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Abstract 

In mammals, a temporary endocrine gland called the corpus luteum forms on the ovary shortly after ovulation and is required for the 
initiation and maintenance of early pregnancy. However, the corpus luteum persists even when fertilization or pregnancy does not occur, 
and species-specific variation in the length of this persistence remains enigmatic. Here we perform a comparative evolutionary study 
across 72 species and show that corpus luteum lifespan in nonpregnant females is positively correlated with gestation length. We argue 
that the most likely explanation for this correlation is physiological inertia. The corpus luteum begins secreting progesterone prior to 
implantation, and when pregnancy does not occur it takes time for females to degrade it and prepare the next reproductive cycle. Our 
study suggests that this physiological inertia is stronger in species with long gestation times.
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Female mammals exhibit extensive maternal investment through 
gestation, lactation, and nursing of their offspring (Clark and Poole 
1967; Gemmell 1981; Gilbert 1984; Van Raaij et al. 1989; Creel et 
al. 1991; Urison and Buffenstein 1995; Prentice and Goldberg 2000; 
Gobello 2021). The corpus luteum, a temporary endocrine gland 
that develops from a ruptured ovarian follicle following ovulation, 
secretes progesterone and plays a critical role in the initiation and 
maintenance of early pregnancy in many mammalian species 
(Moor 1968; Sharman 1970; Tyndale-Biscoe et al. 1974; Gadsby and 
Landis Keyes 1984; Harder et al. 1985; Hinds 1990; Wiltbank 1994; 
Bachelot and Binart 2005; McAllan 2011; Amelkina et al. 2015). A 
functional corpus luteum shifts multiple physiological characteris-
tics in pregnant females, including brain and blood chemistry, bone 
remodeling, mammary development, uterine development, and 
immune function (Csapo and Wiest 1969; Graham and Clarke 1997; 
Karlsson et al. 2001; Neville et al. 2001; Sheehan and Numan 2002; 
Conneely et al. 2003, 2008; Verstegen-Onclin and Verstegen 2008; 
Fu and Levine 2009; Brunton and Russell 2010; Mesiano et al. 2011; 
Shah et al. 2018; Wu et al. 2018).

Even when a reproductive cycle has not culminated in a preg-
nancy, the corpus luteum remains functional for varying lengths of 
time across species. In some cases, a functional corpus luteum can 
cause nonpregnant females to exhibit physiological changes similar 
to pregnancy (Casida and Warwick 1945; Weitlauf and Greenwald 
1967; Csapo and Wiest 1969; Csapo et al. 1972; Shorey and Hughes 
1973; Csapo and Pulkkinen 1978; Harder et al. 1985; Baird 1992). 
Indeed, in many species, a functional corpus luteum prevents a 
female from entering the next ovulatory cycle (Tyndale-Biscoe et al. 

1974; Tyndale-Biscoe and Renfree 1987). What factors might explain 
variation in the persistence of functional corpora lutea in nonpreg-
nant females?

It is possible that the same molecular mechanisms that maintain 
a functional corpus luteum in pregnancy may lead to their persis-
tence even when pregnancy has not occurred. This hypothesis of 
physiological inertia predicts a positive correlation between gesta-
tion length and corpora lutea lifespan in nonpregnant females. In 
addition, monestrus species and seasonally breeding species are pre-
dicted to evolve mechanisms that reduce corpora lutea lifespans in 
nonpregnant females, because they must return to a new reproduc-
tive cycle or run the risk of missing their opportunity to reproduce. 
Here we compile data from 72 species from 12 orders and implement 
a variety of evolutionary methods to test these hypotheses.

Materials and methods.
Corpora lutea lifespan.
We searched the literature for reports of functional corpora lutea 
in nonpregnant females across any species (without focusing on 
any region of the phylogeny). We considered a corpus luteum to 
be functional if histological data showed robust vascularization, or 
indirectly from the well-characterized spike in progesterone that 
corpora lutea produce in the early stages of implantation and preg-
nancy. We only included studies where females could not have been 
pregnant—that is, the study had to explicitly state that females 
were either housed separately from males or were housed with 
sterile (e.g., vasectomized) males. Otherwise, functional corpora 
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lutea in “nonpregnant” females could have arisen if females were 
pregnant but aborted prior to birth. Our primary data came from 
searches in Google Scholar (https://www.scholar.google.com) and 
Web of Science (https://webofscience.com/), with the phrases: pro-
gesterone, atresia, corpus luteum, corpora lutea, period, corpus albicans, 
corpora albicantia, corpora albanica, menstruation, pseudopregnancy, non-
pregnant, ruptured follicle, accessory corpus luteum, and corpus luteum 
regression.

