divisible by p, then
|G|M = |G|. This can be seen immediately using Corollary 6.8 and the observa-
tion that a necessary condition for a finite dimesional module over k[u]/up to be
projective is that the dimension of the module must be divisible by p.

We conclude this section by considering in some detail the example of induced
and irreducible modules for SL2(r). Let

H0(λ) ≡ IndSL2
B2

(kλ) = (k[SL2]⊗k kλ)B2

denote the induced module, where B2 ⊂ SL2 is the subgroup of lower triangualr
matrices, kλ is the 1-dimensional B2-module with character the dominant weight
λ (with respect to the diagonal matrices of determinant 1) and let L(λ) ⊂ H0(λ)
denote the simple socle. Recall that for SL2 the dominant weights are of the form
λ = nρ for n ∈ N and ρ = 1

2α, where α is the lone simple root.

Proposition 6.10. Let N denote the p-nilpotent matrices in sl2 ≡ Lie(SL2).
Using Theorem 5.2, identify |SL2(r)| with Vr(SL2(r)) which can be identified with
{(α0, . . . , αr−1) ∈ Nr : [αi, αj ] = 0 ∀ i, j} (cf. [S-F-B;1.7]). Let λ ∈ X(T ) be
dominant and decompose λ as λ0 +pλ1 + · · ·+pqλq with λi = niρ where 0 ≤ ni < p.
Then, for all r ≥ 1,
a. |SL2(r)|L(λ) = {(α0, . . . , αr−1) ∈ Nr : [αi, αj ] = 0 ∀ i, j and αr−i−1 = 0 if ni =

p− 1} and
b. |SL2(r)|H0(λ) = {(α0, α1, . . . , αr−s−1, 0, . . . , 0) ∈ Nr : [αi, αj ] = 0 ∀ i, j and s ≥

0 is the least integer such that ns 6= p− 1}.
To verify Proposition 6.10, we require the following sublemma.

Sublemma 6.11. Let Sts denote the Steinberg module H0((ps − 1)ρ) ' Sps−1(V )
for each s ≥ 1 (where V is the natural two-dimensional module on which SL2 acts).
a. For all 1 ≤ s ≤ r, |SL2(r)|Sts = {(α0, . . . , αr−s−1, 0, . . . , 0) ∈ Nr : [αi, αj ] = 0}.
b. For all 0 ≤ i ≤ r − 1, |SL2(r)|St(i)

1
= {(α0, . . . , αr−i−2, 0, αr−i, . . . , αr−1) ∈ Nr :

[αi, αj ] = 0}.
Proof. (of the sublemma) Let M be an arbitrary SL2-module and consider the
embedding of Ga into SL2 as the sugroup of upper triangular 2× 2 matrices. The
action of SL2 on H∗(SL2(r), k) induces an action of SL2 on |SL2(r)| such that
(via the action on H∗(G,M)) |SL2(r)|M ⊂ |SL2(r)| is closed under this action.
After the identification of |SL2(r)| with Vr(SL2(r)), one observes that the action of
g ∈ SL2 is simply given by componentwise conjugation on a tuple α ∈ |SL2(r)|.
Hence, α ∈ |SL2(r)|M if and only if g · α ∈ |SL2(r)|M for any g ∈ SL2. Given
α ∈ |SL2(r)|, there exists (by the Kolchin Fixed Point Theorem) g ∈ SL2 such that
g · α ∈ |Ga(r)| ⊂ |SL2(r)| (i.e. each component of g · α is upper triangular) and so
it suffices to compute |Ga(r)|M .

Let M = Sts and α = (a0, . . . , ar−1) ∈ |Ga(r)| ' Ar. As in the proof of
Proposition 6.5, to determine whether α is in |Ga(r)|M we must consider the action

of uα = ar−1u0 + · · · + ap
r−1

0 ur−1 on Sts. By direct calculation, one sees that
us, us+1, . . . , ur−1 all act trivially on Sts, so that we are reduced to the action of
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ar−1u0 + · · ·+ ap
s−1

r−s us−1. On the other hand, Sts is projective over SL2(s), and so
Sts⊗kk(α) is projective over k(α)[uα]/upα if and only if at least one of ar−s, . . . , ar−1

is nonzero. In other words, |Ga(r)|Sts = {(a0, . . . , ar−s−1, 0, . . . , 0) ∈ Ar}, from
which (6.11.a) follows. The proof of (6.11.b) is analogous, once one observes that
only ap

i

r−i−1ui acts nontrivially on St(i)1 .

