1	COPEIA
2	Morphological Divergence among Populations of Xantusia riversiana, a Night Lizard Endemic
3	to the Channel Islands of California
4	Nicole E. Adams ^{1, 3} , Matthew D. Dean ^{2, 3} , Gregory B. Pauly ³
5	Suggested running head: morphological variation within Xantusia riversiana
6	Keywords: Channel Islands; island gigantism; morphometrics; sexual dimorphism; subspecies;
7	Xantusiidae
8	¹ Biological Sciences - Integrative and Evolutionary Biology, 3616 Trousdale Pkwy, University
9	of Southern California, Los Angeles, California, 90089; Email: nioleea@usc.edu
10	² Biological Sciences - Molecular and Computational Biology, 1050 Childs Way, University of
11	Southern California, Los Angeles, California, 90089; Email: matthew.dean@usc.edu
12	³ Section of Herpetology, Natural History Museum of Los Angeles County, 900 Exposition Blvd,
13	Los Angeles, California, 90007; Email: gpauly@nhm.org. Send reprint requests to this address.

14 Morphological variation between closely related island endemics offers a unique system 15 to study ecological and evolutionary processes. The Island Night Lizard, Xantusia riversiana 16 (Cope, 1883), is endemic to three of the Southern Channel Islands off the coast of Southern 17 California: Santa Barbara, San Clemente, and San Nicolas. Some authors treat the species as polytypic with the night lizards on San Nicolas (X. r. riversiana) distinct from those on Santa 18 19 Barbara and San Clemente (X. r. reticulata). Previous studies failed to find strong morphological 20 divergence, but it remains uncertain if those studies were hampered by a combination of small 21 sample size, small number of characters, and/or the lack of modern morphometric techniques. 22 Here we examined 172 Island Night Lizards from the three islands for nine morphometric and 23 five meristic characters, increasing the number and types of morphological characters examined 24 over previous studies, and applying modern morphometric techniques to test for divergence 25 associated with island and sex. We found significant differences in both body measurements and meristic characters among the nominal subspecies as well as among the three islands. We also 26 27 detected significant sexual dimorphism in body and scale characteristics for both subspecies. 28 However, assigning individuals to an island based on morphology is difficult because all three 29 islands harbor morphologically overlapping individuals. Our study clarifies Island Night Lizard 30 systematics, as well as informs conservation efforts for an island endemic that was until recently 31 listed as threatened under the U.S. Endangered Species Act.

32

33 Island lineages are often morphologically distinct from their mainland progenitor, and 34 colonizers of multiple islands in an archipelago often diverge phenotypically in response to island-specific selective pressures. Differences in climate, substrate, and/or resource availability 35 36 can promote variation in color, shape, and size of insular populations, and may even promote 37 speciation. The eight Channel Islands off the coast of Southern California are home to many 38 endemic taxa, including the Island Spotted Skunk (Spilogale gracilis amphiala; Floyd et al., 39 2011), the Island Scrub Jay (Aphelocoma insularis; Johnson, 1972), and the now extinct Pygmy 40 Mammoth (Mammuthus exilis; Agenbroad, 2009), all of which show phenotypic differences 41 from their closest mainland relatives. Several endemic species such as the Island Loggerhead 42 Shrike (Lanius ludovicianus; Eggert et al., 2004), the Channel Island Fox (Urocyon littoralis; 43 Wayne et al., 1991; Funk et al., 2016), and the Channel Island Deer Mouse (Peromyscus 44 maniculatus; Pergams and Ashley, 1999; Pergams et al., 2000) show morphologic and genetic divergence among islands within the archipelago and have proven to be excellent systems for 45 46 studying speciation. 47 The Island Night Lizard, Xantusia riversiana (Cope, 1883), is only found on the Southern

Channel Island Night Lizard, *Xantusia Tiversiana* (Cope, 1883), is only found on the Southern Channel Islands of San Nicolas, San Clemente, and Santa Barbara, as well as Sutil Islet, which is ca. 650 m offshore from Santa Barbara Island (Fig. 1). Island Night Lizards are much larger than other members of the genus, leading some to claim that they are an example of island gigantism (Carlquist, 1965; Schoenherr et al., 1999; Holmes et al., 2016). Their distinctive morphology and life history also led Savage (1957) to place this species in its own genus, *Klauberina*, though most authors follow Bezy (1972) in retaining Island Night Lizards in *Xantusia*.