There are 2 main types of ovulation in mammals—spontaneous 
and induced. Spontaneous ovulators do not require any male cues 
or signals and will ovulate even in isolation from males, although 
male cues such as musk, urine, touch, and sounds can still influ-
ence corpus luteum lifespan (Bruce 1960; Bruce and Parrott 1960; 
DeMatteo et al. 2006; Roberts et al. 2012). For spontaneous ovula-
tors, we recorded corpora lutea lifespan from any studies where 
females were not pregnant, including studies where females were 
isolated from males.

In contrast, induced ovulators require male cues to induce ovula-
tion (Johnston et al. 2000; Brown 2011; Dixson 2021). In some cases, 
copulation or semen is required to induce ovulation (Chen et al. 
1985; Johnston et al. 2004; Kauffman and Rissman 2006; Ballantyne 
2015; Schjenken and Robertson 2020). One species (Djungarian 
Hamster, Phodopus sungorus) requires male cues at 2 different stages: 
one to ovulate, and a second exposure to induce the activation of 
corpora lutea (Wynne-Edwards et al. 1987; Erb et al. 1993; Edwards 
et al. 1994; McMillan and Wynne-Edwards 1999). For induced ovu-
lators, we recorded corpora lutea lifespans from any studies where 
females were exposed to males but could not have been pregnant, 
e.g., studies where females were housed separately but exposed to 
male cues like scent, or studies where females were housed with 
vasectomized males.

Females of some species can undergo both spontaneous and 
induced ovulation (Hill and O’Donoghue 1913; Foresman and Daniel 
1983; Hinds 1989; Clamon Schulz et al. 2003; Steinman et al. 2012). 
For these species, we only used data in the absence of males for 
evolutionary analyses.

We also scored corpora lutea lifespans from truly pregnant 
females, although data were scarcer than for nonpregnant females 
(n = 21 species; Supplementary Data SD1). Progesterone production 
shifts from the corpus luteum to the placenta at some point dur-
ing pregnancy, so we could not use progesterone levels to indicate 
a functional corpus luteum. Instead, we relied on robust histolog-
ical analyses or ultrasound studies as a proxy for corpus luteum 
lifespan in pregnant females (Supplementary Data SD1).

Our exhaustive literature search yielded data from 72 species 
that fell into 6 monophyletic groups: metatherians (23 species from 
4 orders); Order Carnivora (20 species); Order Rodentia + Order 
Lagomorpha (7 species); Order Artiodactyla + Order Perissodactyla 
(10 species); Order Primates (9 species); and Order Cingulata + Order 
Pilosa (3 species).

Gestation length and body size.
We searched the literature for gestation length data from the 
same species for which we gathered corpora luteum lifespan data. 
Because many physiological features of an organism correlate with 
body size, we also included body mass of adult females (nonpreg-
nant) as a covariate in the evolutionary models. Most body mass 
data were derived from Silva (1995), supplemented with additional 
literature searches (Supplementary Data SD1).

Phylogenetic generalized least squares.
To test for a correlation between corpus luteum lifespan and ges-
tation length, we employed generalized least squares implemented 

in the gls function from the R package “nlme” (Pinheiro et al. 
2022). To account for phylogenetic dependence, we included an 
expected correlation matrix derived from the mammalian phylog-
eny of Upham et al. (2019), trimmed to only include the species 
in our data set (Supplementary Data SD2). We derived the corre-
lation matrix with the corPagel function in the R package “ape” 
(Paradis 2012). Using R (R Core Team 2020), the model we tested 
was gls(corpus_luteum_lifespan ~ gestation_length + body_mass, 
correlation=corPagel, method=“REML”), where “REML” indicates 
that the model was fit by maximizing the restricted log-likelihood,  
as advised by Paradis (2012). All metrics were natural-log- 
transformed prior to regression.

Estrus frequency and breeding seasonality.
We hypothesized that monestrus species and seasonally breeding 
species would show relatively short corpora lutea lifespans in non-
pregnant females. Therefore, we repeated the phylogenetic gen-
eralized least squares (PGLS) analyses above after subsetting out 
species for which we could collect estrus frequency and breeding 
seasonality.

Results
We scored corpora lutea lifespans in nonpregnant females, body 
weight of adult females, and gestation length from 72 species 
representing 12 orders. To our knowledge, this represents the 
most complete data set to date of species with data on all 3 traits 
(Supplementary Data SD1). For a subset of 21 species, we found data 
on corpora lutea lifespans in pregnant females, as well as their fre-
quency of ovulation and breeding seasonality (Supplementary Data 
SD1).

Corpora lutea lifespan in nonpregnant females 
was positively correlated with gestation length.
Corpus luteum lifespan in nonpregnant females was significantly 
positively correlated with gestation length (F1,69 = 22.53, P = 0.0001), 
but not body mass (F1,69 = 0.14, P = 0.70), with the full linear equa-
tion: corpus_luteum_lifespan = 0.78 × gestation_length − 0.02 × 
body_mass − 0.16. The lambda estimated from this full model was 
close to 1 (Lambda = 0.99), indicating that phylogenetic structure 
accounted for much of the relationships among variables.

Metatherians and Order Carnivora showed relatively long cor-
pus luteum lifespan compared to the other 4 groups (Figs. 1 and 2). 
Species with the largest gestational investment (ln(gestation) > 4.7) 
fell into 2 clusters: the 6 eutherian species that exhibit embryonic 
diapause showed relatively long-lived corpora lutea while almost 
all others showed relatively short-lived corpora lutea (Figs. 1 and 
2). Embryonic diapause is a life history strategy in some mamma-
lian species wherein embryos remain suspended at the blastocyst 
stage—sometimes for several months—before implanting in the 
uterus, all while the corpus luteum continues to produce proges-
terone (Hoffmann et al. 1978; Foresman and Daniel 1983; Sempéré 
et al. 1992; Sato et al. 2001; Clamon Schulz et al. 2003; Okano et 
al. 2006; Sattler and Polasek 2017; Larsen Tempel and Atkinson 
2020). The 6 eutherian species included in our analysis that exhibit 
embryonic diapause are Ursus arctos (Brown Bear), U. americanus 
(American Black Bear), U. thibetanus (Asian Black Bear), Capreolus 
capreolus (Siberian Roe Deer), Eumetopias jubatus (Steller Sea Lion), 
and Odobenus rosmarus (Walrus). The 3 bear species that exhibit 
embryonic diapause have notably longer corpus luteum lifespans 
than the fourth bear species included in our analysis, which does 
not exhibit embryonic diapause (Sun Bear, Helarctos malayanus; Fig. 
2). Similarly, the only species in the Artiodactyla + Perissodactyla 
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group that exhibits embryonic diapause (Roe Deer, Capreolus capre-
olus) shows a notable increase in corpus luteum lifespan compared 
to its relatives (Fig. 2).

Corpora lutea lifespan in truly pregnant females 
was positively correlated with gestation length.
Despite exhaustive literature searching, we were only able to score 
corpus luteum lifespan in truly pregnant females from 21 species 
(representing 8 orders; Supplementary Data SD1). Employing the 
same PGLS as described above, corpus luteum lifespan was posi-
tively correlated with gestation length (F1,6 = 25.27, P = 0.0001) but 
not body size (F1,6 = 1.52, P = 0.24) with the full linear equation: cor-
pus_luteum_lifespan = 0.82 × gestation_length + 0.08 × body_mass 
+ 0.67.

Corpora lutea lifespan was relatively long in 
monestrus and seasonally breeding species.
From the 72 species in our full data set, we found data on estrus fre-
quency and breeding seasonality for 51 and 47 species, respectively. 
Monestrus species (n = 9) had significantly longer corpora lutea 
lifespans in nonpregnant females than polyestrus species (n = 42), 
as indicated by significantly higher residuals from the full model 
above (t = 2.4, df = 49, P = 0.02). Seasonally breeding species (n = 
26) had significantly longer corpora lutea lifespans in nonpregnant 
females compared to species that breed year-round (n = 21, t = 2.58, 
df = 45, P = 0.01). Both results are opposite our predictions. In other 
words, species that seemingly have “more to lose” by maintaining 
active corpora lutea when not pregnant actually show longer cor-
pora lutea lifespans.

Discussion
The reason for variation in lifespan of the corpora lutea remains 
relatively unknown in mammals, reflecting the continued need 

for basic research on female pregnancy (Hayssen and Orr 2017; 
Hayssen 2020). During pregnancy, female mammals experience 
changes to their anatomy, physiology, neurobiology, hormone lev-
els, immune system, vulnerability to predation, and even lifespan 
(Supplementary Data SD3). Many of these shifts depend on a func-
tional corpus luteum. In every species studied here, we found evi-
dence that functional corpora lutea persist in nonpregnant females.

The hormonal signaling associated with maintaining a preg-
nancy begins prior to actual conception of offspring, during the 
estrus cycle. A functional corpus luteum begins secreting progester-
one prior to implantation and is critical for early pregnancy. Thus, 
when a reproductive cycle does not yield successful pregnancy, the 
corpus luteum may simply represent physiological inertia toward 
a state of pregnancy. In other words, even when pregnancy fails it 
takes some time to reverse course and degrade the corpus luteum 
prior to entering the next reproductive cycle. Our study implies 
that this physiological inertia is stronger among species with long 
gestations.

The species studied here vary tremendously in the molecular 
mechanisms by which they maintain or degrade corpora lutea. 
Hormones related to corpora lutea are generally classified into 3 
categories: (i) luteotropic hormones that sustain corpus luteum 
development or maintenance; (ii) luteolytic hormones that lead to 
the degradation of the corpus luteum; and (iii) antiluteolytic hor-
mones that prevent the degradation of the corpus luteum. All 3 of 
these hormonal classes have been found in eutherian species, while 
only a single luteolytic hormone has been described from metathe-
rian species (Supplementary Data SD3).

Inbaraj et al. (2021) showed that 9 eutherian species (horses, 
cattle, humans, camels, rats, sheep, deer, cats, and dogs) showed 
species-specific combinations of hormones involved in luteal 
regression. Similarly, Chavan et al. (2016) showed that primates, 
horses, and rodents each had distinct hormonal mechanisms of 
luteotropic signaling.

Fig. 1. Corpus luteum lifespan in nonpregnant females was significantly positively correlated with gestation length. Each point on the plot is a species, 
placed into 1 of 6 groups indicated by color and image: red kangaroo represents 23 species of metatherians; black canid represents 20 species of Order 
Carnivora; green rodent represents 7 species of Order Rodentia + Order Lagomorpha; magenta deer represents 10 species of Order Artiodactyla + Order 
Perissodactyla; blue monkey represents 9 species of Order Primates; orange anteater represents 3 species of Order Cingulata + Order Pilosa. For both axes, 
the units are ln(days). Species images modified from phylopic.org (exact file names: PhyloPic.156b515d.Sarah-Werning.Callitrichoidea_Cebidae_ 
Cebinae_Platyrrhini.png; PhyloPic.570c7d9e.Alexandra-van-der-Geer.Rattus_Rattus-exulans.png; PhyloPic.6df900f7.Xavier-A-Jenkins.Myrmecophagidae_ 
pan-Myrmecophagidae_Tamandua_Tamandua-mexicana_Vermilingua.png; PhyloPic.96adba97.Margot-Michaud.Canis_Canis-simensis.png;  
PhyloPic.c306572a.Sarah-Werning.Macropus-Macropus.png; PhyloPic.cc03f5c2.Ferran-Sayol.Cervus-elaphus.png).
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Fig. 2. The phylogenetic distribution of corpus luteum lifespan in nonpregnant females. Taxon colors and images as in Fig. 1. Branches colored according 
to the residuals of corpus luteum lifespan regressed onto gestation length + body mass. For context, most recent common ancestor of the species shown is 
roughly 157 million years ago. Image credits as in Fig. 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

am
m

al/advance-article/doi/10.1093/jm
am

m
al/gyae114/7829206 by U

SC
 Law

 Library user on 15 N
ovem

ber 2024



Journal of Mammalogy, 2024, Vol, XX, Issue XX | 5

In contrast, only 1 luteolytic hormone (Prostaglandin 2α) has 
been shown to influence corpora lutea lifespans in metatherians 
(Renfree and Young 1979; Tyndale-Biscoe and Renfree 1987; Hinds 
1990). Furthermore, it has been argued that the corpus luteum plays 
a relatively minor role in maintaining pregnancy in marsupials, 
where gestational investment is much shorter than in eutherians 
(Shorey and Hughes 1973; Tyndale-Biscoe et al. 1974; Tyndale-
Biscoe and Renfree 1987; McAllan 2011). Despite major differences 
in molecular regulation of and reliance on corpora lutea, the pos-
itive correlation between corpora lutea lifespans in nonpregnant 
females and gestation length extends across mammals, including 
marsupials (Figs. 1 and 2).

Without more comparative biology on the molecular path-
ways involved in corpora lutea, the positive correlation between 
their lifespan in nonpregnant females and gestation length will 
remain enigmatic. But the correlation implies the same pathways 
involved in maintaining a pregnancy also extend corpora lutea 
lifespans in females even when there is no pregnancy to support. 
This constraint may be especially strong in species with embry-
onic diapause because they must maintain an active corpus 
luteum for much longer than species that do not manifest embry-
onic diapause (Hoffmann et al. 1978; Foresman and Daniel 1983; 
Tsubota et al. 1987; Sato et al. 2001; Okano et al. 2006; Frederick 
et al. 2010). Our study offers an explanation for the persistence 
of functional corpora lutea in nonpregnant females, suggesting 
that it is constrained by the physiological preparation for a real 
pregnancy.

Supplementary data
Supplementary data are available at Journal of Mammalogy online.

Supplementary Data SD1. Spreadsheet containing all data ana-
lyzed, including literature sources.

Supplementary Data SD2. The phylogenetic tree used in the full 
PGLS.

Supplementary Data SD3. Citations to pregnancy-related 
changes and hormonal changes in females.
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