Proof. (of Proposition 6.10) By Steinberg’s twisted tensor product theorem, L(λ) '
L(λ0)⊗ L(λ1)(1) ⊗ · · · ⊗ L(λq)(q), and so by Proposition 7.2,

|SL2(r)|L(λ) =
q⋂
i=1

|SL2(r)|L(λi)(i) .

If ni 6= p − 1, dimL(λi)(i) = ni + 1 < p and hence |SL2(r)|L(λi)(i) = |SL2(r)| by

Example 6.9. On the other hand, if ni = p − 1, then L(λi)(i) = St
(i)
1 . Applying

(6.11.b) and combining the two cases, we conclude (6.10.a).
Note that if λ0 6= p− 1, then the dimension of H0(λ) (= n+1 for λ = nρ) is not

divisible by p. Let s be the least integer such that ns 6= p− 1. Then

λ = (ps − 1)ρ+ psnsρ+ · · ·+ pqnqρ ≡ (ps − 1)ρ+ psλ′

and so by [J;II.3.19], H0(λ) = H0((ps − 1)ρ + (λ′)(s)) ' Sts ⊗ H0(λ′)(s). By as-
sumption on s, H0(λ′)(s) has dimension not divisible by p and so applying Example
6.9 to H0(λ′)(s), (6.11.a) to Sts, and Proposition 7.2, we conclude (6.11.b).

§7. Applications

In this section, we provide various applications of Theorems 5.2 and 6.7 closely
related to analogous results for finite groups proved by J. Carlson (cf. [C2]). These
applications are based upon the fact that our theorems provide a non-cohomological,
geometric description of cohomological support varieties.

Proposition 7.1. Let f : H → G be a homomorphism of infinitesimal group
schemes and let M be a finite dimensional rational G-module (considered also as a
rational H-module via f). Then

f−1
∗ (|G|M ) = |H|M .

Proof. Assume that both H and G are of height ≤ r. The statement follows from
the following commutative square, whose vertical arrows are homeomorphisms

Vr(H)
f∗−−−−→ Vr(G)

ΨG

y ΨH

y
|H| f∗−−−−→ |G|

and Lemma 6.6.
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Theorem 7.2. Let G be an infinitesimal group scheme, and let M,N be finite
dimensional rational G-modules. Then

|G|M⊗N = |G|M ∩ |G|N .

Proof. Using the Kunneth Theorem, one sees easily that ifG andH are infinitesimal
group schemes then the canonical morphism ((pr1)∗, (pr2)∗) : |G×H| → |G|×|H| is
a finite universal homeomorphism. Moreover if M (resp. N) is a rational G-module
(resp. H-module), then

|G×H|M⊗̃N = ((pr1)∗, (pr2)∗)−1(|G|M × |H|N )

where M⊗̃N = pr∗
1M ⊗pr∗

2N is the external tensor product. Applying this remark
in the case G = H and applying Proposition 7.1 to ∆ : G→ G×G, we conclude

|G|M⊗N = ∆−1
∗ (|G×G|M⊗̃N ) = ∆−1

∗ ((pr1)−1
∗ (|G|M ) ∩ (pr2)−1

∗ (|G|N )) =

= |G|M ∩ |G|N .

For our next application, we require the following two lemmas.

Lemma 7.3. Let G be an infinitesimal group scheme of height ≤ r and let ν :
Ga(r) → G be a non-trivial group scheme homomorphism. Consider the associated
homomorphism of k-algebras

k[ur−1]/u
p
r−1 ↪→ k[u0, ..., ur−1]/(u

p
0, ..., u

p
r−1) = k[Ga(r)]#

ν∗−→ k[G]#.

This homomorphism makes k[G]# into a projective (left) k[ur−1]/u
p
r−1-module.

Proof. The homomorphism ν may be decomposed as

Ga(r)
p−→ Ga(s) ↪→ G

where 1 ≤ s ≤ r, the first arrow is the standard projection and the second arrow is
the closed embedding. Since the quotient scheme G/Ga(s) is affine we conclude (cf.
[J]) that k[G] is an injective rational Ga(s)-module. The functor (−)# sending a
k-vector space to its k-linear dual defines an anti-equivalence between the category
of finite dimensional rational Ga(s)-modules and the category of finite dimensional
k[Ga(s)]#-modules, which shows that k[G]# is a projective k[Ga(s)]#-module. Con-
sider finally the composition

k[ur−1]/u
p
r−1 ↪→ k[Ga(r)]#

p∗−→ k[Ga(s)]#.