Regardless of generic assignment, all authors have recognized the distinctiveness of this
island endemic and the potential for a long history of isolation on the Southern Channel Islands.

Multiple studies have suggested that *X. riversiana* last shared a common ancestor with its mainland relatives in the Miocene. Bezy et al. (1980), based on allozyme analyses, suggested that *X. riversiana* diverged from its mainland congeners approximately 10–15 mya, and subsequent DNA sequencing studies found similar estimates of 13.7 mya and 16 mya (Leavitt et al., 2007; and Noonan et al., 2013, respectively).

61 The unique morphology, island endemism, and lengthy divergence from mainland relatives have motivated multiple researchers to examine variation among the various island 62 63 populations. Nevertheless, a consensus has not emerged regarding the distinctiveness of the 64 different island populations. Early work summarized morphological variation using the concept 65 of subspecies, which here we take to imply some amount of divergence and island-specific 66 evolutionary processes. Based on morphological differences between one specimen from San 67 Clemente Island and three from San Nicolas Island, Smith (1946) proposed recognizing two 68 distinct groups, X. r. riversiana on San Nicolas Island and X. r. reticulata on San Clemente 69 Island. With a much larger sample, Savage (1951) argued that all three islands overlap 70 considerably in morphological characters and should not be considered as separate taxa. Later, 71 this same author recognized two subspecies based on subtle morphological differences and 72 placed Santa Barbara and San Clemente Island lizards together as X. r. reticulata (Savage 1955). 73 Subsequent studies examining morphology, allozymes, and/or clutch size have only referred to 74 night lizards as a monotypic species, even though among-island differences were recovered for 75 multiple types of characters (Goldberg and Bezy, 1974; Bezy et al., 1980). Standard reference 76 works also treated the species as monotypic (Collins et al., 1978, 1982; Collins, 1990; Stebbins, 1985). In their review of the ecology of X. riversiana, Fellers and Drost (1991) listed two 77 78 subspecies. The SSAR Names List then started to include these two subspecies (Collins, 1997)

and continues to do so today (de Queiroz et al., 2017), although other standard references
continue to list the species as monotypic (Stebbins, 2003).

81 We suspected that some of the inconsistent results of previous studies might be due to 82 small sample size, small number of morphological characters, and/or the lack of modern 83 morphometric approaches. Understanding the distinctiveness of these island populations is 84 important not just for taxonomic inference, but for understanding divergent ecological and 85 evolutionary processes on the islands and for guiding conservation management aimed at preserving distinct gene pools. Here, we rigorously evaluate morphological divergence among 86 87 lizards from the three main islands. We include more characters than previous studies increasing 88 our ability to detect novel morphological patterns and possible correlation in traits, and apply 89 modern morphometric techniques. We then use this information to discuss the distinctiveness of 90 the island populations and consider the conservation implications on this island endemic.

91

92 MATERIALS AND METHODS

93 Sampling.— We measured 172 adult X. riversiana museum specimens from Santa Barbara 94 Island (n = 40), San Clemente Island (n = 69), and San Nicolas Island (n = 63), which 95 represented the two subspecies X. r. reticulata (n = 109) and X. r. riversiana (n = 63; Appendix 96 1). Specimens spanned a range of collection years (1911–2014) and localities within each island 97 (Fig. 1; Appendix 1). Although X. riversiana have been reported from Sutil Islet, no museum 98 specimens were available. We defined adults as all individuals larger than the reported minimum 99 size at sexual maturity—females with snout-to-vent length (SVL) > 75 mm and males with SVL 100 > 65 mm (Goldberg and Bezy, 1974). Sex was determined by examination of the gonads. For the 101 two larger islands, San Clemente and San Nicolas, we selected specimens to maximize

102 geographic coverage across each island. Because fewer museum specimens were available for103 Santa Barbara Island, we examined all available adult specimens.

