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Abstract
Understanding	the	evolutionary	forces	that	influence	sexual	dimorphism	is	a	fundamen-
tal	goal	in	biology.	Here,	we	focus	on	one	particularly	extreme	example	of	sexual	dimor-
phism.	Many	mammal	species	possess	a	bone	in	their	penis	called	a	baculum.	The	female	
equivalent	of	this	bone	is	called	the	baubellum	and	occurs	in	the	clitoris,	which	is	devel-
opmentally	homologous	to	the	male	penis.	To	understand	the	potential	linkage	between	
these	two	structures,	we	scored	baculum/baubellum	presence/absence	across	163	spe-
cies	and	analyzed	their	distribution	in	a	phylogenetic	framework.	The	majority	of	species	
(N	=	134)	 shared	 the	 same	state	 in	males	and	 females	 (both	baculum	and	baubellum	
present	or	absent).	However,	the	baubellum	has	experienced	significantly	more	transi-
tions,	and	more	recent	transitions,	so	that	the	remaining	29	species	have	a	baculum	but	
not	a	well-	developed	baubellum.	Even	 in	species	where	both	bones	are	present,	 the	
baubellum	shows	more	ontogenetic	variability	and	harbors	more	morphological	varia-
tion	than	the	baculum.	Our	study	demonstrates	that	the	baculum	and	baubellum	are	
generally	correlated	across	mammals,	but	that	the	baubellum	is	more	evolutionarily	and	
developmentally	labile	than	the	baculum.	The	accumulation	of	more	evolutionary	transi-
tions,	especially	losses	in	the	baubellum,	as	well	as	noisier	developmental	patterns,	sug-
gests	that	the	baubellum	may	be	nonfunctional,	and	lost	over	time.
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1  | INTRODUCTION

Sexual	dimorphism,	where	the	same	trait	takes	on	different	states	in	
the	two	sexes,	is	a	nearly	ubiquitous	phenomenon	in	nature,	and	un-
derstanding	 the	 evolutionary	 forces	 that	 lead	 to	 sexual	 dimorphism	
is	 an	 important	 goal	 for	 evolutionary	 biology	 (Clutton-	Brock,	 2007;	
Poissant	et	al.,	2010).

The	baculum	is	a	highly	unusual	bone	found	in	the	penis—and	
the	baubellum	is	a	bone	found	in	the	clitoris—of	many	mammalian	
species	(Burt,	1960;	Layne,	1954).	As	with	many	studies	of	primary	

sexual	traits,	the	baculum	seems	to	accumulate	morphological	di-
vergence	more	rapidly	than	nonsexual	morphologies	(Patterson	&	
Thaeler,	1982;	Ramm,	2007)	consistent	with	a	model	of	adaptive	
evolution	 continuously	 driving	morphological	 change.	The	bacu-
lum	 is	 presumed	 to	 be	 adaptive	 because	 of	 its	 species-	specific	
shape	 (Baryshnikov	 et	 al.,	 2003;	 Burt,	 1936,	 1960;	 Patterson	&	
Thaeler,	 1982),	 rapid	 evolution	 under	 experimental	 evolution	
(Simmons	&	Firman,	2013),	and	the	influence	of	its	shape	on	male	
reproductive	 success	 (Simmons	 &	 Firman,	 2013;	 Stockley	 et	al.,	
2013).
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The	 evolutionary	 and	 developmental	 forces	 affecting	 the	 female	
baubellum,	and	how	they	correlate	with	the	baculum,	remain	poorly	un-
derstood.	In	general,	the	baubellum	is	much	smaller	and	less	morpholog-
ically	defined	than	the	baculum	(Long	&	Frank,	1968).	For	example,	adult	
male	walruses	have	the	largest	known	baculum,	while	adult	female	wal-
ruses	have	a	much	smaller	and	differently	shaped	baubellum	(Figure	1).	
Other	species	like	Eastern	gray	squirrels	have	a	baubellum	that	is	similar	
in	both	size	and	shape	to	the	male	baculum	(Figure	1).

A	 recent	 study	 of	 approximately	 1,000	 mammalian	 species	 re-
vealed	that	the	male	baculum	has	been	gained	nine	independent	times	
and	has	been	lost	10	independent	times	(Schultz	et	al.,	2016).	These	
multiple	independent	transitions	provide	a	unique	opportunity	to	ask	
if	and	how	evolution	and	development	of	the	baubellum	correlate	with	
the	baculum.	Here,	we	analyze	the	presence/absence	of	the	baubellum	
across	163	species,	and	present	five	main	findings.	First,	the	presence/
absence	of	the	baculum/baubellum	is	identical	in	134	of	the	163	spe-
cies.	Second,	in	spite	of	this	general	correlation,	the	baubellum	showed	
significantly	 more	 evolutionary	 gains	 and	 losses	 than	 the	 baculum,	
such	that	states	did	not	match	in	29	species.	Third,	these	29	species	
are	always	with	a	baculum	but	without	a	baubellum—we	observed	no	
species	that	lack	a	baculum	but	possess	a	baubellum.	Fourth,	the	bau-
bellum	displayed	much	more	variation	 in	development	than	the	bac-
ulum,	even	disappearing	with	 female	age	 in	 some	species.	Fifth,	 the	
baubellum	showed	significantly	more	morphological	variation	than	the	
baculum.	Overall,	the	baubellum	shows	more	evolutionary	and	devel-
opmental	variation	than	the	baculum,	indirectly	arguing	that	the	bau-
bellum	may	be	relatively	nonfunctional.

2  | MATERIALS AND METHODS

2.1 | Evolutionary patterns

2.1.1 | Scoring baculum and baubellum presence/
absence

Presence/absence	of	 the	baculum	of	1,143	 species	was	 taken	 from	
table	S2	of	Schultz	et	al.	(2016).	Presence/absence	of	the	baubellum	

was	scored	through	 literature	searching	and	online	museum	records	
from	August	 2015	 to	 January	 2017.	We	were	 able	 to	 find	 records	
for	185	species	 (Table	S1).	Our	primary	data	came	from	searches	 in	
Google	Scholar	(https://www.scholar.google.com)	and	Web	of	Science	
(https://webofscience.com/),	with	the	phrases	baubellum,	baubella,	os 
clitoris,	os clitoridis,	os glandis,	ossicle,	os genital/s,	os genitale,	 clitoral 
bone,	clitoris bone,	clitorisknochen,	klitorisknochen,	and	cartilage clitoris.

We	only	 scored	 baubella	 as	 present	 if	 it	was	 (1)	 shown	 in	 pho-
tograph	or	illustration,	(2)	summarized	with	measurements,	or	(3)	de-
scribed	 in	 qualitative	 terms.	We	 scored	baubella	 as	 absent	 if	 it	was	
(1)	absent	from	photographed	or	illustrated	genital	dissections,	or	(2)	
stated	by	authors	that	they	were	unable	to	find	cartilage	or	bone	upon	
dissection.	 Interestingly,	many	 species	 appear	 to	be	polymorphic,	 in	
which	some	but	not	all	females	within	a	species	have	a	baubellum,	an	
issue	we	specifically	address	below.

Scoring	a	baubellum	as	absent	is	challenging.	The	baubellum	is	gen-
erally	smaller	than	the	baculum,	it	is	not	present	in	every	age	class,	or	re-
mains	cartilaginous	and	difficult	to	observe	in	some	species	(Fay,	1955;	
Layne,	1952).	Nevertheless,	we	note	its	absence	in	one	extremely	well-	
studied	model	system,	the	rat.	Multiple	detailed	histological	studies	have	
demonstrated	 that	 the	 rat	 lacks	 a	 baubellum	 (Cherry	&	Glucksmann,	
1968;	Glucksmann	&	Cherry,	1972;	Glucksmann,	Ooka-	Souda,	Miura-	
Yasugi,	&	Mizuno,	1976;	Murakami	&	Mizuno,	1984;	Yoshida	&	Huggins,	
1980),	even	though	male	rats	possess	a	prominent	baculum.

2.1.2 | Phylogenetic inference

A	 large	molecular	phylogeny	of	3,707	mammalian	species	was	 taken	
from	supplementary	 file	#1	of	Schultz	et	al.	 (2016)	and	was	trimmed	
down	to	include	only	species	where	both	the	baculum	and	the	baubel-
lum	were	scored,	resulting	in	163	species.	We	then	applied	stochastic	
mapping	as	implemented	in	the	function	make.simmap	of	the	R	package	
phytools	 (Bollback,	 2006;	 Revell,	 2012).	 This	 is	 a	 powerful	 approach	
to	 simulate	 trait	evolution	across	a	phylogenetic	 tree,	while	avoiding	
some	of	the	overly	stringent	assumptions	of	a	strict	parsimony	frame-
work.	 Essentially,	 character	 state	 transitions	 are	 distributed	 across	 a	
tree	according	to	an	estimated	transition	rate	matrix,	with	the	caveat	
that	each	 iteration	must	be	consistent	with	 the	observed	 trait	 states	
(Huelsenbeck	et	al.,	2003;	Nielsen,	2002).	This	same	approach	was	em-
ployed	by	Schultz	et	al.	(2016)	to	model	baculum	evolution.	We	summa-
rized	baculum	and	baubellum	gains	and	losses	from	1,000	iterations	of	
stochastic	mapping	across	each	of	the	four	strategies	described	above,	
using	only	the	163	species	for	which	both	baculum	and	baubellum	were	
scored.	Visual	representations	were	made	using	the	densitymap	function	
of	 phytools	 (Revell,	 2012),	 as	well	 as	 customized	 scripts	written	 in	R	
(https://www.r-project.org),	available	upon	request.	Branches	where	a	
transition	occurred	in	at	least	50%	of	the	stochastic	mapping	iterations	
were	considered	“high	confidence”	transitions.

From	 the	 stochastic	mapping	 iterations,	we	also	 tested	whether	
transition	 times	 differed	 between	 baculum	 and	 baubellum,	 using	 a	
mixed	effects	model	implemented	in	the	lmer	function	in	the	R	pack-
age lme4	(Bates	et	al.,	2015).	Using	a	 likelihood	ratio	test	and	a	chi-	
square	distribution	with	one	degree	of	 freedom,	we	tested	whether	

F IGURE  1 Comparison	of	walrus/squirrel	baculum/baubellum.	
Note	the	walrus	baculum	and	baubellum	are	very	different	in	both	
size	and	shape,	while	the	two	bones	are	very	similar	in	the	Eastern	
gray	squirrel.	*Adapted	from	Fay,	1982;	Burt,	1960;	Layne,	1954
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a	model	that	included	bone	(baubellum	vs.	baculum)	as	a	fixed	effect	
explained	 differences	 in	 transition	 times	 significantly	 better	 than	 a	
model	that	did	not.	For	both	models,	iteration	number	was	included	as	
a	random	effect	because	transition	times	within	an	iteration	will	not	be	
independent	from	each	other.

2.1.3 | “Polymorphic” species

Seventeen	species	were	best	classified	as	“polymorphic,”	where	some	
females	had	a	baubellum	while	others	of	the	same	age	class	did	not,	
for	example	in	domestic	dogs	(Kutzler	et	al.,	2012).	We	implemented	
four	different	strategies	of	stochastic	mapping	 to	account	 for	alter-
native	views	of	the	polymorphic	state.	First,	“polymorphic”	was	con-
sidered	a	third	state	in	addition	to	“present”	or	“absent.”	Second,	all	
polymorphic	species	were	assigned	the	state	of	“present,”	which	could	
be	 interpreted	as	 a	 trait	 state	 that	normally	develops	but	 is	 incom-
pletely	penetrant	or	difficult	to	observe	and	occasionally	overlooked	
in	the	literature.	Third,	all	polymorphic	species	were	assigned	the	state	
of	“absent,”	which	could	be	interpreted	as	a	trait	state	that	normally	
does	not	develop.	For	these	second	and	third	models,	it	is	interesting	
to	note	that	female	rats,	 ferrets,	and	dogs	all	develop	baubella	with	
additional	administration	of	testosterone	(Aucélio	et	al.,	1982;	Baum	
et	al.,	1982;	Glucksmann	&	Cherry,	1972;	Murakami	&	Mizuno,	1984;	
Yoshida	&	Huggins,	1980;	Zimbelman	&	Lauderdale,	1973),	and	it	 is	
possible	 that	 variation	 in	 hormonal	 profile	 explains	 polymorphism.	
Lastly,	 “polymorphic”	 species	 were	 randomly	 assigned	 “present”	 or	
“absent,”	which	is	some	combination	of	the	second	and	third	strate-
gies.	For	the	remainder	of	this	manuscript,	 these	four	strategies	are	
referred	 to	 as	 “polymorphic,”	 “present,”	 “absent,”	 and	 “random,”	 re-
spectively.	All	four	strategies	give	qualitatively	the	same	answers	(see	
below).

2.2 | Developmental patterns

2.2.1 | Comparing the development of baubella 
with bacula

During	our	 literature	search,	we	uncovered	five	species	where	mul-
tiple	males	and	females	from	multiple	age	classes	were	assessed	for	
the	presence	of	both	a	baculum	and	baubellum	(Baitchman	&	Kollias,	
2000;	Callery,	 1951;	Fay,	1955,	1982;	Friley,	 1949;	Hawkins	 et	 al.,	
2002;	Lauhachinda,	1978;	Lönnberg,	1902;	Mansfield,	1958;	Scheffer,	
1939;	Smith,	1966).	Because	the	original	data	were	not	available	for	
most	 of	 these	 studies,	 we	 qualitatively	 compared	 them	 as	 growth	
curves.

2.2.2 | Comparing within- species variability of 
baubella with bacula

Our	 literature	 search	 also	 uncovered	 13	 species	 with	 quantitative	
measurements	of	bacula	and	baubella	length	from	multiple	males	and	
females,	 all	 adults.	We	could	 therefore	 compare	 the	 coefficients	 of	
variation	 (CV	=	standard	 deviation/mean)	 for	 bacula	 and	 baubella.	

We	 tested	 whether	 the	 baubellum	 CV’s	 differed	 significantly	 from	
baculum	CV’s	using	a	phylogenetically	controlled	paired	t	test,	as	im-
plemented	 in	the	phyl.pairedttest	 function	 in	the	R	package	phytools 
(Revell,	 2012).	One	of	 the	13	 species,	Parascalops breweri	was	 rep-
resented	by	Talpa europaea	on	the	phylogeny	for	this	test	only.	The	
other	12	were	already	represented	in	the	phylogeny.

In	addition	to	this	global	approach,	we	tested	whether	CV	differed	
between	the	baubella	and	the	bacula	within	each	species	separately,	
using	Feltz	and	Miller’s	(1996)	asymptotic	test	for	the	equality	of	co-
efficients	 of	 variation,	 as	 well	 as	 Krishnamoorthy	 and	 Lee’s	 (2014)	
modified	signed-	likelihood	ratio	test.	These	two	approaches	were	im-
plemented	with	the	functions	asymptotic_test2 and mslr_test2,	respec-
tively,	in	the	R	package	cvequality	(Marwick	&	Krishnamoorthy,	2016).	
We	noticed	several	species	where	large	differences	in	baubellum	CV	
versus	baculum	CV	failed	to	produce	statistical	significance	at	p	=	.05,	
and	suspected	this	might	be	due	to	small	sample	sizes	available	from	
the	 literature.	To	understand	 the	 sample	 size	 required	 for	 statistical	
significance,	we	computationally	increased	sample	size	until	statistical	
significance	was	observed.

3  | RESULTS

3.1 | Evolutionary patterns

3.1.1 | The baubellum shows more evolutionary 
transitions than the baculum

A	total	of	163	species	had	reliable	data	for	both	baculum	and	baubel-
lum	presence	and	were	also	represented	in	a	 large	mammalian	phy-
logeny	(Schultz	et	al.,	2016).	Of	these,	117	had	a	baubellum,	29	lacked	
one,	and	17	were	polymorphic	(Figure	2,	Table	S1).	In	134	species,	the	
state	of	 the	baubellum	matched	 the	state	of	 the	baculum	 (Figure	2,	
Table	S1).	However,	it	should	be	noted	that	a	large	proportion	of	these	
(51	 of	 the	 134	 species)	 are	 derived	 from	 a	 single	 family,	 Sciuridae	
(squirrels	and	chipmunks),	so	the	generality	of	this	pattern	should	be	
treated	with	caution.	Sciurid	bacula	and	baubella	are	regularly	used	in	
taxonomy,	and	so	these	bones	may	have	been	investigated	more	than	
in	other	families	(Sutton,	1982,	1995).	All	29	species	for	which	states	
did	not	match	had	a	baculum	but	lacked	a	well-	developed	baubellum	
(either	baubellum	absent	or	polymorphic).

Under	 the	 “polymorphic”	 model,	 the	 baubellum	 showed	 signifi-
cantly	more	evolutionary	transitions	compared	to	the	baculum	(an	av-
erage	 of	 92.9	vs.	 21.0	 transitions,	 respectively;	Wilcoxon	Rank	 Sum	
Test	[WRST]	p < 10−15)	(Figures	2	and	3).	The	other	three	models	also	
showed	significantly	more	transitions	in	the	baubellum	versus	the	bac-
ulum	(an	average	of	102.3	vs.	14.3,	55.1	vs.	14.4,	and	28.0	vs.	13.5	bau-
bellum	vs.	baculum	transitions	for	the	“absent,”	“random,”	and	“present”	
models,	respectively,	WRST	p < 10−15	 in	all	three	cases)	 (Figure	4).	 In	
sum,	 the	 baubellum	 has	 experienced	 more	 evolutionary	 transitions	
than	the	baculum,	regardless	of	how	we	scored	polymorphic	species.

In	addition,	baubellum	transitions	tended	to	occur	more	recently	than	
baculum	transitions.	For	the	“polymorphic”	model,	baubellum	transitions	
occurred	an	average	27.9	million	years	ago	versus	43.7	million	years	ago	
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for	the	baculum.	These	results	held	under	the	other	three	models	(29.3	
vs.	39.1,	27.9	vs.	39.2,	and	28.2	vs.	41.4	million	years	ago	baubellum	vs.	
baculum	transitions	for	the	“absent,”	“random,”	and	“present”	models,	re-
spectively;	LRT,	χ2	>	997,	df	=	1,	p < 10−15	 in	all	 four	cases).	Therefore,	

not	only	has	the	baubellum	experienced	more	transitions,	but	those	tran-
sitions	tended	to	occur	more	recently	than	baculum	transitions.

3.1.2 | Many species with a well- developed baculum 
lacked a well- developed baubellum

Of	 145	 species	 with	 a	 well-	developed	 baculum,	 12	 lacked	 a	 well-	
developed	baubellum	(Figure	2,	Table	S1).	These	species	were	widely	
distributed	across	the	phylogeny	and	included	two	primates	(Formosan	
rock	macaque,	Macaca cyclopis;	Rhesus	macaque,	Macaca mulatta),	six	
rodents	(Maya	mouse,	Peromyscus mayensis;	Norway	rat,	Rattus nor-
vegicus;	Brandt’s	vole,	Lasiopodomys brandtii;	Common	vole,	Microtus 
arvalis;	Spix’s	yellow-	toothed	cavy,	Galea spixii;	Eurasian	beaver,	Castor 
fiber),	two	bats	(Southern	yellow	bat,	Lasiurus ega;	Underwood’s	bon-
neted	bat,	Eumops underwoodi),	one	carnivore	(Wolverine,	Gulo gulo),	
and	one	afrosoricid	(Lesser	hedgehog	tenrec,	Echinops telfairi).	By	con-
trast,	there	were	no	species	that	had	a	baubellum	and	lacked	a	bacu-
lum.	This	could	be	partially	due	to	study	bias,	whereby	investigators	
are	less	likely	to	look	for	a	baubellum	in	a	species	that	has	no	record	of	
a	baculum.	In	addition,	eight	species	were	scored	as	baculum	present	
and	baubellum	present,	 but	 their	baubellum	 remained	cartilaginous,	
unlike	the	baculum	(Table	S1).

An	additional	17	species	had	a	well-	developed	baculum	but	were	
polymorphic	 for	 the	baubellum.	These	species	were	also	widely	dis-
tributed,	 and	 included	 one	 primate	 (Senegal	 galago,	 Galago sene-
galensis)	 four	 rodents	 (Guinea	 pig,	 Cavia porcellus;	 California	 vole,	
Microtus californicus;	Long-	tailed	vole,	Microtus longicaudus;	American	

F IGURE  2 Summary	of	1,000	iterations	of	stochastic	mapping	for	baubellum	(left)	and	baculum	(right).	Colored	circles	at	terminal	nodes	
indicate	character	state	of	each	bone:	present	(red),	absent	(blue),	or	polymorphic	(purple).	Branches	are	colored	according	to	the	average	time	
spent	in	each	state	across	the	1,000	iterations,	on	a	scale	ranging	from	present	(red)	through	polymorphic	(purple)	to	absent	(blue).	Boxes	on	
branches	indicate	“high	confidence”	character	transitions,	indicating	the	percentage	of	stochastic	mapping	iterations	where	transitions	occurred	
on	those	branches.	Boxes	on	branches	are	colored	according	to	the	state	to	which	the	character	transitioned	(red	=	present,	blue	=	absent,	
purple	=	polymorphic).	Note	there	are	more	transitions	that	tend	to	occur	more	recently	in	the	baubellum	compared	to	the	baculum.	A	
“zoomable”	version	of	this	figure	is	provided	in	Fig.	S1)

F IGURE  3 Summary	of	the	average	±	standard	deviation	number	
of	baubellum	(number	above	line)	and	baculum	(number	below	line)	
transitions	between	three	states	among	1,000	iterations	of	stochastic	
mapping.	The	baculum	and	baubellum	are	modeled	as	three	distinct	
morphological	states:	present,	polymorphic,	and	absent.	Note	the	
baubellum	experiences	significantly	more	evolutionary	transitions	
than	the	baubellum	across	all	transition	types	(see	text)

Present Absent 

Polymorphic 
34.2 ± 9.5 
1.5 ± 1.7 

24.0 ± 13.4 
3.3 ± 3.6 

12.8 ± 6.6 
6.6 ± 4.3 
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4.2 ± 3.8 
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3.5 ± 3.8 

3.3 ± 3.9 
2.0 ± 2.3 

Total:  
Baubellum (92.9 ± 21.9) 

Baculum (21.0 ± 6.3) 

F IGURE  4 Summary	of	the	number	of	
transitions	experienced	by	the	baubellum	
versus	baculum	between	two	different	
states.	Each	model	recodes	polymorphic	
as	present	or	absent.	In	all	cases,	the	
baubellum	experienced	significantly	more	
transitions	than	the	baculum	(see	text)
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red	 squirrel,	Tamiasciurus hudsonicus),	 ten	 carnivores	 (Eurasian	otter,	
Lutra lutra;	Australian	sea	lion,	Neophoca cinerea;	North	American	rac-
coon,	Procyon lotor;	Northern	 fur	 seal,	Callorhinus ursinus;	Domestic	
dog,	Canis domesticus [C. lupus	in	phylogeny];	Southern	elephant	seal,	
Mirounga leonina;	European	polecat,	Mustela putorius;	Polar	bear,	Ursus 
maritimus;	American	mink,	Neovison vison;	Domestic	 cat,	Felis silves-
tris),	 and	 two	 bats	 (Greater	 horseshoe	 bat,	 Rhinolophus ferrumequi-
num;	Black	mastiff	bat,	Molossus ater).	The	percentage	of	 individuals	
with	a	baubellum	in	polymorphic	species	varied,	from	one	in	100	(1%)	
of	adult	 female	 raccoons	 (Sanderson,	1950),	 to	one	 in	 two	 (50%)	 in	
black	mastiff	bats	(Brown,	1967)	(Table	S1).	In	sum,	many	species	with	
a	well-	developed	baculum	 lack	 a	well-	developed	baubellum,	 but	 no	 
species	with	a	baubellum	lacked	a	baculum.

3.2 | Developmental patterns

3.2.1 | The baubellum showed more ontogenetic 
variation than the baculum

When	present,	the	baculum	generally	grows	steadily	from	birth	to	repro-
ductive	maturity	(Figure	5).	The	baubellum	of	two	species	(Weddell	seal,	
Leptonychotes weddellii;	 Golden	 hamster,	Mesocritus auratus)	 showed	
similar	 developmental	 trajectories	 (Callery,	 1951;	 Mansfield,	 1958;	
Smith,	 1966)	 (Figure	5).	 However,	 three	 additional	 species	 showed	
striking	divergence	in	developmental	patterns	(Figure	5).	In	one	species	
(Northern	 river	otter,	Lontra canadensis),	 the	baubellum	did	not	begin	
development	until	2	years	after	birth	 (Lauhachinda,	1978),	 in	contrast	
to	the	male	baculum	which	was	present	at	birth	and	continued	to	grow	
throughout	 the	 animal’s	 life	 (Friley,	 1949;	 Stephenson,	1977).	 In	 two	
species	(Walrus,	Odobenus rosmarus;	Fossa,	Cryptoprocta fossa),	baubel-
lum	size	decreased	with	age,	opposite	 the	developmental	patterns	of	
the	baculum	(Fay,	1955,	1982;	Hawkins,	1998;	Hawkins	et	al.,	2002).

3.2.2 | Within species, the baubellum of adult 
females is more variable than the baculum of 
adult males

The	baubellum	CV’s	were	significantly	 larger	than	the	baculum	CV’s	
across	13	species,	as	judged	by	a	phylogenetically	controlled	paired	t 
test	(t	=	3.6,	p	=	.005).

Across	13	species,	12	had	a	higher	baubellum	CV	versus	baculum	
CV,	seven	of	which	were	significantly	higher	by	the	asymptotic	test	and	
six	of	which	were	significantly	higher	by	the	modified	signed-	likelihood	
ratio	test	(Table	1).	Some	of	the	nonsignificant	results	seemed	to	arise	
because	of	small	sample	size.	For	example,	even	though	the	baubel-
lum	of	Spermophilus mexicanus	had	a	CV	more	than	three	times	that	of	
the	baculum,	the	difference	was	not	statistically	significant,	probably	
because	only	 two	 females	and	 two	males	were	sampled	 (Table	1).	 If	
we	assume	existing	estimates	of	CV	were	reasonably	accurate	for	this	
species,	we	would	have	had	to	sample	at	least	five	males	and	five	fe-
males	before	detecting	a	significant	difference	under	the	asymptotic	
test	 (Table	1).	The	 higher	 baubellum	CV	was	 phylogenetically	wide-
spread,	observed	in	carnivores,	primates,	bats,	moles,	and	rodents.

Our	 finding	 that	 the	 baubellum	 showed	 more	 within-	species	
variation	 than	 the	 baculum	 is	 probably	 conservative	 because	 we	
based	that	inference	on	length	measurements	that	likely	underesti-
mated	the	amount	of	morphological	variation	in	the	baubellum.	For	
example,	figure	1	of	Long	and	Shirek	(1970)	showed	a	collection	of	
mink	baubella	that	vary	dramatically	not	only	in	terms	of	length	but	
also	in	overall	shape,	which	the	present	analyses	do	not	capture.	In	
fact,	 Long	 and	 Shirek	 (1970)	 remarked	 of	 the	 baubellum	 that	 “no	
other	morphological	 structure	 known	 to	 us	 has	 such	 [high]	 varia-
tion.”	 In	 addition,	 multiple	 studies	 have	 demonstrated	 the	 impor-
tance	of	baubellum	shape	 in	distinguishing	 closely	 related	 species	
or	subspecies	that	are	otherwise	morphologically	 identical	 (Adams	

F IGURE  5 Developmental	
trajectories	of	the	baculum	are	
consistent	across	species	(top	panel),	
compared	to	the	baubellum	in	which	
multiple	different	paths	are	observed	
(bottom	panel)
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&	 Sutton,	 1968;	 Sutton,	 1982,	 1995).	 Unfortunately,	 the	 existing	
literature	was	not	detailed	enough	for	us	to	quantify	baubellum	vari-
ation	beyond	length	measurements.

4  | DISCUSSION

Sexual	 dimorphism	 is	 common	 in	 nature,	 and	 the	 evolutionary	 and	
developmental	 contexts	 of	 sexual	 dimorphism	 have	 long-	fascinated	
biologists	 (Badyaev,	 2002;	 Darwin,	 1874;	West-	Eberhard,	 2003).	 A	
major	unsolved	question	 is	 to	what	 extent	 sexually	 dimorphic	 char-
acters	 are	 constrained	by	 the	 shared	genome	of	males	 and	 females	
(Poissant	et	al.,	2010).	Sexual	dimorphism	is	expected	to	be	greatest	in	
species	where	different	optima	can	be	reached	via	sex-	specific	expres-
sion	of	the	genome	and	response	to	selection.	However,	most	traits	
are	likely	to	be	correlated	between	sexes,	placing	significant	constraint	
on	the	degree	to	which	dimorphism	can	evolve.	At	one	extreme,	a	par-
ticular	 state	may	be	beneficial	 in	one	 sex,	 but	harmful	 in	 the	other.	
In	 the	 absence	 of	 sex-	specific	 modification	 of	 expression,	 the	 spe-
cies	will	evolve	to	a	phenotypic	compromise,	where	neither	sex	can	
reach	its	optima	because	of	counterselection	in	the	other	sex	(Poissant	
et	al.,	2010).	One	evolutionary	solution	to	such	sexual	conflict	is	sex-	
specific	expression	of	the	genome,	freeing	each	sex	to	evolve	its	own	
trait	value,	or	even	for	one	sex	to	lose	the	trait	if	it	is	nonfunctional	or	
deleterious.

Here,	we	investigate	these	issues	using	the	baculum	and	baubel-
lum	as	a	model	system,	with	a	focus	on	testing	how	strictly	the	two	
are	correlated.	Of	163	species,	134	(83.2%)	shared	states	(both	bones	
present,	 absent,	 or	 polymorphic),	 which	 may	 demonstrate	 a	 strong	
evolutionary	 correlation	 (Figure	3).	 However,	 investigators	 may	 be	
more	likely	to	look	for	a	baubellum	if	it	is	already	known	that	a	baculum	
exists	in	a	species,	leading	to	potential	study	bias	that	inflates	the	cor-
relation	of	the	two	states.	Nevertheless,	the	baubellum	accumulated	
more	evolutionary	transitions	than	the	baculum,	and	these	transitions	
occurred	more	 recently,	 demonstrating	 the	 two	are	not	 strictly	 cor-
related.	Furthermore,	the	developmental	and	morphological	variation	
of	 the	 baubellum	exceeds	 that	 of	 the	 baculum.	Taken	 together,	 our	
study	suggests	that	baubellum	is	relatively	free	to	accumulate	varia-
tion	and	may	not	be	functional	in	many	lineages.

Other	bones,	especially	“free-	floating”	bones	like	the	baculum	and	
baubellum	 have	 been	 gained	 and	 lost	 repeatedly	 in	 terrestrial	 ver-
tebrates,	but	 in	almost	all	cases	 their	presence/absence	 is	perfectly	
correlated	between	males	and	females.	For	example,	mammals	have	
independently	lost	their	clavicles	a	minimum	of	four	times,	and	digits	
in	mammals	have	been	independently	lost	dozens	of	times	(Senter	&	
Moch,	2015).	The	patella	has	been	independently	gained	4–6	times	
and	 lost	 twice	 in	 mammals	 (Samuels	 et	 al.,	 2017),	 gained	 multiple	
times	in	reptiles	(Regnault	et	al.,	2016),	and	has	variable	presence	in	
amphibians	 (Abdala	et	al.,	2017).	Even	 in	 the	face	of	 these	multiple	
independent	transitions,	clavicles,	digits,	and	patella	display	the	same	
trait	 in	males	and	females	across	species.	So	far,	the	 intersection	of	
sexual	dimorphism	and	bone	losses	and	gains	has	only	been	observed	
in	the	mammalian	bovids	(Family	Bovidae)	(Caro	et	al.,	2003;	Packer,	

1983;	Stankowich	&	Caro,	2009).	Female	and	male	expression	of	horns	
are	not	perfectly	correlated	 in	bovid	evolution.	 Interestingly,	 similar	
to	our	study,	there	are	no	known	species	where	females	have	horns	
but	males	do	not.	Bovid	horns	are	sexually	dimorphic	 in	shape,	and	
the	most	 comprehensive	 analyses	 conclude	 they	 function	 primarily	
in	males	for	intrasexual	competition	and	for	defense	in	females	(Caro	
et	al.,	2003;	Stankowich	&	Caro,	2009).	The	baculum	and	baubellum	
thus	 represent	 a	 highly	 unusual	 case	 of	widespread	 independently	
evolving	sexually	dimorphic	bones,	with	the	baubellum	demonstrat-
ing	 more	 evolutionary	 and	 developmental	 lability	 compared	 to	 the	
baculum.

The	proximate	causes	of	sexual	dimorphism	in	bacula	and	baubella	
appear	to	be	linked	to	hormonal	profiles,	or	the	sensitivity	of	individ-
uals	to	various	hormones.	For	example,	artificial	administration	of	tes-
tosterone	 in	 dogs,	 ferrets,	 and	 rats	 leads	 to	 robust	 development	 of	
the	baubellum,	even	though	very	few	female	dogs	and	ferrets,	and	no	
female	rats,	naturally	develop	one	(Baum	&	Erskine,	1984;	Baum	et	al.,	
1982;	Glucksmann	&	Cherry,	1972;	Kutzler	et	al.,	2012;	Murakami	&	
Mizuno,	1984;	 Shane	et	 al.,	 1969;	Zimbelman	&	Lauderdale,	1973).	
Interestingly,	castrating	males	prevented	the	baculum	from	reaching	
an	adult	stage	in	multiple	species	(Howard,	1959;	Lyons	et	al.,	1950;	
Reddi	&	Prasad,	1967;	Sanderson,	1961;	Wright,	1950),	suggesting	an-
drogens	are	an	important	mechanistic	link	between	the	development	
of	both	the	baculum	and	the	baubellum.	A	study	that	compared	skel-
etal	growth	 in	 the	 forepaw	and	penis	 in	castrated	and	noncastrated	
rats	 concluded	 that	 growth	 factor	 Somatotropin	 positively	 affects	
bone	development	in	the	forepaw	but	not	the	penis,	and	testosterone	
propionate	by	contrast	affected	bone	growth	in	the	penis	but	not	the	
forepaw	 (Lyons	 et	al.,	 1950).	 In	 the	most	well-	studied	 case,	 induce-
ment	of	the	rat	baubellum	is	time-	dependent	and	dosage-	dependent	
and	is	most	effective	when	administered	before	10	days	after	birth.	In	
laboratory-	raised	voles,	Ziegler	(1961)	found	that	a	baubellum-	absent	
mother	had	some	but	not	all	offspring	with	baubella;	it	is	possible	that	
natural	variation	 in	endogenous	androgens	or	 the	maternal	environ-
ment	explains	such	within-	litter	variance.	The	baculum	and	the	bau-
bellum	appear	to	be	more	androgen-	sensitive	than	other	bones	in	the	
skeletal	system.	If	they	are	more	sensitive	at	the	cellular	 level,	these	
bones	would	serve	as	a	model	for	understanding	how	androgens	af-
fect	early	cell	fate	decisions	in	bone	development.

Is	 sexual	 dimorphism	 of	 the	 baculum	 and	 baubellum	 influenced	
by	the	morphology	of	the	penis	and	clitoris,	respectively?	The	devel-
opment	and	evolution	of	the	baubellum	cannot	be	understood	with-
out	 characterization	 of	 the	 soft	 tissue	 anatomy	 in	which	 it	 resides,	
namely	 the	 female	 clitoris.	However,	 few	 studies	 exist	 on	 the	 com-
parative	anatomy	of	the	clitoris.	In	one	study	of	10	species	(including	
primates,	moles,	and	hedgehogs),	the	internal	structure	of	the	clitoris	
and	the	baubellum	differed	greatly	not	only	in	size	and	shape,	but	also	
whether	they	were	distal	or	proximal	to	the	urethra	and	vaginal	open-
ing	(Pehrson,	1914).	The	position	of	the	clitoris	varied	across	41	euthe-
rian	and	marsupial	species,	from	deep	within	the	vaginal	tract	to	just	
inside	the	vaginal	opening	or	cranial	to	the	vaginal	opening	(Pavličev	
&	Wagner,	2016).	Too	few	species	overlap	with	our	study,	therefore	it	
remains	unknown	how	baubellum	and	clitoral	anatomy	covary.
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In	addition	to	the	anatomy	of	the	surrounding	soft	tissue,	behav-
ioral	data	are	required	to	evaluate	whether	the	baubellum	is	in	fact	
functional.	In	many	species,	the	clitoris	contains	erectile	bodies	that	
engorge	during	copulation	(Crichton	&	Krutzsch,	1987;	Drea	&	Weil,	
2008;	O’Connell	et	al.,	2005).	There	is	even	some	speculation	that	
engorgement	of	the	clitoris	alters	access	to	the	female’s	reproduc-
tive	tract,	and	without	it	copulation	cannot	occur	(Lönnberg,	1902;	
Steel,	1885).	In	males,	engorgement	of	the	penis	can	lead	to	changes	
in	the	orientation	of	the	baculum,	probably	the	result	of	hydrostatic	
pressure	 in	 the	 corpora	 cavernosa	 pressing	 against	 the	 baculum	
(Herdina	et	al.,	2015;	Kelly,	2000).	The	stiffening	of	the	corpus	cav-
ernosa	 in	 the	 clitoris	might	have	 similar	 effects	on	 the	baubellum,	
which	again	might	shed	light	on	its	potential	role	during	copulation.	
In	some	primates	and	pinnipeds,	the	clitoris	and	surrounding	tissue	
can	undergo	changes	in	color,	shape,	and/or	size	during	seasonal	es-
trous	(Greig	et	al.,	2007;	Petter-	Rousseaux,	1962,	1964;	Ramaswami	
&	Kumar,	1965).	The	link	to	seasonal	estrus	suggests	that	the	clitoris,	
and	 thus	 the	 baubellum,	may	 play	 a	 role	 in	 reproduction	 in	 these	
species.	Juvenile	female	fossa	has	a	very	large	baubellum	and	clitoris	
that	gives	 juvenile	females	a	“masculinized”	appearance	(Lönnberg,	
1902),	and	it	has	been	speculated	that	this	masculinized	phenotype	
reduces	male	sexual	harassment	and	 female	 territoriality	 (Hawkins	
et	al.,	2002).	Interestingly,	female	fossa	lose	their	baubellum	as	they	
age.

In	 conclusion,	 our	 study	 demonstrates	 that	 the	 baubellum	 is	
relatively	 free	to	accumulate	evolutionary	transitions	and	develop-
mental	 variation	 compared	 to	 the	 baculum.	At	 least	 in	 some	 spe-
cies,	 these	 patterns	 suggest	 that	 the	 baubellum	 does	 not	 play	 an	
important	functional	role	and	has	become	relatively	unlinked	to	the	
character	in	males,	the	baculum.	In	the	future,	additional	anatomical,	
behavioral,	 and	developmental	data	may	modify	 these	conclusions	
in	specific	cases,	but	the	overall	trend	appears	to	be	multiple	cases	
of	relaxed		selection	against	a	general	background	of	developmental	
and	evolutionary	correlation.	These	unusual	bones	provide	a	unique	
model	 system	 to	 understand	 the	 evolutionary	 and	 developmen-
tal	mechanisms	 that	give	 rise	 to	morphological	novelty	and	 sexual	
dimorphism.
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