Since p∗(ur−1) = us−1 we conclude that k[Ga(s)]# = k[u0, ..., us−1]/(u
p
0, ..., u

p
s−1) is

a projective k[ur−1]/u
p
r−1-module, which concludes the proof.

The following lemma is closely related to lemmas proven by J. Carlson in [C2].
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Lemma 7.4. Let x ∈ H2n(k[u]/up, k) be a cohomology class. Consider a k[u]/up-
projective resolution

0←− k ←− P0
d←− P1 ←− . . .

of k and choose a representing cocycle f : P2n → k for x. Finally set P 2n =
P2n/d(P2n+1), M = Ker{f : P 2n → k}. The following conditions are equivalent:
(a.) x 6= 0
(b.) M is a projective k[u]/up-module.

Proof. Observe that we have a long exact sequence with all terms except the first
and the last one projective:

0←− k ←− P0
d←− . . .

d←− P2n−1
d←− P 2n ←− 0.

Applying the same construction to the standard periodic resolution Q• of k, we get
another long exact sequence of the same kind

0←− k ←− Q0 ←− . . . ←− Q2n−1 ←− Q2n = k ←− 0.

By Schanuel’s Lemma (cf. [B]),

P 2n ⊕
n−1⊕
i=0

P2i ⊕
n−1⊕
i=0

Q2i+1
∼= Q2n ⊕

n−1⊕
i=0

Q2i ⊕
n−1⊕
i=0

P2i+1.

Using now the Krull-Schmidt Theorem, we conclude that P 2n is of the form

P 2n = k ⊕ P

where P is a projective (=free) k[u]/up-module. If f|k 6= 0, then f : P 2n →
k splits and hence M

∼= P is projective. On the other hand, if f|k = 0, then
the trivial k[u]/up-module k is a direct summand in M = Ker{P 2n → k} and
hence M is not projective. Thus, condition (b.) is equivalent to the condition
f|k 6= 0 (which we designate as condition (c.) ). Observe that each k[u]/up-linear
homomorphism P2n−1 → k restricts trivially to the maximal trivial submodule
Ker{u : P2n−1 → P2n−1} of P2n−1. Hence if f|k 6= 0 then f can not be extended to
a k[u]/up-linear homomorphism P2n−1 → k, i.e. x 6= 0. Assume, on the other hand,
that f|k = 0. Since every projective k[u]/up-module is also injective, a projective
submodule P ⊂ P 2n ⊂ P2n−1 is a direct summand and hence we may extend f|P
to a k[u]/up-linear homomorphism g : P2n−1 → k. Since f|k = 0 = g|k we conclude
that f = g|P 2n

and hence x = 0. Thus the condition (a.) is also equivalent to (c.).

Theorem 7.5. Let G be an infinitesimal group scheme of height ≤ r. Then W ⊂
|G| is the support |G|M of some finite dimensional rational G-module M if and only
if W is a closed, conical subset of |G|.
Proof. The necessity of the conditions that W be closed and conical is obvious
(since the ideal IM is homogenous).
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To prove the converse, it suffices in view of Theorem 7.2 to show that the zero
locus Z(x) ⊂ |G| of any cohomology class x ∈ H2n(G, k) may be realized in the
form |G|M for an appropriate M . We proceed as in [C2]. Let

0← k ←− P0
d←− P1

d←− . . .

be a resolution of k by finitely generated projective k[G]#-modules. Choose a
representing cocycle f : P2n → k for x and set, P 2n = P2n/d(P2n+1), M =
Ker{f : P 2n → k}. Modifying the resolution P• if necessary, we may assume that
M 6= 0. In this case, we claim that

|G|M = Z(x).

In view of Theorem 6.7, it suffices to check the equality

Vr(G)M = Ψ−1(Z(x)) = Z(ψ(x)). (7.5.1)

Considering both sides of (7.5.1) as closed reduced subschemes of Vr(G), it suffices
to establish that they have the same field valued points. This amounts to showing
that if K/k is a field extension and ν : Ga(r) ⊗k K → G ⊗k K is a group scheme
homomorphism, then the following conditions are equivalent:
(a.) MK is not a projective K[ur−1]/u

p
r−1-module.

(b.) The pullback of xK ∈ H2n(G⊗k K,K) via the K-algebra homomorphism

K[ur−1]/u
p
r−1 ↪→ K[Ga(r)]#

ν∗−→ K[G]#

is trivial in H2n(K[ur−1]/u
p
r−1,K).

If ν is the trivial homomorphism, then both conditions are satisfied (here we need
the assumption M 6= 0). If, on the other hand, ν is non trivial, then Lemma
7.3 shows that P• ⊗k K is a K[ur−1]/u

p
r−1-projective resolution of K, so that the

equivalence of (a.) and (b.) follows from Lemma 7.4.