104

105 Characters examined.— We examined nine morphometric characters including (i) snout-to-106 vent length (SVL), distance from the tip of the snout to the anterior edge of the vent; (ii) head 107 length, measured from the gular fold to the tip of the snout; (iii) head width, measured at the jaw 108 articulation; (iv) head depth, measured immediately posterior to the eyes; (v) snout length, 109 measured from the anterior corner of the eye to the posterior edge of the nostril on the right side; 110 (vi) interorbital distance, measured from the posterior edge of each eye; (vii) forelimb length, 111 measured from the elbow to the tip of the fourth digit on the right side; (viii) hind limb length, 112 measured from the knee to the tip of the fourth digit on the right side; (ix) and pectoral width, 113 measured at the mid-point of the insertion points of the forelimbs. A tenth measurement, tail 114 length, could only be measured on a fraction of the specimens so it was left out of most analyses. 115 We chose these characters because they are commonly used in studies of lizards and 116 salamanders (e.g. Savage, 1955; Pauly et al., 2007; Davis and Pauly, 2011). Although previous 117 studies of X. riversiana examined variation in SVL (Savage, 1955; Bezy et al., 1980), the other 118 nine morphometric characters had not previously been examined. All measurements were taken 119 to the nearest 0.01 mm with a digital caliper. We also calculated repeatability for the nine 120 primary morphometric characters by measuring three to five individuals per island three times; 121 repeatability was quantified as 1 minus the mean coefficient of variation for each character 122 measured. Some specimens were damaged to the point where certain measurements could not be 123 taken; missing body measurements (n = 15) were predicted using a multivariate model with the 124 predict function in the R package stats (R ver. 3.2.1; R Core Team; page 60 in Claude, 2008).

125 Additionally, we counted five meristic characters: (i) ventral scales, longitudinal count 126 along the midline from the preanal scales to the gular fold; (ii) gular scales, longitudinal count 127 along the midline from the gular fold to the postmentals; (iii) preanal scales, number of enlarged 128 scales along the midline from vent to ventral scales; (iv) femoral pores, measured on the left 129 side; (v) fourth toe lamellae, measured on the left hind foot. These characters were selected 130 because all were previously examined by Bezy et al. (1980) and three were examined by Savage 131 (1955). We did not examine a sixth meristic character used in Bezy et al. (1980), scales around 132 the midbody, because we found that for many specimens, counts could not be repeated with high 133 confidence. Individuals missing scale count data (n = 10) were excluded from multivariate 134 analyses.

135

136 Data analysis.— Univariate and multivariate analyses were conducted to test for morphological 137 differences among the subspecies and among the three island populations. All body 138 measurements were log10-transformed prior to analysis. To assess differences among the islands 139 and to test for sexual dimorphism in the individual characters, we conducted an ANOVA on 140 log10 transformed SVL and additional ANCOVAs were conducted on body measurements and 141 meristic characters with island and sex as factors and log10 transformed SVL as a covariate. 142 To explicitly test for sexual dimorphism and differences among subspecies and islands, we conducted MANOVAs using the manova function in the R package stats. The initial 143 144 MANOVAs included all individuals, but to also examine variation between the two island 145 populations assigned to X. r. reticulata, a second set of analyses were conducted that excluded 146 San Nicolas Island specimens. Evidence of sexual dimorphism led us to conduct further 147 analyses, including MANOVAs separately on each sex. We also conducted analyses separately

148 for body measurements and for meristic characters. For the MANOVAs, we first used data that 149 included size and shape information, then we compared differences in shape by removing the 150 effect of body size by dividing each measurement by the *i*th root of the product of all *i* 151 measurements taken from each specimen (Claude, 2008). Additionally, Pillai's Trace (V) was 152 calculated from the MANOVAs to estimate effect size of the factors island, subspecies, and sex. 153 To visualize separation in multivariate space among all individuals, we conducted a 154 principal component analysis (PCA) on body measurements that first included size and shape 155 then with size excluded to examine shape alone. A PCA of meristic characters was not 156 conducted. The PCA was conducted using the *dudi.pca* function in the R package *ade4* (Chessel 157 et al., 2004) with all variables scaled to have unit variance, and with individuals downweighted 158 by the inverse of their sample size per island. To specifically test our power to assign specimens 159 to islands, we conducted a linear discriminant analysis (LDA) using the *lda* function in the R 160 package MASS taking into account both size and shape first, then with size excluded to examine 161 shape alone. Males and females were analyzed separately. For each LDA analysis, we calculated 162 the posterior probability of correctly assigning a specimen to its island of origin, using the 163 predict.lda function in R. Then we qualitatively compared these posterior probabilities across 164 islands and sex.

165

166 **RESULTS**

167

Island differences and sexual dimorphism in individual traits. — Repeatability scores were
consistently high for all measurements, and ranged from 98.3% for snout length to 99.7% for
SVL. Summary statistics for the morphological characters are listed in Table 1. All characters

171 were significantly different between the two subspecies except for head width and the number of 172 femoral pores; pectoral width was only marginally significant (Table 2). San Nicolas individuals 173 had a larger body size than Santa Barbara and San Clemente individuals (Table 1, 2). For the 174 meristic characters, San Nicolas Island specimens, despite being larger, had fewer ventral scales, 175 gular scales, preanal scales, and fourth toe lamellae (Table 1, 2).

176 Xantusia riversiana were sexually dimorphic for all morphometric traits except tail 177 length, and in X. r. reticulata, hind limb length was marginally significant while pectoral width 178 did not show a significant difference (Table 1, 2). Females had a larger body size, but larger head 179 measurements did not appear to favor one sex (Table 1). However, males on San Nicolas were 180 larger than females for four of the five head measurements. There were no dramatic sexual 181 dimorphisms for the scale characters, except that males had more preanal scales than females (at 182 least for San Nicolas and San Clemente Islands; this could not be assessed for Santa Barbara 183 Island because few male specimens were available (Table 1, 2).

Some differences were also observed between *X. r. reticulata* on Santa Barbara and San Clemente Islands. Head width and pectoral width were larger in lizards from San Clemente, and they had a slightly shorter snout. Santa Barbara Island lizards also had slightly more ventral scales, gular scales, and fourth toe lamellae than lizards from San Clemente Island.

188

189 *Island differences in the multivariate analyses.*— The MANOVA on the complete dataset 190 recovered significant differences among islands ($P < 2.2 \times 10^{-16}$) and between subspecies (P =191 3.19×10^{-16}) (Table 3). Because many of the morphometric and meristic characters were sexually 192 dimorphic we conducted MANOVAs on males and females separately. When analyzed 193 separately, both the morphometric and meristic datasets revealed significant differences among

islands and between subspecies (Table 3). After the effect of size was removed from the
morphometric data so that we were only examining shape, significant differences among islands
and between subspecies were still recovered (Table 3), indicating that both size (Table 2) and
shape differ among islands and subspecies.

198 Cumulatively, axes I and II of the PCA for log10 body measurements including size and 199 shape explained 89.6% (males) and 87.9% (females) of the variation. Excluding size to examine 200 shape, axes I and II of the PCA for log10 body measurements explained 59.3% (males) and 201 54.1% (females) of the variation. Despite high statistical significance in the MANOVAs, PCA 202 plots of axis I versus axis II for body measures do not show obvious separation based on islands, 203 even when separated by sex (Fig. 2). For the PCAs including size and shape, all nine body 204 measurements load evenly on the first component axis while head depth, interorbital distance, 205 forelimb length, and hind limb length load more heavily on the second axis than the other traits. 206 With size excluded, body measurements load evenly on the first component axis as well except 207 for head width and pectoral width which load heavier on axis two than the other traits. 208 MANOVAs revealed significant effects of island and sex, but visual inspection of PCA 209 plots suggested the effects were subtle and largely driven by San Nicolas specimens. Therefore, 210 we repeated the analysis after excluding San Nicolas Island specimens to focus only on 211 differences between Santa Barbara and San Clemente Island lizards, which make up X. r. 212 reticulata (sensu Savage, 1955). Using all morphometric and meristic characters, the MANOVA

showed a significant difference between the two islands ($P = 8.77 \times 10^{-6}$) and between the two

sexes ($P = 9.99 \times 10^{-7}$). When parsed into body measurements and meristic characters separately,

215 MANOVAs showed only females were significantly different between Santa Barbara and San

216 Clemente Islands (Table 3), though these results were impacted by the low number of available

217 male specimens from Santa Barbara Island. After the effect of size was removed, females 218 continued to show significant differences and males were marginally significantly different between the two islands ($P = 7.96 \times 10^{-5}$ and 0.043, respectively). Pillai's Trace (V), a measure 219 of effect size based on the MANOVA, was calculated to be 0.67 ($P < 2.2 \times 10^{-16}$) and 0.43 (P =220 3.2×10^{-16}) for island and subspecies, respectively, when including samples from San Nicolas. 221 Excluding San Nicolas specimens, V was calculated to be 0.32 ($P = 9.0 \times 10^{-6}$) for the remaining 222 islands. The effect of sex was calculated to be V = 0.38 ($P = 3.9 \times 10^{-13}$) for both islands and 223 subspecies and V = 0.36 ($P = 9.9 \times 10^{-7}$) when San Nicolas specimens were excluded. 224 225 Some individuals (n = 15) had missing data due to broken tails or limbs, and all 226 multivariate analyses presented so far had their missing values predicted. We repeated the above 227 analyses without predicting missing values, by simply excluding such specimens, and none of 228 the conclusions changed.

229

LDA and assignment probability.— The PCAs presented above are blind to island of origin. To
further investigate island differences, we performed linear discriminant analyses (LDA) on the
body measurements with each sex separately first including size and shape and then for shape
alone. These analyses find a shape space that maximally separates specimens based on island of
origin. An LDA of the three islands returns two linear discriminant functions. Taken together,
these two linear discriminant functions show minimal separation among the three islands (Fig.
2).

Posterior probabilities of correct island assignment were similar whether or not we
excluded size, and were similar for the two sexes (Table 4). Lizards from Santa Barbara were
generally more difficult to assign to their correct island, with median posterior probabilities

falling between 0.50 and 0.62 (Table 4). Assignment success was greater for specimens from San
Clemente and San Nicolas Islands for which posterior probabilities of correct assignment fell
between 0.76 and 0.88 (Table 4). In all four linear discriminant analyses, the highest posterior
probability for every individual was to the correct island, even though in some cases these
probabilities were low (Table 4). Thus, specimens were always correctly assigned, but some
specimens were difficult to discriminate based on morphometric features.

246

247 **DISCUSSION**

248 Based on our analyses of nine morphometric and five meristic characters, lizards from the three 249 islands are morphologically different (Table 3). Of particular note is that lizards on San Nicolas 250 Island are larger, have shorter but deeper heads, shorter hind limbs, and also have larger, but 251 fewer scales than the lizards on the other two islands. Specifically, we found that San Nicolas 252 Island lizards had fewer ventral scales, gular scales, preanal scales, and fourth toe lamellae. Bezy 253 et al. (1980) recovered similar results for body size and scale counts, and Savage (1951) found a 254 similar scale count result with lizards from San Nicolas Island having fewer dorsal scale rows, 255 which was the character he used for diagnosing the two subspecies.

256

Taxonomy.— Given these morphological differences, the obvious question is what classification
scheme would best characterize the variation within this Channel Island endemic? Importantly,
in addition to the morphological studies, other studies of clutch size, diet, allozymes, and DNA
sequences all indicate the uniqueness of the San Nicolas Island lizards. On this island, lizards
have a larger clutch size (5.5 young per clutch versus 4.0 for San Clemente and 3.25 for Santa
Barbara; Bezy et al., 1980) and consume much less plant matter than lizards from the other

263 islands (20% for San Nicolas Island vs >50% for San Clemente and Santa Barbara Islands; 264 Brattstrom, 1952; Fellers and Drost, 1991). Further, in their allozyme study, Bezy et al. (1980) 265 found that lizards from San Nicolas Island were the most different from the other two islands. 266 Lastly, Noonan et al. (2013) examined sequence data from multiple nuclear and mitochondrial 267 genes. The focus of their study was on relationships among xantusiid species, so the gene and 268 individual sampling was not specifically designed for examining intraspecific variation. 269 Nevertheless, their study provides some insights because it included individuals from all three 270 islands. Consistent with the earlier allozyme results (Bezy et al., 1980), the single individual 271 from San Nicolas Island was the sister lineage to lizards from the remaining two islands, though 272 this was with weak support. These diverse datasets all indicate the uniqueness of lizards from 273 San Nicolas Island, and add further evidence, in addition to that considered by Savage (1955), 274 for treating the San Nicolas Island lizards as a distinct taxon. 275 Should the lizards from Santa Barbara and San Clemente Islands similarly be recognized

276 as their own distinct taxa? The MANOVAs demonstrate that lizards from these two islands are 277 statistically different morphologically (Table 3), but there is a great deal of overlap. Assigning 278 individuals to an island is challenging (Table 4; Fig. 2, 3). Further, the available allozyme and 279 DNA sequencing studies also demonstrate that lizards from these two islands are quite similar 280 (Bezy et al., 1980; Noonan et al., 2013), and an ongoing genomic study reported that individuals 281 on Santa Barbara and San Clemente Islands are more genetically similar than either is to 282 individuals on San Nicolas Island (Funk and Lovich, unpubl.). Thus, we recommend recognizing 283 the two subspecies as proposed by Savage (1955), with lizards from Santa Barbara and San 284 Clemente Islands treated as X. r. reticulata and lizards from San Nicolas as X. r. riversiana.

