
Current Zoology  61 (1): 128–131, 2015 

 

Editorial 

Blurred lines: Scientific and legislative issues surrounding 
hybrids and conservation 

Suzanne EDMANDS, Guest Editor 
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA, sedmands@usc.edu 

1  Introduction 

Hybrids are the result of interbreeding between rec-
ognized taxonomic groups such as populations, species 
or subspecies. This special column focuses particularly 
on interspecific hybridization. The blurring of lines be-
tween neatly defined species causes both academic and 
practical problems, especially for those still attached to 
the long-outdated view of species as static, rather than 
dynamic, entities. Species designations become blurred 
when previously distinct species come into secondary 
contact, as well as when incipient species remain con-
nected by gene flow. Botanists are generally credited 
with understanding the importance of hybridization as 
an evolutionary process that promotes adaptation and 
produces novel lineages, while zoologists have been 
characterized as holding to more eugenic views of hy-
bridization polluting species integrity. 

Conservation policy regarding hybrids has been the 
subject of much debate, but resolution remains elusive. 
In the United States, the Endangered Species Act (ESA) 
of 1973 did not mention hybrids, and the U.S. Fish & 
Wildlife Service (USFWS) developed a de facto policy 
of denying protection to organisms with hybrid ancestry 
(O’Brien and Mayr, 1991). By 1996 the USFWS, to-
gether with the National Marine Fisheries Service, pro-
posed an intercross policy for protecting hybrids under 
the ESA, though it has yet to be approved (USFWS and 
NOAA, 1996; Allendorf et al., 2013). Beyond the U.S., 
endangered species legislation in other countries (with 
the sole exception of South Africa) also fails to consider 
hybrids (Haig and Allendorf, 2006). Reluctance to enact 
explicit policies is probably a result of the complex and 
idiosyncratic mix of threats and benefits posed by each 
case of hybridization. 

This special column addresses conservation challen-
ges surrounding hybrids, with specific examples from a 
diversity of animals including stony corals and reef fish 
(Richards and Hobbs, 2015), salmonid fish (Hand et al.,  

2015), lizards (Jancuchova-Laskova et al., 2015), birds 
(Peters and Kleindorfer, 2015) and red wolves (Gese et 
al., 2015), as well as an overview of current scientific 
and legislative issues (Fitzpatrick et al., 2015).Together, 
these papers address a range of important questions: 
How have human activities altered the dynamics of hy-
bridization, and are these “unnatural” hybrids less val-
uable than natural hybrids (Peters and Kleindorfer, 2015; 
Gese et al., 2015)? How can genetic and genomic me-
thods aid in recognizing hybrids and understanding 
mechanisms of introgression (Hand et al., 2015; Gese et 
al., 2015)? To what extent can the consequences of hy-
bridization be predicted (Jancuchova-Laskova et al., 
2015; Fitzpatrick et al. 2015)? Should any level of hy-
brid ancestry exclude individuals from protection, even 
if hybridization is beneficial for the endangered taxon 
(Richards and Hobbs, 2015; Fitzpatrick et al., 2015)? 

2  The Rise of Hybrids in a Human- 
Dominated World 

While hybrids were once thought to be rare, particu-

larly in animals (Mayr, 1963), molecular methods are 

helping us recognize their ubiquity. Mallet (2005) esti-
mated that at least 10% of animal species and 25% of 

plant species are involved in hybridization and potential 
introgression with other species. While much work has 

focused on terrestrial systems, hybridization is also 
rampant in marine systems, with rates of interspecific 

hybridization in reef fishes, for example, reaching as 

high as 25%–55% (Pyle and Randall, 1994; Kuriiwa et 
al., 2007; Richards and Hobbs, 2015). It is unclear what 

fraction of current hybridization can be attributed to 
human activities (Mallet, 2005), but it is widely agreed 

that humans are accelerating hybridization rates. 
Anthropogenic activities promote hybridization th-

rough a variety of intentional and unintentional means. 
Humans may intentionally introduce populations or spe-
cies to promote “genetic rescue” (Miller et al., 2012; 
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Fitzpatrick et al., 2015); support recreational fisheries 
(Hand et al., 2015); or bolster agriculture, aquaculture 
or horticulture (Ellstrand et al., 2010). They may also 
inadvertently introduce organisms as a casualty of glob-
al trade (Ellstrand et al., 2010). Anthropogenic activities 
may further promote hybridization by habitat alteration, 
ecosystem convergence and climate change (Muhlfeld 
et al., 2014; Richards and Hobbs, 2015; Gese et al., 
2015; Fitzpatrick et al., 2015). Humans may even acce-
lerate hybridization when hunting disrupts breeding 
dynamics (Gese et al., 2015). To predict the biological 
consequences of all of these human impacts, it is partic-
ularly important to understand how hybrids use re-
sources in changing environments (Peters and Kleindor-
fer, 2015) and how they themselves change their envi-
ronments (Ryan et al., 2009; Fitzpatrick et al., 2015). 

3  Scientific Issues: Diagnosis, Threats 
vs. Benefits, Predictability 

In the past, hybrids were diagnosed largely based on 

morphological characteristics, which are often unrelia-

ble and do not facilitate distinctions between F1, back-

cross and later generation hybrids (Allendorf et al., 

2013). Molecular methods offer much greater resolution 

and have been effective in, for example, testing wolf 

litters in order to remove hybrid individuals (Gese et al., 

2015). However, molecular methods cannot always 

solve the problem of diagnosing hybrids. In cases where 

lineages are diverging, it can be difficult to differentiate 

between hybridization and incomplete lineage sorting 

(e.g. shared ancestral polymorphisms; Richards and 

Hobbs, 2015). In cases of secondary contact and intro-

gression, there will still be instances when no amount of 

genomic data can completely resolve the boundary be-

tween two parental species and their hybrids (Fitzpa-

trick et al., 2015). Genomic data can, however, be ex-

tremely useful in detecting low levels of introgression, 

such as super-invasive alleles, and in understanding 

patterns of introgression in response to environmental 

change (Hand et al., 2015). 