Our next application provides retrospective motivation for the detection theo-
rems we have presented. Recall that if G is a simple smooth group scheme with
Borel subgroup B ⊂ G and maximal torus T ⊂ B, then the group scheme TG(r) is
defined to fit in the following cartesian square:

TG(r) −−−−→ Ty y
G

F r

−−−−→ G

The “Main Theorem” of [CPS] asserts for a simple smooth group scheme G over
an algebraically closed field k that a finite dimensional rational TG(r)-module M
is injective if and only if the restrictions of M to root subgroups Uα(r) ⊂ G(r) are
injective.
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Proposition 7.6. Let G be an infinitesimal group scheme of height ≤ r over an
algebraically closed field k. Let further M be a finite dimensional rational G-module.
Assume that whenever H ⊂ G is a subgroup scheme isomorphic to Ga(s) (with
s ≤ r) the restriction of M to H is an injective rational H-module. Then M is
injective as a rational G-module.

Proof. Let x ∈ Vr(G) be a k-rational point different from the origin and let νx :
Ga(r) → G be the corresponding (non-trivial) group scheme homomorphism (over
k). Denote the image of νx by H. Clearly H

∼= Ga(s) for some s ≤ r. Our
assumption implies that M is an injective (=projective) k[H]#-module. Using
Lemma 7.3 we conclude immediately that M is also projective over k[ur−1]/u

p
r−1,

i.e. x 6∈ Vr(G)M . Since rational points are dense in any k-scheme of finite type,
we conclude that either Vr(G)M is empty (in which case M = 0) or consists of the
origin only. In the latter case we conclude from Theorem 6.7 that

√
IM coincides

with the augmentation ideal of Hev(G, k). The Hev(G, k)-module Ext∗G(M,M) =
H∗(G,Endk(M)) is finitely generated according to [FS] and is killed by a sufficiently
high power of the augmentation ideal. This shows that there exists an integerN > 0
such that ExtiG(M,M) = 0 for i ≥ N . All we have to do now is to use the following
result.

Lemma 7.6.1. Let M be a finite dimensional rational module over an infinitesimal
group scheme G. Assume that there exists an integer N such t hat ExtiG(M,M) = 0
for i ≥ N . Then M is injective (=projective).

Proof. Denote by Lj(j = 1, ..., n) the simple G-modules. For each j the Ext-group
Ext∗G(Lj ,M) has a natural structure of a left module over the Yoneda algebra
Ext∗G(M,M). Moreover the action ofHev(G, k) on Ext∗G(Lj ,M) is the composition
of the above action and the homomorphism ρ : Hev(G, k) → Ext∗G(M,M). Our
condition implies now that the finitely generatedHev(G, k)-module Ext∗G(Lj ,M) =
H∗(G,L#

j ⊗M) is killed by a sufficiently high power of the augmentation ideal of
Hev(G, k) and hence ExtiG(Lj ,M) = 0 for all sufficiently high i. Thus, increasing
N if necessary, we may assume that ExtiG(Lj ,M) = 0 for all j and all i ≥ N . An
obvious induction on the length shows further that ExtiG(L,M) = 0 for i ≥ N and
all finite dimensional modules L. Consider finally an injective resolution of M

0→M → I0 → I1 → ...→ IN → ...

consisting of finite dimensional modules and denote by Zi the submodule of i-
cocycles. We prove that all Zi are injective (=projective) by decreasing induction
on i. Assume first that i ≥ N . The embedding Zi ↪→ Ii defines an element in
ExtiG(Zi,M) which has to be trivial since i ≥ N . The triviality of this element

means that the projection Ii−1 d−→ Zi splits and hence Zi is injective. To make the
induction step we use the crucial fact that injectives and projectives are the same
in our situation. Thus injectivity of Zi implies that the exact sequence

0→ Zi−1 → Ii−1 d−→ Zi → 0

splits and hence Zi−1 is injective as well.

The proof of the following theorem is merely a repetition of the module-theoretic
arguments given by Carlson in [C2].
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Theorem 7.7. (cf. [C2;Thm1′]) Let G be an infinitesimal group scheme of height
≤ r and let M be a finite dimensional rational G-module. If Vr(G)M can be writ-
ten as a union of closed subsets, Vr(G)M = V1 ∪ V2, with V1 ∩ V2 = {0} and
dimV1, dimV2 ≥ 1, then M can be written as M1 ⊕M2 with Vr(G)Mi = Vi.
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