285 Another option would be to elevate each of these two taxa, X. r. reticulata and X. r. 286 *riversiana*, to full species. These two taxa show morphological, genetic, and natural history 287 differences, and being on separate islands with no evidence of ongoing gene flow (Funk and 288 Lovich, unpubl.), they could be considered as having separate evolutionary trajectories, sensu the 289 evolutionary species concept. We take the conservative approach of not elevating to full species 290 at this time; our morphological results, in combination with ongoing genomic studies, will 291 provide a more complete picture for further evaluating the taxonomic status of these endemic 292 Channel Island lineages.

293

294 Sexual dimorphism.— Significant sexual dimorphism exists among all island populations across 295 measured morphometric traits (Table 1, 2). Most notably in the current study, X. riversiana 296 females have longer SVL than males. This result is consistent with a previous study that 297 identified sexual size dimorphism in X. riversiana on Santa Barbara (Fellers and Drost, 1991). 298 One hypothesis for this common occurrence is that female size is linked to reproductive success 299 (Cox et al., 2003), especially in viviparous reptiles such as X. riversiana (Qualls and Shine, 300 1998). A second hypothesis is that females may have a faster growth rate than males (Fellers and 301 Drost, 1991). Additionally, it was suggested that females have a higher survival rate than males 302 perhaps due to male-male combat and achieve larger size over their lifetime (Fellers and Drost, 303 1991). Within Xantusia, X. vigilis was also found to have larger females than males (Zweifel and 304 Lowe, 1966), although X. extorris was found to have larger males than females (Webb, 1965). 305 It should be noted that more females than males were examined from all islands, and 306 especially from Santa Barbara (2.3 times more), due to specimen availability. This collection

bias may reflect real sex ratio biases or sex differences in activity leading to females being
captured more frequently (Fellers and Drost, 1991).

309

310 *Morphology, substrate, and diet.*— San Nicolas Island largely consists of sandstone whereas 311 Santa Barbara and San Clemente Islands are composed mainly of volcanic rocks. These 312 geological differences likely result in numerous habitat differences that could relate to the 313 observed morphological divergence of X. r. riversiana and X. r. reticulata. One likely difference 314 is in available food sources. Previous studies have found that plant matter is consumed much 315 more frequently by X. r. reticulata than by X. r. riversiana (Brattstrom, 1952; Fellers and Drost, 316 1991). This result is consistent with two earlier studies that demonstrated high plant matter 317 consumption for San Clemente Island lizards (Knowlton, 1949; Schwenkmeyer, 1949). 318 Differences in plant communities and/or plant consumption perhaps lead to the significant 319 morphological differences among islands shown in this study. Of particular note is that X. r. 320 *reticulata* have relatively longer heads; consumption of large amounts of plant matter has 321 previously been related to the rapid evolution of a longer and wider head morphology in another 322 island-inhabiting lizard, the Italian Wall Lizard, following introduction to a new island (Herrel et 323 al., 2008). Identifying the causes of morphological divergence between males and females, as 324 well as the differences among islands, await future data detailing life history characteristics, including diet. Unfortunately, the data do not currently exist for rigorous testing of hypotheses of 325 326 morphological divergence.

Another morphological difference potentially related to habitat differences among the
islands is in scale counts. In reptiles, water balance is closely linked to scale number.

329 Evaporative water loss occurs through the skin of reptiles. Larger scales tend to be overlapping

330 and generally reduce the amount of exposed skin. Thus, fewer, but larger, scales tend to be 331 favored in arid conditions (Soulé, 1966; Calsbeek et al., 2006, and references therein). For Island 332 Night Lizards, San Nicolas Island lizards have the fewest but largest scales based on counts of 333 ventral, gular, and preanal scales, and fourth toe lamellae (Table 1, 2). For X. r. reticulata, lizards 334 from San Clemente Island have fewer scales than those from Santa Barbara based on counts of 335 ventral scales, gular scales, and fourth toe lamellae (Table 1, 2). Most studies examining 336 relationships between scale counts and aridity of habitat, however, have focused on basking 337 species; Island Night Lizards, although diurnal do not engage in basking activity (Fellers and 338 Drost, 1991). They also spend much of their time in dense vegetation making island-wide 339 measurements of precipitation and aridity less relevant than measurements directly from the 340 microclimates used by the lizards. Thus, future work is needed to understand variation in aridity 341 across the microclimates occupied by Island Night Lizards and whether this is correlated with the 342 observed differences in scale counts.

343

Conservation Implications.— Inasmuch as subspecies is a concept that implies distinctiveness of populations, we recommend recognizing two subspecies of Island Night Lizards. Further, given that all three island populations of night lizards are morphologically distinctive, they should be managed as separate Evolutionarily Significant Units (ESUs). Our findings add to the growing list of endemic Channel Island species that show significant among-island variation, including having multiple island endemic subspecies as also occurs for the Channel Island Fox (Funk et al., 2016).

351 Conservation and management strategies that potentially affect *X. riversiana* should 352 recognize the differentiation among these island populations. Although *X. riversiana* was

353	delisted from the US Federal List of Endangered and Threatened Wildlife in 2014 (USFWS,
354	2014), the species still has a restricted range and confronts modern threats including introduced
355	species, sea level change, and the loss of suitable habitat due to impacts from now-removed,
356	introduced herbivores (Holmes et al., 2016; O'Donnell et al., 2018). Island Night Lizards are
357	especially numerous on San Clemente Island where estimates suggest there may be 21 million
358	individuals (USFWS, 2014; W. Mautz, pers. comm.), but the estimated population size of X. r.
359	reticulata on Santa Barbara Island is much smaller at only 17,600 individuals (Fellers and Drost,
360	1991). Similarly, although a larger island, San Nicolas is home to an estimated 28,500 X. r.
361	riversiana (O'Donnell et al., 2018). Thus, conservation management should be especially
362	directed to the ESUs on Santa Barbara and San Nicolas Islands.
363	One especially worrisome threat is the potential to move <i>X. riversiana</i> among the islands,
364	or to move potential competitors or predators to the islands. This could happen with the
365	movement of goods and people to the islands, or among the islands. This threat has already been
366	realized on San Nicolas Island, where the Southern Alligator Lizard, Elgaria multicarinata, and
367	Side-blotched Lizard, Uta stansburiana, were both introduced in the recent past, likely in the
368	1960s due to military activities on the island (Banta and Wilson, 1976; Fellers et al., 2008; Bezy
369	et al., 1980). San Nicolas and San Clemente Islands receive heavy US Navy activity making
370	these two islands of greater concern for potential between-island transport of X. riversiana.
371	Island biosecurity efforts should recognize the importance of preserving the unique among-island
372	diversity within X. riversiana.

373 ACKNOWLEDGMENTS

374 For the loan of specimens, we thank B. Hollingsworth at the San Diego Natural History 375 Museum and J. Vindum and D. Blackburn at the California Academy of Sciences. N. Camacho 376 assisted with specimen care at the Natural History Museum of Los Angeles County. R. Lovich 377 and C. Funk helped secure permission for fieldwork on San Clemente Island, and R. Lovich, R. 378 Powell, and L. Jones assisted with fieldwork on San Clemente Island. C. Funk and J. Robertson 379 have been especially influential in discussions of the Channel Islands herpetofauna, and R. Bezy 380 kindly provided historical information on the taxonomic history of Island Night Lizards. We thank B. MacDonald at the Spatial Sciences Institute of the University of Southern California for 381 382 helping create the specimen map. For funding of NEA, we thank the Offield Family Foundation. 383 This work was conducted as part of the University of Southern California's BISC499 course on 384 museum research co-organized by M. Dean and S. Nuzhdin.

385 LITERATURE CITED

386	Agenbroad, L. D. 2009. Mammuthus exilis from the California Channel Islands: Height, mass,
387	and geologic age, p. 15–19. In: Proceedings of the 7th California Islands Symposium. C. C.
388	Damiani and D. K. Garcelon, (ed.). Institute for Wildlife Studies, Arcata, California.
389	Banta, B. H., and R. L. Wilson. 1976. On the occurrence of Gerrhonotus multicarinatus on San
390	Nicolas Island, Ventura County, California. Bulletin of the Maryland Herpetological
391	Society 12:99–100.
392	Bezy, R. L. 1972. Karyotypic variation and evolution of the lizards in the family Xantusiidae.
393	Contributions in Science 227:1–31.
394	Bezy, R. L., G. C. Gorman, G. A. Adest, and Y. J. Kim. 1980. Divergence in the Island Night
395	Lizard Xantusia riversiana (Sauria: Xantusiidae), p. 565–583. In: The California Islands:
396	Proceedings of a Multidisciplinary Symposium. D. M. Power (ed.). Haagen Printing, Santa
397	Barbara, California.
398	Brattstrom, B. H. 1952. The food of the night lizards, genus Xantusia. Copeia 1952:168–172.
399	Calsbeek, R., J. H. Knouft, and T. B. Smith. 2006. Variation in scale numbers is consistent
400	with ecologically based natural selection acting within and between lizard species.
401	Evolutionary Ecology 20:377–394.
402	Carlquist, S. 1965. Island Life: A Natural History of the Islands of the World. Natural History
403	Press. Garden City, NY.

404	Chessel, D., A. B. Dufour, J. Thioulouse	2004	. The ade4 package	– I: One-table metho	ods. R
405	News 4:5–10.				

406 Claude, J. 2008. Morphometrics in R. Springer, New York, NY.

- 407 Collins, J. T., J. E. Huheey, J. L. Knight, E. M. Rundquist, and H. M. Smith. 1978. Standard
- 408 Common and Current Scientific Names for North American Amphibians and Reptiles.
- 409 SSAR Herpetological Circular 7:1–36.
- 410 Collins, J. T., R. Conant, J. E. Huheey, J. L. Knight, and H. M. Smith. 1982. Standard
- 411 Common and Current Scientific Names for North American Amphibians and Reptiles, 2nd
- 412 Edition. SSAR Herpetological Circular 12:1–28.
- 413 **Collins, J. T.** 1990. Standard Common and Current Scientific Names for North American

414 Amphibians and Reptiles, 3rd Edition. SSAR Herpetological Circular 19:1–41.

415 Collins, J. T. 1997. Standard Common and Current Scientific Names for North American

416 Amphibians and Reptiles, 4th Edition. SSAR Herpetological Circular 25:1–40.

- 417 Cox, R. M., S. L. Skelly, H. B. John-Alder. 2003. A comparative test of adaptive hypotheses
 418 for sexual size dimorphism in lizards. Evolution 57:1653–1669.
- 419 Davis, D. R., and G. B. Pauly. 2011. Morphological variation among populations of the
- 420 Western Slimy Salamander on the Edwards Plateau of Central Texas. Copeia 2011:103–

421 112.

422	de Queiroz, K., T. W. Reeder, and A. D. Leaché. 2017. Squamata (in part) – Lizards. Pp. 38–
423	58 in B. I. Crother (ed.), Scientific and Standard English Names of Amphibians and
424	Reptiles of North America North of Mexico, With Comments Regarding Confidence in Our
425	Understanding. SSAR Herpetological Circular 43.
426	Eggert, L. S., N. I. Mundy, and D.S. Woodruff. 2004. Population structure of loggerhead
427	shrikes in the California Channel Islands. Molecular Ecology 13:2121-33.
428	Fellers, G. M., and C. A. Drost. 1991. Ecology of the Island Night Lizard, Xanusia riversiana,
429	on Santa Barbara Island, California. Herpetological Monographs 5:28–78.
430	Fellers, G.M., C.A. Drost, and T. Murphey. 2008. Status of the Island Night Lizard and two
431	non-native lizards on Outlying Landing Field San Nicolas Island, California. U.S.
432	Geological Survey Open-File Report 2008-1371, 22 p.
433	Floyd, C. H., D. H. Van Vuren, K. R. Crooks, K. L Jones, D. K. Garcelon, N. M. Belfiore
434	B. May. 2011. Genetic differentiation of island spotted skunks, <i>Spilogale gracilis amphiala</i> .
435	Journal of Mammalogy, 92:148–158.
436	Funk, W. C., R. E. Lovich, P. A. Hohenlohe, C. A. Hofman, S. A Morrison, T. S. Sillett, C.
437	K. Ghalambor, J. E. Maldonado, T. C. Rick, M. D. Day, N. R. Polato, S. W.
438	Fitzpatrick, T. J. Coonan, K. R. Crooks, A. Dillon, D. K. Garcelon, J. L. King, C. L.
439	Boser, N. Gould, and W. F. Andelt. 2016. Adaptive divergence despite strong genetic
440	drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in
441	the island fox (Urocyon littoralis). Molecular Ecology 25:2176–2194.

442	Goldberg, S. R., and R. L. Bezy. 1974. