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ABSTRACT Resolving the mechanistic and genetic bases of reproductive barriers between species is essential to understanding the
evolutionary forces that shape speciation. Intrinsic hybrid incompatibilities are often treated as fixed between species, yet there can be
considerable variation in the strength of reproductive isolation between populations. The extent and causes of this variation remain
poorly understood in most systems. We investigated the genetic basis of variable hybrid male sterility (HMS) between two recently
diverged subspecies of house mice, Mus musculus domesticus and Mus musculus musculus. We found that polymorphic HMS has a
surprisingly complex genetic basis, with contributions from at least five autosomal loci segregating between two closely related wild-
derived strains of M. m. musculus. One of the HMS-linked regions on chromosome 4 also showed extensive introgression among
inbred laboratory strains1 and transmission ratio distortion (TRD) in hybrid crosses. Using additional crosses and whole genome
sequencing of sperm pools,2 we showed that TRD was limited to hybrid crosses and was not due to differences in sperm motility
between M. m. musculus strains.3 Based on these results, we argue that TRD likely reflects additional incompatibilities that reduce
hybrid embryonic viability. In some common inbred strains of mice, selection against deleterious interactions appears to have un-
expectedly driven introgression4 at loci involved in epistatic hybrid incompatibilities. The highly variable genetic basis to F1 hybrid
incompatibilities between closely related mouse lineages argues that a thorough dissection of reproductive isolation will require much
more extensive sampling of natural variation than has been commonly utilized in mice and other model systems.5
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THE evolution of intrinsic hybrid incompatibilities,
whereby divergent genomic regions interact negatively

in hybrid genomes, is one of the most commonly studied
models of speciation [i.e., Bateson–Dobzhansky–Muller in-
compatibilities or BDMIs, Bateson 1909; Dobzhansky 1937;
Muller 1942; reviewed in Maheshwari and Barbash (2011)].
Although often viewed as fixed epistatic barriers to gene flow

between species, many incompatible alleles are polymorphic
within populations, leading to variation in the overall
strength of reproductive isolation between populations
(Gordon 1927; Patterson and Stone 1952; Forejt and Ivanyi
1974; Reed and Markow 2004; Good et al. 2008b; Scopece
et al. 2010; Cutter 2012). Relatively few studies have exam-
ined the genetic basis of variation in BDMIs (Christie and
Macnair 1987; Vyskočilová et al. 2005; Wright et al. 2013;
Sweigart and Flagel 2015; Case et al. 2016) and the evolu-
tionary forces underlying variable incompatibilities remain
unexplored in most species.

Hybrid incompatible alleles can arise through any evolu-
tionary process that contributes to genetic divergence (e.g.,
genetic drift, natural or sexual selection). However, repro-
ductive isolation is expected to evolve more quickly when
divergence is driven by selection. Consistent with this, sev-
eral incompatibility genes show signatures of positive

Copyright © 2018 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.118.300840
Manuscript received February 20, 2018; accepted for publication April 23, 2018;
published Early Online April 24, 2018.
Supplemental material available at Figshare: https://doi.org/10.25386/genetics.
6149399.
1Present address: Department of Biological Sciences, University of Denver, Denver,
CO 80210.

2Present address: Center for Epigenetics, Johns Hopkins University School of
Medicine, Baltimore, MD 21205.

3Corresponding author: Division of Biological Sciences, University of Montana,
32 Campus Drive, HS104, Missoula, MT 59812. E-mail: jeffrey.good@umontana.
edu

Genetics, Vol. 209, 1–15 July 2018 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

http://orcid.org/0000-0002-7318-3122
https://doi.org/10.1534/genetics.118.300840
https://doi.org/10.25386/genetics.6149399
https://doi.org/10.25386/genetics.6149399
mailto:jeffrey.good@umontana.edu
mailto:jeffrey.good@umontana.edu


selection or have diverged through antagonistic coevolution-
ary dynamics (Johnson 2010; Presgraves 2010; Maheshwari
and Barbash 2011). Polymorphism is an inevitable phase in
the fixation of an allele, but directional selection should fix
alleles relatively quickly. Thus, it should be rare that incom-
patibilities are sampled while polymorphic if positive direc-
tional selection drives the evolution of BDMIs. Alternatively,
BDMIs could involve a combination of unsorted ancestral
variation or modifying loci that segregate neutrally within
species (Rieseberg and Blackman 2010; Scopece et al.
2010; Cutter 2012; Matute et al. 2014) or are subject to
balancing selection (Cutter 2012). Finally, polymorphic in-
compatibilities may reflect the breakdown of reproductive
barriers due to gene flow between partially isolated popula-
tions. Hybrid incompatible alleles are generally assumed to
be resistant to introgression (Barton and Hewitt 1985;
Harrison 1990; Payseur 2010), but epistatic barriers may
quickly erode in the face of gene flow (Bank et al. 2012;
Lindtke and Buerkle 2015). Differentiating between these
alternatives is crucial to understanding the evolution of re-
productive isolation and the nature of species boundaries.

House mice provide a powerful system to understand the
causes of polymorphic barriers during the early stages of
speciation. There are three major lineages within Mus mus-
culus—M. m. musculus, M. m. domesticus, and M. m. casta-
neus—that diverged �0.35–0.50 MYA (Geraldes et al. 2011)
and show partial reproductive isolation primarily due to hy-
brid male sterility (HMS). However, there appears to be con-
siderable standing genetic variation for the strength of HMS
(Britton-Davidian et al. 2005; Vyskočilová et al. 2005; Good
et al. 2008b; Turner et al. 2012). For example, crosses be-
tween M. m. musculus females and M. m. domesticus males
typically yield sterile F1 hybridmales due, in part, to negative
interactions between M. m. musculus Chr X and the autoso-
mal gene Prdm9, a DNA binding protein that directs the lo-
cation of double-strand breaks during recombination (Mihola
et al. 2009). PRDM9 binding sites evolve rapidly (Baker et al.
2015), leading to asymmetric binding and autosomal asyn-
apsis that disrupts sex chromosome expression during sper-
matogenesis (Bhattacharyya et al. 2013; Campbell et al.
2013; Turner et al. 2014; Davies et al. 2016; Larson et al.
2017). Prdm9 appears to be polymorphic for sterile and fer-
tile alleles within both M. m. domesticus and M. m. musculus
(Forejt and Ivanyi 1974; Vyskocilová et al. 2009; Flachs et al.
2012), and the strength of Prdm9-associated sterility is vari-
able withinM.m.musculus (Bhattacharyya et al. 2014; Flachs
et al. 2014; Turner et al. 2014).

There is also variation in the severity of HMS in housemice
that is independent of the M. m. musculus X (Good et al.
2008b). For example, crosses between M. m. domesticus fe-
males and M. m. musculus males produce sterile or fertile
hybrid males dependent on the genotype of the M. m. mus-
culus sire (Vyskočilová et al. 2005; Good et al. 2008b;
Bhattacharyya et al. 2014; Flachs et al. 2014). The autosomal
variants contributing to HMS in these crosses are unresolved
and, aside from the rapid evolution of Prdm9 (Davies et al.

2016), the causes of standing variation for HMS are not clear.
One possible factor is that the small effective population sizes
of housemice results in strong genetic drift and local inbreed-
ing (Geraldes et al. 2011). Further, M. m. domesticus and M.
m. musculus form a narrow hybrid zone in central Europe
(Janoušek et al. 2012), which may weaken reproductive bar-
riers through introgression (Turner and Harr 2014).

In this study, we used the genetic variation segregating
between twowild-derived inbred strains ofM.m. musculus to
begin to characterize the genetic architecture of polymorphic
barriers betweenM. m. domesticus females andM. m. muscu-
lus males. We found that polymorphic HMS encompasses at
least five autosomal regions of the genome. We then used
additional genetic crosses, whole genome sequencing of
sperm pools, and population genomic analyses to explore
the mechanistic and evolutionary drivers contributing to var-
iation at one of these regions on the distal portion of Chr 4.
These diverse genetic and genomic experiments further re-
veal the complex genetic basis of reproductive isolation in
this system and demonstrate how these reproductive barriers
have shaped introgression among mouse subspecies and the
genomic composition of common laboratory strains of mice.

Materials and Methods

Mouse strains and experimental crosses

We focused on two wild-derived inbred strains ofM. m. mus-
culus (PWK/PhJ and CZECHII/EiJ, hereafter musculusPWK

and musculusCZII) that differ in the degree of HMS when
crossed to M. m. domesticus (Good et al. 2008b). The muscu-
lusPWK strain was originally isolated near the hybrid zone in
Prague, Czechia (50.0216�N, 14.4350�E) and yields weak
HMS when crossed to female M. m. domesticus. The muscu-
lusCZII was isolated further from the hybrid zone in Bratislava,
Slovakia (48.1492�N, 17.1070�E) and produces mostly ster-
ile males when crossed to female M. m. domesticus. We used
two wild-derived strains of M. m. domesticus (WSB/PhJ and
LEWES/PhJ, hereafter domesticusWSB and domesticusLEW) de-
rived from natural populations in North America (MD,
39.3358�N, 77.3282�W and DE, 39.1453�N, 75.4188�N).
Mice were originally purchased from Jackson Laboratory
(Bar Harbor, ME). All animal use was approved by the Uni-
versity of Montana (protocol 002–13) and the University of
Southern California (protocol 11,394) Institutes for Animal
Care and Use Committees.

Hybrid incompatibilities underlying F1 hybrid phenotypes
usually cannot be mapped because of a lack of genetic vari-
ation. However, the existence of polymorphic sterility factors
within musculus provides an elegant way to resolve these
incompatibilities directly in F1 hybrid males. We first quan-
tified HMS in F1 crosses between female domesticusWSB and
either musculusPWK or musculusCZII males. To control for the
effects of inbreeding depression in inbred strains, we com-
pared the fertility of these F1 hybrids to M. m. domesticus
interstrain F1 males (domesticusWSB 3 domesticusLEW),
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evaluating each cross at different time points [60–65, 70–80,
and 85–95 days postpartum (dpp)]. We then used an F1
hybrid test cross between domesticusWSB females and inter-
strain F1 males from reciprocal crosses of musculusPWK and
musculusCZII (Figure 1). This design maintains the F1 hybrid
genotype, while segregating variation between two different
M. m. musculus genomes. Finally, we backcrossedM. m. mus-
culus interstrain F1 males to musculusPWK females to deter-
mine if loci on Chr 4 showing strong transmission ratio
distortion (TRD) in our hybrid crosses also showed TRD
within M. m. musculus.

Male reproductive phenotypes

We quantified reproductive phenotypes of virgin males
weaned in same-sex sibling groups at 21 dpp and housed
singly at 45 dpp to mitigate dominance interactions (Snyder
1967). Males were killed using carbon dioxide followed by
cervical dislocation at 58–70 dpp (F1 hybrid test cross) or up
to 90 dpp (aged F1males). Following Good et al. (2008b), we
measured paired testes (an overall measure of fertility) and
seminal vesicles (correlatedwith serological testosterone lev-
els) relative to body weight. We isolated sperm from caudal
epididymides diced in 1 ml of Dulbecco’s PBS (Sigma, St.
Louis, MO) and incubated at 37� for 10 m. The proportion
of motile sperm and total sperm numbers were estimated
from 5 ml suspensions (regular and heat-shocked, respec-
tively) viewed in a Makler counting chamber on a light mi-
croscope over a fixed area and observation time. To evaluate
sperm morphology, 25 ml sperm suspensions were fixed and
stained, and $100 intact sperm were visually classified by a
single individual (E.L.L.) while blind to genotype. Sperm head
morphology were (1) normal with a long apical hook, (2)
slightly abnormal (i.e., shortened hook), (3) abnormal (i.e.,
short hook and rounded shape), or (4) severely abnormal (i.
e., amorphous shape). We summarized these categories with a
weighted index that ranged from high (3) to low (0) quality
sperm (Oka et al. 2004; Good et al. 2008a). Sperm tail mor-
phology were (1) normal, (2) bent at the base of the sperm
head, (3) bent in the center of the tail forming a loop, or (4)
twisted distally (White et al. 2011).

Genotyping and genome sequencing

We genotyped 468 individuals from our two genetic mapping
experiments (i.e., 156 F1 hybrid test cross males and 312 M.
m. musculus backcross) and eight reference samples (two of
each parent strain and domesticusWSB 3 musculusCZII F1 hy-
brids) using double-digest restriction site–associated DNA
sequencing (ddRADseq; Peterson et al. 2012), with minor
modifications. DNA was extracted from liver tissue using
the NucleoSpin Tissue kit (Machery-Nagel, Düren, Germany)
and incubated in 5 ml RNAase A (Fisher Scientific, Waltham,
MA) at 37� for 15 m. We digested 1 mg of DNAwithMspI and
SbfI-HF6 enzymes (New England Biolabs, Beverly, MA), li-
gated unique adaptors, and selected 200–500 bp fragments
using a two-step size selection with AMPure XP beads (Agen-
court Bioscience, Beverly, MA). Individual libraries were am-

plified 16 cycles in three 20 ml reactions using Phusion High-
Fidelity DNA Polymerase (New England BioLabs), cleaned
using AMPureXP, and quantified with a NanoPhotometer
(IMPLEN, München, Germany). F1 hybrid libraries were
paired-end sequenced on an Illumina HiSequation 2000 at
the QB3 7, University of California, Berkley and on a MiSeq at
the IBEST Genomic Resources Core, University of Idaho. The
M. m. musculus backcross libraries were single-end se-
quenced on an Illumina HiSequation 4000 at the University
of Oregon Genomics and Cell Characterization Core Facility.

Libraries were checked for intact barcodes, restriction
enzyme cut-sites, and demultiplexed using preprocess_radta-
g_lane.py (Peterson et al. 2012). We used Trimmomatic
v0.32 (Lohse et al. 2012) to remove adaptor sequences and
low-quality bases and mapped reads to the Genome Refer-
ence Consortium mouse build 38 (GRCm38) using BWA-
MEM v0.7.10 (Li 2013). We applied the Genome Analysis
Tool Kit (GATK) v3.4 (McKenna et al. 2010) to call SNPs
(HaplotypeCaller) that we then filtered (minDP 810, maxDP
150, minGQ 20) using VCFtools v0.1.14 (Danecek et al.
2011). We retained biallelic SNPs that were homozygous in
the parent references, heterozygous in the F1 hybrid refer-
ence, genotyped in$95% of individuals, and.1000 bp from
other SNPs. We retained individuals that were genotyped
in $85% of markers and showed normal crossover rates.

We also performed two targeted genotyping assays. Males
fromtheF1hybrid test crossweregenotyped formicrosatellite
length variants that encompass different Prdm9 alleles. We
used modified versions of D17Mit78 (forward: CACAGT-
GAGTCTGGGCTAGTC, reverse: GCATCTTATGGATTGAAA-
TACGG) and D17Mit261 (forward: CCCTTGCTCTCCT-
TCATTCA, reverse: AATGCCAAATGGTCAGCC; Copeland
et al. 1993) in 10 ml PCR reactions using MangoTaq (Bioline,
Luckenwalde, Germany), run at 35 cycles of 94� for 30 sec,
58–48� for 30 sec (decreased by 1� per cycle for the first
10 cycles), and 72� for 1m.We also expanded the genotyping
of ourM. m. musculus backcross using diagnostic microsatel-
lites from the middle (D4Mit64: 140.08–141.03 bp) and dis-
tal end (D4Mit127: 148.60–151.60 bp) of Chr 4 (Copeland
et al. 1993). These markers spanned SNPs genotyped using
ddRADseq, and we genotyped 88mice using bothmethods to
allow cross validation. All fragments were analyzed on an ABI
3130xl at the University of Montana Genomics Core.

Reference genomes have been published for musculusPWK

and domesticusWSB (Keane et al. 2011). We generated whole
genome shotgun sequences of a female musculusCZII and a
female domesticusLEW from NEXTflex DNA sequencing geno-
mic libraries (Bio Scientific, Austin, TX) that were paired-end
sequenced on an Illumina HiSequation 2000 at the QB3 Uni-
versity of California, Berkley. We generated additional whole
genome sequence data from the same musculusCZII female at
GENEWIZ (South Plainfield, NJ) using Illumina TruSeq li-
braries, paired-end sequenced on an Illumina HiSequation
2500. These data were processed as described above.
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QTL mapping

We performed QTL mapping in R/qtl v1.40-8 (Broman et al.
2003) with an assumed genotyping error rate of 0.001 and the
Carter–Falconermapping function (Carter and Falconer 1951).
For all QTL analyses we used a grid size of 1 cM and 5%
genome-wide significance thresholds estimated from 1000 per-
mutations. We used standard interval QTL interval mapping
(scanone) with a Haley–Knott regression for normally distrib-
uted traits, and nonparametric interval mapping for the pro-
portion ofmotile sperm, and spermhead and tailmorphologies.
We used two-dimensional QTL mapping (scantwo) and multi-
pleQTLmodel selection (stepwiseqtl) to identify additional QTL
that may be involved in epistatic interactions. Multiple QTL
models were compared using penalized LOD score with thresh-
olds calculated from scantwo permutations. We tested for TRD
in our cross using a x2 test of Mendelian proportions.

Genomic analyses

To investigate the evolutionary history of genomic regions
associated with polymorphic sterility, we first analyzed the
newly sequenced musculusCZII and domesticusLEW genomes
and published genomic data from GRCm38 (domesticusC57),
domesticusWSB, musculusPWK, and Mus spretus SPRET/EiJ
(Keane et al. 2011). For each genome, we called SNPs using
the GATK (HaplotypeCaller) and filtered SNPs with VCFtools
(minDP 10, maxDP 150, minGQ 30).We generated a BED file
with all SNP positions and used the GATK to re-call genotypes
in each genome for our target SNPs (HaplotypeCaller) and
filter VCFs9 (SelectVariants, minGQ 30, biallelic). We then
tested for introgression using the four-taxon D-statistic
(Green et al. 2010; Durand et al. 2011) as implemented in
dfoil (Pease and Hahn 2015). Here, the D-statistic is the nor-

malized difference in site pattern counts that support a closer
relationship between musculusCZII and a focal M. m. domes-
ticus (ABBA, negative D-statistic) or musculusPWK and a focal
M. m. domesticus (BABA, positive D-statistic) with variants
polarized using M. spretus. We calculated the D-statistic per
chromosome and for nonoverlapping 100 kb and 1 Mb win-
dows. We repeated these analyses using three different
strains of M. m. domesticus (domesticusC57, domesticusWSB,
and domesticusLEW).

Second, we used published genotype data for classic lab-
oratory strains, wild-derived strains (Yang et al. 2011), and
wild populations of house mice (Harr et al. 2016) to evaluate
genetic structure with principal components analysis using
the R package SNPRelate (Zheng et al. 2012). We then used
genotype data from 76 classic laboratory strains (Yang et al.
2011) to test for gametic disequilibrium (r2) between candi-
date sterility regions and SNPs on other chromosomes using
PLINK v2.0 (Chang et al. 2015). We restricted these analyses
to SNPs betweenmusculusPWK andmusculusCZII $1 Mb apart
with nomissing data, minor allele frequencies$0.1, and that
were also fixed between strains ofM. m. musculus (CZECHII,
STUS, and STUP) and M. m. domesticus (LEWES, ZALENDE,
and PERA) with very low levels of introgression (Yang et al.
2011; Didion and Pardo-Manuel de Villena 2012).

Third,we evaluated phylogenetic discordance usingwhole
exome data from 10 species of Mus (Sarver et al. 2017) and
whole genomes from domesticusC57 and domesticusWSB

(Keane et al. 2011). We cleaned and mapped reads to spe-
cies-specific exome-pseudoreferences generated by Sarver
et al. (2017). We used the MPI 10version of RAxML v8.2.3
(Stamatakis 2014) to estimate maximum likelihood phylog-
enies (rapid bootstrapping and a GTR 11+ Gmodel of sequence
evolution) for nonoverlapping 100 kb windows, and used

Figure 1 Crossing design to map polymorphic HMS
loci in musculus. The fertility of F1 hybrids from
crosses between M. m. domesticus females and
M. m. musculus males depends on the strain of
M. m. musculus; hybrids with musculusCZII sires
have more severe sterility. We test crossed inter-
strain M. m. musculus F1s to M. m. domesticus
females to map F1 hybrid sterility alleles segregating
within M. m. musculus.
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these windows to produce a concatenated species tree for each
chromosome. We then used ASTRAL v4.10.11 (Mirarab and
Warnow 2015) to estimate the species tree while accounting
for phylogenetic discordance among individually estimated
gene trees. Trees were visualized with FigTree v1.4.3.

Genome-wide assessment of TRD

To test for TRD associated with sperm function, we used low-
coverage whole genome sequencing of motile and immotile
sperm populations collected from four F1 maleM. m. muscu-
lus (musculusPWK 3 musculusCZII). Epididymal sperm were
collected from killed adult males (106 dpp) in 2 ml Dulbec-
co’s PBS (equilibrated at 37� and 5% carbon dioxide over-
night). We applied 1 ml aliquots of sperm to a Percoll
gradient (1 ml layers of 90 and 45% Percoll at 37�; GE
Healthcare Life Sciences) and centrifuged (300 g for
13 min) to separate cellular debris (top), immotile sperm
(middle), and motile sperm (bottom) (Ng et al. 1992;
Phelps et al. 1999). Immotile and motile sperm fractions
(400 ml each) were rinsed (1 ml 1.5 M NaCl, centrifuged at
10,000 g for 10 min) and stored at 280�. We purified DNA
using the MasterPure Complete DNA purification kit (Epi-
centre Biotechnologies). Sperm fractions were rinsed in
600 ml of 70% EtOH (centrifuged at 14,000 g for 5 min)
and incubated overnight at 55� in 600 ml lysis buffer, 25 ml
of 1M dithiothreitol, and 10ml of 20mg/ml proteinase K.We
treated samples with RNase A (3 ml, for 30 min at 37�), pre-
cipitated the sperm in 200 ml of protein precipitation buffer
(centrifuged at 14,000 g for 30min), and incubated in 600 ml
of isopropanol at280� for 2–3 hr (centrifuged at 14,000 g for
20 min). The pellet was rinsed with 500 ml 75% ethanol
(centrifuged at 14,000 g for 10 min) and dried overnight.
We then constructed sequencing libraries using the NEBNext
Ultra DNA Library Prep Kit for Illumina with Bio Scientific
NEXTflex DNA Barcodes and generated 76 bp paired-end
sequences on a HiSequation 2000 at the Epigenome Center,
University of Southern California.

We conducted all analyses using reads mapped to strain-
specific pseudoreferences for musculusCZII or musculusPWK

(Sarver et al. 2017). Briefly, for each whole genome (de-
scribed above), we called SNPs relative to GRCm38 (GATK
HaplotypeCaller), hard-filtered our SNPs (maskExtension 5,
QD 12, 2.0, FS . 60.0, MQ , 40.0, MQRankSum , 212.5,
ReadPosRankSum,28.0, QUAL, 30.0, minDP 10, maxDP
150), recalled SNPs that passed filtering at a 13base-pair reso-
lution in each genome, and used this high-confidence SNP set
to inject variants into GRCm38 using the GATK FastaAlterna-
tiveReferenceMaker. We trimmed and quality-filtered sperm
fraction reads using expHTS (Streett et al. 2015), mapped
reads to each pseudoreference using BWA-MEM, and called
SNPs using the GATK (HaplotypeCaller). We assigned reads
(MQ $ 56) that overlapped at least one diagnostic SNP as
either musculusPWK or musculusCZII origin, and summarized
read counts in 1 Mb sliding windows (step size 0.5 Mb). We
tested for TRD in windows with $100 reads in all samples
using a x2 test (false discovery rate–corrected P , 0.01;Ta
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Benjamini and Hochberg 1995) to test the proportions of
musculusPWK vs. musculusCZII reads in motile vs. immotile
sperm fractions. We considered a window skewed if the pro-
portion ofmusculusCZII-derived reads significantly differed by
at least 0.15 between sperm fractions.

To validate our Percoll method, we repeated our pipeline
with experimentally combined normal and heat-shocked
(immotile) sperm samples from two predominantly M. m.
domesticus inbred strains (C57BL/6J and DBA/2J). We
pooled normalized sperm extractions from each strain and
then mixed sperm in equal proportions from the two strains,
and repeated our experiment to vary which strain was
heat shocked. We isolated DNA as described above, and

PCR-amplified and Sanger-sequenced through a marker con-
taining a diagnostic SNP.

Data availability

All data are available through NCBI under projects
SRP093943 (F1 hybrid test cross RADseq), SRP094878 (M.
m. musculus CZECHII/EiJ whole genome sequencing),
SRP094877 (M. m. domesticus LEWES/EiJ whole genome
sequencing), SRP082237 (sperm pools whole genome se-
quencing), and SPR102485 (backcross RADseq). Supple-
mental Material, File S1 contains phenotype data for F1
hybrids and F1 hybrid test cross. File S2 contains microsatel-
lite genotypes for markers inside and outside the Chr 4 TRD

Figure 2 QTL for polymorphic HMS in muscu-
lus. (A) LOD curves (standard interval mapping)
for HMS phenotypes. Highlighted intervals are
the maximum LOD intervals (across all traits) on
each chromosome for QTL associated with
lower fertility in musculusCZII (purple) and mus-
culusPWK (orange). The inner circle is QTL LOD
support intervals for previously reported hybrid
sterility loci mapped in M. m. domesticus and
M. m. musculus F2 crosses (White et al. 2011;
dark gray), wild mice from the hybrid zone
(Turner et al. 2014; medium gray), and an F1
hybrid test cross (Bhattacharyya et al. 2014;
light gray). (B) Normalized sperm count and
sperm head morphology index plotted against
the genotype of the marker with the largest Chr
4 LOD score. Lines indicate mean trait values
(6SE). (C) Frequency of the musculusCZII allele
at each marker (Mendelian expectations
0.5:0.5, genome wide average: 0.496:0.504).
(D) TRD plotted as the 2log10P value from x2

test for Mendelian segregation per chromo-
some. Tick marks indicate SNP positions.
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region. Supplemental material available at Figshare: https://
doi.org/10.25386/genetics.6149399.

Results

HMS is polymorphic and polygenic in M. m. musculus

We found that F1M. m. domesticus3M. m. musculus hybrids
had variable fertility that was dependent on the strain of M.
m.musculus sires (Table 1), extending previous results (Good
et al. 2008b). Compared to fertile M. m. domesticus F1 males
(domesticusWSB 3 domesticusLEW), hybrid males with muscu-
lusPWK sires had smaller testes and more abnormal sperm
morphologies. Hybrid males with musculusCZII sires were
even more severely sterile. These males had smaller testes,
lower sperm counts, and a high proportion of abnormal
sperm head and tail morphologies compared to hybrid males
with musculusPWK sires (Table 1). The fertility of domesti-
cusWSB 3 musculusPWK hybrids was lower than previously
reported from domesticusLEW 3 musculusPWK crosses (Good
et al. 2008b; Campbell et al. 2013; Larson et al. 2017), sug-
gesting that domesticusWSB has sterility factors not present in
other strains of M. m. domesticus (Odet et al. 2015). Differ-
ences among F1 crosses remained qualitatively consistent as
males aged and sperm head morphology actually worsened
with age (Figure S1). Therefore, HMSwas not due to delayed
reproductive maturity, as has been observed in other crosses
(Campbell and Nachman 2014; Flachs et al. 2014). Overall,
we found that M. m. domesticus 3 M. m. musculus HMS was
dependent on the paternal strain, indicating autosomal and/
or Y-linked sterility loci contribute to polymorphic sterility in
M. m. musculus.

Next,weusedanF1hybrid test cross to generate 156males
(62 litters) that ranged from reproductively normal to mostly
sterile. On average these males had smaller testes, lower
sperm counts, and more abnormal sperm head and tail mor-
phologies (Table 1). After filtering for coverage, we retained
ddRADseq data for 150 males that had between 118,000 and
921,000 uniquely mapped paired reads (median 297,634,
total mapped reads of 48.5 million paired reads). We con-
structed a genetic map using 582 high-quality SNPs between
musculusCZII and musculusPWK. Using standard interval map-
ping we detected two regions of the M. m. musculus genome
on Chr 9 and Chr 15 that contributed to multiple sterility
phenotypes (Figure 2A), suggesting a shared genetic and/
or developmental basis. Chr 9 QTL reduced the fertility of
hybrids carrying a musculusCZII allele and Chr 15 QTL re-
duced the fertility of hybrids carrying a musculusPWK allele
(Table 2).We identified two additional QTL on Chr 2 and Chr
8 that contributed to abnormal sperm head morphologies
associated with themusculusCZII allele, and QTL on Chr 4 that
contributed to lower sperm counts and abnormal sperm head
and tail morphologies associated with themusculusPWK allele
(Figure 2B). Using two-dimensional QTL mapping, we iden-
tified pairs of QTL that additively contributed to sperm count
(Chr 4 and Chr 9) and abnormal sperm head morphologies
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(Chrs 1, 2, 4, 7, 8, 9, and 15). We found no evidence of
epistatic interactions (Table S1), although sample sizes were
likely too small to detect such effects. Multiple QTL models
supported several loci contributing to sperm count and ab-
normal sperm head morphology, consistent with our single
QTL results (Table 3). Neither Chr Y origin nor genotyped
Prdm9 alleles were associated with hybrid sterility pheno-
types (Table S2).

Hybrid sterility QTL colocalized with TRD on Chr 4

Sterility phenotypes associated with the musculusPWK allele
on Chr 4 colocalized with a large region (46.91:153.39 Mb)
that had a deficit of musculusPWK alleles at 50 consecutive
markers (expected allelic ratio: 50:50, median observed
39.5:60.5, x2 test, P # 0.05; Figure 2, C and D). The most
extreme TRD was observed at 116.01:151.14 Mb (median
observed 38.7:61.3, x2 test, P # 0.001) and was also ob-
served when crosses were parsed by sire (musculusPWK 3 CZII

sire, N = 75, 33.3:66.7; musculusCZII 3 PWK sire N = 75,
44.3:55.7). Sex ratios were normal in these crosses (fe-
males:males 51:49, x2 test, P = 0.701). The Chr 4 region
showing TRD overlapped with QTL for lower sperm count
(61.5 LOD interval 90.72–155.46) and more abnormal
sperm head and tail morphology (61.5 LOD interval 4.17–
180.22) in males with the musculusPWK allele. This could be
due to chance given that the 61.5 LOD intervals for all ste-
rility QTL encompassed 19.1% (275.59 cM) of the total ge-
nome, although sterility QTL associated with musculusPWK

alleles encompassed only 5.5% of the genome (79.16 cM
total).

Chr 4 sterility and TRD loci showed unusual patterns
of introgression

The distal region of Chr 4 showing TRD contained an un-
usually high density of SNPs between musculusCZII and mus-
culusPWK (hypergeometric test, P , 0.001). Previous work
has shown appreciable subspecific introgression into muscu-
lusPWK, including a large tract of M. m. domesticus introgres-
sion on the distal portion of Chr 4 (Yang et al. 2011).

Consistent with this, we found considerable genome-wide
introgression between musculusPWK and M. m. domesticus
(median D-statistic of 0.253, Figure 3A). Across most chro-
mosomes, D-statistic estimates were similar regardless of
which M. m. domesticus strain was used. On Chr 4 we de-
tected introgression between M. m. domesticus (domesti-
cusWSB, domesticusLEW) and musculusPWK, but not between
domesticusC57 and musculusPWK. Discordance in the D-statis-
tic among M. m. domesticus strains was localized to a 20 Mb
region on the distal end of Chr 4 (130–150 Mb), coincident
with the musculusPWK sterility QTL and the region with the
strongest TRD (Figure 3B). For simplicity, we will refer to this
narrower region as the Chr 4 TRD locus.

We then contrasted patterns of divergence outside and
inside of the Chr 4 TRD locus using other M. m. musculus
inbred strains and wild house mice (Yang et al. 2011; Harr
et al. 2016). Wild mice strongly clustered by subspecies both
outside and inside of the TRD locus (Figure 4A). In contrast,
some M. m. musculus wild-derived strains (PWK and PWD)
clustered with M. m. domesticus at the TRD region while
classic laboratory strains (primarily M. m. domesticus in ori-
gin) showed a mosaic of subspecific origins within the Chr
4 TRD locus (Figure 4B). We then estimated gametic disequi-
librium between Chr 4 (130–150 Mb) and 1313 autosomal
and Y-linked SNPs to test for other genomic regions that may
be associated with the Chr 4 TRD locus. Overall, gametic
disequilibrium was low (r2: median 0.014, maximum
0.645), and similar to prior estimates (Payseur and Hoekstra
2005). Seven SNPs showed elevated r2 (Table S3), but we
did not find any SNPs that had high r2 values across the Chr
4 TRD haplotype. There was no association between Chr
4 and Chr Y, which has either a M. m. musculus or M. m.
domesticus origin in the classic strains (Bishop et al. 1985).

Toevaluate thedeeperevolutionaryoriginof theChr4TRD
locus, we estimated the phylogenies across 10 species ofMus
for Chr 3 (a similar sized chromosome with limited introgres-
sion relative to other chromosomes and no TRD) and Chr
4 regions outside and inside the TRD locus. Concatenated
trees for Chr 3 and non-TRD Chr 4 (Figure S2) were

Table 3 Polymorphic F1 hybrid sterility QTL detected using multiple QTL mapping

Chr Position (cM) LOD score P-value Position (Mb) 1.5 LOD interval (Mb)

%Var

Effect 6 SEcQTLa Fullb

Relative paired testis weight (mg/g) 9 34.65 4.71 ,0.001 85.99 59.96–113.49 13.46 NA 20.96 6 0.20
Normalized sperm countd 4 41.82 3.7 ,0.001 125.29 90.72–155.46 9.83 18.30 0.12 6 0.03

9 34.65 3.32 ,0.001 85.99 59.96–104.82 8.77 20.12 6 0.03
Sperm head morphology index 4 67.84 6.82 ,0.001 154.51 149.56–155.46 12.93 45.35 0.35 6 0.08

8 45.05 5.08 ,0.001 113.45 95.68–129.09 9.36 20.4 6 0.08
9 34.65 9.33 ,0.001 85.99 85.99–85.99 18.41 20.5 6 0.08

15 22.74 5.72 ,0.001 78.25 76.5–78.25 10.65 0.42 6 0.08
4:9 NA 3.95 ,0.001 NA NA 7.14 NA 0.70 6 0.16

QTL identified using nonparametric interval mapping were not assessed using multiple QTL mapping.
a The percent of the phenotypic variance explained by each QTL.
b The percent of the phenotypic variance explained by all terms (e.g., all QTL) in the model.
c The difference between the phenotype averages of the musculusPWK and musculusCZII alleles. A negative effect indicates the musculusCZII allele lowers the reproductive
phenotype value.

d Square-root transformed sperm count (1 3 106).
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consistent with previous species tree estimates (Sarver et al.
2017). In contrast, trees from the Chr 4 TRD locus showed
reciprocal swapping of M. m. musculus and M. m. domesticus
strains, with musculusPWK closest to domesticusWSB and mus-
culusCZII closest to domesticusC57. These conflicting patterns
were most apparent using a gene-tree approach to character-
ize patterns of fine-scale topological discordance across Chr
4 (Figure 4C). We found no other Mus lineages with variant
topologies for the Chr 4 TRD region.

TRD was restricted to hybrid crosses and was not
associated with sperm motility

Male meiotic drivers often operate through various mecha-
nisms of sperm impairment (Lindholm et al. 2016). In the
classic house mouse t complex drive system, heterozygous
males show a higher frequency in motile sperm of the sperm
killing Chr 17 t haplotype (Lyon 2003). We used whole ge-
nome sequencing of sperm pools to test if the higher fre-
quency of the musculusCZII Chr 4 TRD haplotype in the
offspring of the F1 hybrid test cross reflected motility differ-
ences in the sperm of the M. m. musculus (musculusPWK 3
musculus CZII) sires. We generated between 40 and 64million
uniquely mapped reads (MQ $ 56) from the motile and im-
motile sperm fractions of four F1 M. m. musculus males. An
average of 7 million reads per sample spanned at least one
diagnostic SNP. We parsed reads into 5463 overlapping 1 Mb
windows and analyzed an average of 4777 windows
with $100 mapped reads and $1 diagnostic SNP (QUAL14 $

24). Nowindow showed significant skew betweenmotile and
immotile sperm pools in any male. In an additional experi-
ment, we confirmed that the Percoll method was effective in
separating motile from immotile sperm (Figure S3).

Our sequencing experiment demonstrated that Chr 4 TRD
is likely not related to sperm motility and therefore must
reflectgenotypicdifferences in spermcompetitive interactions
(including female choice), fertilization ability, or postzygotic
development. To localize the timing of distortion, we crossed
the sameM. m. musculus sire genotype (musculusPWK 3mus-
culus CZII) to musculusPWK females to generate 602 backcross
offspring (319 female and 283 male) from 133 litters. We
generated ddRADseq libraries for 312 backcross mice. After
removing individuals with low coverage, we retained
303 mice that had between 156,791 and 3,315,067 uniquely
mapped reads (median of 664,627 per mouse, total of
232,515,877 single reads) and we constructed a genetic
map using 358 high-quality SNPs. We found no evidence of
TRD on Chr 4 (expected allelic ratio, 50:50; median ob-
served, 50:50) and this pattern held when parsed by sire,
sex, or sire and sex. To confirm these results, we genotyped
an additional 193 backcross mice using microsatellite
markers spanning Chr 4 and still found no evidence of TRD
(N = 496 mice; Table 4). Thus, Chr 4 TRD between muscu-
lusCZII and musculusPWK alleles was only observed in crosses
involving domesticusWSB females (Figure 5A).

Discussion

Polymorphic HMS has a polygenic basis in house mice

Individuals often vary in the degree that they are reproduc-
tively isolated from other lineages, but the genetic basis and
evolutionary origin of such variation remains poorly under-
stood. In house mice, there is considerable variability in the
strength of F1 HMS in crosses using different inbred strains or
wild isolates ofM.m.musculus andM.m. domesticus (Britton-

Figure 3 Introgression between M. m. muscu-
lus and M. m. domesticus. (A) D-statistics, calcu-
lated for each chromosome, testing for
introgression between musculusCZII or muscu-
lusPWK and M. m. domesticus. The median D-
statistic across allM. m. domesticus comparisons
is represented by the dashed line. Patterns on
Chr 4 vary depending on the strain of M. m.
domesticus. (B) The absolute difference in the
D-statistic using domesticusWSB (solid gray line)
or domesticusLEW (dashed gray line) compared
to domesticusC57. (C) D-statistic calculated over
1 Mb nonoverlapping windows localizes discor-
dant introgression to a 20 Mb window on the
distal end of Chr 4.
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Davidian et al. 2005; Vyskočilová et al. 2005; Good et al.
2008b; Bhattacharyya et al. 2014). One simple interpretation
of these results is that there are one or a few common in-
compatibilities that are polymorphic within M. m. musculus
and/or M. m. domesticus populations. Consistent with this,
the only HMS gene yet identified in mammals, Prdm9, ap-
pears to be polymorphic for sterile and fertile alleles within
bothM. m. musculus andM. m. domesticus (Forejt and Ivanyi
1974; Vyskocilová et al. 2009; Flachs et al. 2012). While the
evolutionary origin and extent of Prdm9-linked HMS varia-
tion remains unclear in natural populations, our results re-
veal that there is likely to be considerable polymorphism at
other HMS loci.

We identified five autosomal regions that contributed to
variation inHMS in crosses betweenM.m. domesticus females
and M. m. musculus males, despite sampling just two wild-
derived inbred strains ofM.m.musculus (Figure 2). F1 hybrid
males from crosses between female M. m. domesticus and
musculusPWK yield only weak sterility phenotypes, while
crosses involving musculusCZII are more severely sterile in
both directions of the cross (Table 1; Good et al. 2008b).
Surprisingly, considerable variation exists beneath this
seemly simple F1 architecture. Sterility loci were associated

with both strains; sterility alleles on Chrs 2, 8, and 9 derived
from musculusCZII, while musculusPWK sterility variants were
mapped to Chr 4 and Chr 15.

F1 HMS variability has been observed in otherM. m. mus-
culus strains (Piálek et al. 2008; Bhattacharyya et al. 2014)
and in wild M. m. musculus isolated from eastern Czechia
(Good et al. 2008b). Thus, the polymorphic HMS that we
document here may be relatively widespread within M. m.
musculus (Vyskočilová et al. 2005; Good et al. 2008b;
Bhattacharyya et al. 2014). Consistent with this, there was
some overlap between the HMS loci we identified and HMS
QTL from other studies (Figure 2A). Bhattacharyya et al.
(2014) used a similar experimental design between domes-
ticusC57 females and M. m. musculus interstrain males (PWD
and STUS) to map polymorphic hybrid sterility to Chr
9 (sperm count). Sterility loci were identified on Chr 4 (epi-
didymis weight) in recombinant inbred lines derived from all
three M. m. musculus subspecies (Shorter et al. 2017), Chr
4 (testis weight) and Chr 15 (abnormal sperm morphology)
were identified in F2 crosses between domesticusWSB and M.
m. musculus PWD (White et al. 2011; Turner et al. 2014), and
Chr 2 and Chr 9 were associated with low testis weights in
wild-caught hybrid mice (Turner and Harr 2014). However,

Figure 4 Patterns of discordance outside and inside the Chr 4 TRD locus. (A) Principal components analysis of SNPs from whole genome sequencing of
eight wild populations of M. m. musculus, M. m. domesticus, and M. m. castaneus (Harr et al. 2016) and (B) the Mouse Diversity Array for wild mice
(dark colors) and classic laboratory and wild-derived strains of mice (light colors) (Yang et al. 2011). There was strong clustering of SNPs in wild
populations, both outside and inside the TRD region, but the classic strains showed mixed SNP clustering. (C) Unrooted species trees estimated across
100 kbp windows outside and inside the Chr 4 TRD locus. Branches are annotated with their local quartet scores.
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these studies also found sterility QTL on Chrs 1, 2, 3, 5, 6, 10,
12, 13, 14, 17, and 18, which implies that nearly every auto-
some is linked to some form of HMS. The emerging picture is
of an increasingly complex genetic basis to HMS that depends
strongly on genotype. Indeed, multiple polymorphic hybrid
sterility factors would account for the variable fertility of
multigeneration hybrids from the center of the hybrid zone
(Turner et al. 2012). Inbred line crosses remain one of the
most powerful and quantitative tools for the genetic dissec-
tion of hybrid incompatibilities. However, the common as-
sumption that most incompatibilities reflect fixed differences
between lineages appears increasingly tenuous, especially dur-
ing the early stages of speciation. This realization has the
potential to broadly impact important issues in speciation ge-
netics. In addition to the need to incorporate population-level
sampling into the design of mapping studies on the genetics of
speciation, many theoretical predications on the accumulation
of reproductive isolation are based on epistatic models that
treat interacting hybrid incompatibilities as fixedwithin species
(e.g., Orr and Turelli 2001; Wang et al. 2013; Lindtke and
Buerkle 2015).

The causes of polymorphic reproductive isolation

Several incompatibilities are polymorphic in house mice, but
the origins of these variants are unclear. One possible source is
introgression at previously fixed incompatibilities. Alleles
contributing tohybrid incompatibilities shouldhave restricted
introgression relative to the rest of the genome. Indeed, the
identification of loci showing restricted gene flow across
hybrid zones is a powerful approach to identifying alleles that
contribute to reproductive barriers (Barton and Hewitt 1985;
Harrison 1990; Payseur 2010). However, gene flow and re-
combination within a hybrid zone can quickly break down
epistatic interactions among BDMIs (Virdee and Hewitt
1994; Shuker et al. 2005; Bank et al. 2012; Lindtke and Buer-
kle 2015), which could in turn result in polymorphic incom-

patibilities. The house mouse hybrid zone is wide relative to
thedispersal distances ofmice. As a result, pureM.m. domesticus
and M. m. musculus rarely come into contact and few F1 mice
are found in the hybrid zone. The zone is primarily composed
of complex, multigeneration hybrids that show extensive var-
iation in the severity of HMS (Janoušek et al. 2012; Turner
et al. 2012; Turner and Harr 2014), which likely reflects the
partial breakdown of epistatic reproductive barriers.

Several of the common wild-derived strains show appre-
ciable introgression between subspecies of M. m. musculus,
includingmusculusPWK (Yang et al. 2011; Sarver et al. 2017).
Four of our polymorphic HMS regions did not colocalize with
strong signatures of introgression (results not shown), al-
though gene flow cannot be ruled out at our current mapping
resolution. At least one HMS region (Chr 4) did coincide with
introgression into musculusPWK (Figure 3), but not necessar-
ily in the direction predicted if HMS polymorphism reflects
the partial erosion of reproductive barriers. Hybrid sterility
QTL on Chr 4 contributed to low sperm counts and abnormal
sperm morphology in males carrying the musculusPWK allele
(Figure 2A). Coincident with the Chr 4 HMSQTL, an�20Mb
M. m. domesticus haplotype (represented here by domesti-
cusWSB and domesticusLEW) was introgressed into muscu-
lusPWK, while a M. m. musculus haplotype (represented by
musculusCZII) appears introgressed into domesticusC57 (Figure
3) and some other classic strains (Figure 4, Yang et al. 2011).
At least twoM. m. musculus strains (PWK and PWD) derived
from different localities carry introgressed M. m. domesticus
haplotypes. In other words, a M. m. domesticus-derived hy-
brid sterility locus has introgressed into at least two indepen-
dent M. m. musculus strains. Transmission of the same
introgressed musculusPWK allele was also underrepresented
in our hybrid test cross (Figure 2C). Thus, the distal end of
Chr 4 shows a propensity to reciprocally introgress between
M. m. musculus andM. m. domesticus genomes despite asym-
metric TRD and detrimental effects on hybrid fertility.

How can recurrent reciprocal introgression be reconciled
with the evolution of HMS and TRD in the same genomic
region? Non-Mendelian segregation is common in divergent
crosses and can reflect differences in gamete production,
fertilization, and zygote survival (Lindholm et al. 2016).
For example, sexual selection can lead to TRD when gametes
carrying different alleles have contrasting fertilization abil-
ities due to male gamete competition or cryptic female choice
(e.g., Fishman et al. 2008). We did not observe TRD in our
independent M. m. musculus backcross or distal Chr 4 intro-
gression in wild mice, arguing against simple competitive
advantage of the musculusCZII haplotype. In divergent
crosses, TRD is often caused by biased transmission of selfish
genetic elements (i.e., meiotic drive or segregation distortion;
McDermott and Noor 2010; Lindholm et al. 2016) as found,
for example, at the R2d2 locus in house mice (Didion et al.
2015, 2016). Drive elements generate intragenomic conflict,
which should drive strong counter selection for unlinked
drive suppressors. Drive systems coevolve independently in
isolated populations, which can lead to sterility when drivers

Table 4 Summary of genotype16 frequencies in M. m. musculus
backcross

Crosses AA AB Total %AB P-value

Region 1 musculusCZII 3 PWK sire 100 93 195 47.7 0.614
140,089,156– females 54 50 106 47.2 0.695
141,037,913 bp males 46 43 89 48.3 0.75

musculusPWK 3 CZII sire 144 157 301 52.2 0.454
females 77 83 160 51.9 0.635
males 67 74 141 52.5 0.556
Total 244 250 496 50.4 0.787

Region 2 musculusCZII 3 PWK sire 97 97 195 49.7 1
148,602,050– females 53 53 106 50 1
151,609,913 bp males 44 44 89 49.4 1

musculusPWK 3 CZII sire 138 162 301 53.8 0.166
females 73 86 160 53.8 0.303
males 65 76 141 53.9 0.354
total 235 259 496 52.2 0.28

To test for TRD within M. m. musculus, female musculusPWK were crossed to re-
ciprocal interstrain F1s between musculusCZII and musculusPWK. Offspring were
genotyped for two regions inside the introgressed TRD on Chr 4.
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and suppressers are uncoupled in hybrid genomes (Frank
1991; Hurst and Pomiankowski 1991). Male meiotic drivers
often act by impairing the development or fertilization capac-
ity of nondriving sperm (Lindholm et al. 2016).We tested this
scenario directly and found no TRD between motile and im-
motile sperm ofmusculusPWK 3 CZII males. More broadly, TRD
on the distal region of Chr 4 has also been reported in two
other divergent crosses: TRD favoring the distal Chr 4 M.
spretus allele in crosses between domesticusC57 3 M. spretus
F1 females and domesticusC57 males (Ceci et al. 1989), and
TRD again favoring the musculusCZII distal Chr 4 allele in
crosses between domesticusC57BL/KsJ males and domesti-
cusC57BL/KsJ 3 musculusCZII F1 females (Fiedorek and Kay
1994). Importantly, both crosses reveal reduced transmission
of the distal portion of Chr 4 derived from M. m. domesticus
through female gametogenesis (Figure 5B). If these patterns
reflect a common mechanism, then Chr 4 TRD must act in-
dependent of male-specific mechanisms.

Collectively, these results suggest that Chr 4 TRD and
introgression are both a consequence of incompatibilities that
reduce hybrid embryo viability (postzygotic inviability). In
principle, TRD could occur because of a negative interaction
between egg (or female reproductive tract) and sperm result-
ing in reduced fertilization (postmating prezygotic barriers)
(Nadeau 2017), although incompatible egg–sperm interac-
tions are often asymmetric (i.e., depend on the parent of
origin of gametes; Larson et al. 2012). Chr 4 TRD occurs in
crosses involving both male and female M. m. domesticus,
with consistent bias against the Chr 4M. m. domesticus allele
when backcrossed to M. m. domesticus (Figure 5). The sim-
plest explanation for this pattern is a two locus BDMI involv-
ing a recessive Chr 4 incompatibility derived in the M. m.
domesticus lineage. It remains unclear why TRD driven by
hybrid inviability in crosses involvingM. m. domesticus coloc-
alizes with HMS QTL that manifests in the F1 offspring. It is
possible that early-acting hybrid inviability leads to the pleio-
tropic impairment of other reproductive traits. Alternatively,
this region may harbor multiple incompatibilities, which ap-

pears to be the case for TRD of polymorphic hybrid incom-
patibilities in monkeyflowers (Kerwin and Sweigart 2017).

Under an inviability model, introgression at the Chr 4 TRD
locus in various classic and wild-derived inbred strains (i.e.,
musculusPWK, PWD) would reflect different outcomes of selec-
tion against particular incompatible allelic pairings. Such ep-
istatic selection should generate linkage disequilibrium
between distal Chr 4 and other genomic regions within hy-
brid genomes. Although our initial scan of genotypes from
76 classic laboratory strains failed to detect these associations
(Table S3), multiple genome-wide studies have revealed that
selection against other deleterious allelic combinations has
shaped the mosaic composition of introgressed laboratory
strains (Payseur and Hoekstra 2005; Petkov et al. 2005)
and the M. m. domesticus–M. m. musculus hybrid zone
(Turner et al. 2012; Turner and Harr 2014). There has been
considerable effort to resolve the extent to which various
classic and commonwild-derived laboratory strains are intro-
gressed, with an emphasis on overall strain genetic purity
(Yang et al. 2011; Didion and Pardo-Manuel de Villena
2012). While overall admixture proportions are of some rel-
evance, our results suggest that specific genome-wide pat-
terns of introgression may be strongly shaped by selection
with the unexpected result that selection against epistatic
BDMIs may facilitate introgression at underlying loci. These
results underscore the intricacies of nascent species bound-
aries during the early stages of speciation when reproductive
isolation remains incomplete and genetically variable.
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