Hybridization is a complex issue because every case 

involves a different mixture of threats and benefits. One 

threat is that interbreeding will be unsuccessful and re-
sult in no offspring, sterile offspring or inviable offs-

pring, meaning that reproductive effort has been wasted 
(Dalton et al., 2014; Fitzpatrick et al., 2015). In other 

cases hybrids may be viable but exhibit reduced fitness, 

due either to intrinsic incompatibility or loss of local 
adaptation (Bierne et al., 2011; Brennan et al., 2014).  

Even if hybridization and introgression enhances fitness, 
hybrid populations may be viewed as compromised or 
inauthentic (Price and Muir, 2008; Fitzpatrick et al., 
2015). Some of the most problematic cases involve an 
endangered species interbreeding with a more abundant 
species, raising the specter of the endangered species 
experiencing “genomic extinction”, the situation where 
all surviving offspring have some level of hybrid ance-
stry (Allendorf et al., 2013). Hybridization can also 
have deleterious third-party consequences, such as when 
hybrids eat or outcompete other native species (Ryan et 
al., 2009; Hovick and Whitney, 2014). 

Hybridization also offers a host of potential benefits. 
In many cases, hybrids are more fit than their parents, 
exhibiting hybrid vigor in early generations or trans-
gressive segregation in later generations (Bell and Tra-
vis, 2005; Fitzpatrick and Shaffer, 2007). By quickly 
generating new, multi-locus genotypes, hybridization 
allows adaptive shortcuts (Stebbins, 1959) that can per-
mit colonization of novel or marginal habitats (Richards 
and Hobbs, 2015), or increase resistance to stressors 
such as parasites (Bartley et al, 2000; Peters and Klein-
dorfer, 2015). And conversely to the view of hybridiza-
tion as “genomic extinction”, hybrid populations can 
also provide a valuable reservoir of alleles from threat-
ened species (Placyk et al., 2012; Peters and Kleindorfer, 
2015). Over the long term, hybridization may play a 
critical role in promoting new lineages and maintaining 
biodiversity (Seehausen et al., 2008; Richards and 
Hobbs, 2015). 

The trouble with hybridization is that the potential 
threats and benefits are so difficult to predict. It can be 
hard to even predict whether a particular pair of species 
could successfully produce hybrids, since the relation-
ship between genetic divergence and postzygotic isola-
tion varies widely among taxa (Jancuchova-Laskova et 
al., 2015; Fitzpatrick et al., 2015). In cases where hy-
bridization and introgression are possible, the long-term 
consequences remain challenging to forecast. In some 
taxa, long-term hybridization results in fitness reduction 
followed by recovery (Erickson and Fenster 2006), 
while other taxa apparently never recover (Johnson et 
al., 2010). Results of long-term hybridizations are vari-
able even in experimental crosses between different 
pairs of conspecific populations: some show increased 
fitness while others show decreased fitness, and some 
show extensive introgression while others show nearly 
complete assimilation by a single population (Hwang et 
al., 2011; Hwang et al., 2012; Pritchard et al., 2013; 
Pritchard and Edmands, 2013). 
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4  Legislative Issues: Values and  
Future Directions 

 Legislation decisions regarding hybrids cannot be 
fully resolved with scientific data and ultimately in-
volve value judgments. When the U.S. first proposed a 
hybrid policy (USFWS and NOAA, 1996), the term 
“hybrid” was replaced with “intercross” due to the low 
value often placed on hybrids (Haig and Allendorf, 
2004). Because the intercross policy was never enacted, 
the U.S. currently treats hybrids on a case-by-case basis, 
and some self-sustaining species of hybrid origin have 
been listed under the ESA (Haig and Allendorf, 2004). 
Cases in which hybridization is driven by anthropogenic 
forces such as translocation tend to be given lower val-
ue than those driven by “natural” forces such as range 
expansion (Haig and Allendorf, 2004; Fitzpatrick et al., 
2015). However it is often difficult to cleanly distinguish 
between natural and anthropogenic hybridization, and 
this difficulty will be compounded as climate change 
continues to induce range shifts (Muhlfeld et al., 2014). 
With anthropogenically-induced hybridization, native 
species and native genes are clearly judged as having 
higher value (Hand et al., 2015; Fitzpatrick et al., 2015). 

It is becoming increasingly clear that our current 
policy (or lack of policy) regarding conservation and 
hybridization is based on an outmoded view of species 
as fixed entities and that undervaluing the process of 
hybridization can, in some cases, lead to irrevocable 
loss of phylogenetic diversity (Richards and Hobbs, 
2015). One alternative is to establish a clear decision-   
making framework to evaluate each case (Richards and 
Hobbs, 2015). If this cannot resolve the complexities of 
hybridization, we may need to progress beyond the spe-
cies-centered approach and consider a habitat- or eco-
system-based approach (Carroll et al., 1996; Lester et 
al., 2010; Fitzpatrick et al., 2015). In many cases it will 
be too expensive or even impossible to eradicate all 
traces of introgression from introduced species, and we 
may need to move past conventional restoration and 
consider a “novel ecosystem” paradigm (Hobbs et al., 
2014; Murcia et al., 2014; Fitzpatrick et al., 2015). 
Whether we consider hybrids as illegitimate offspring or 
products of an important evolutionary process, their 
numbers appear to be increasing, and conservation poli-
cy must move beyond pretending they do not exist. 
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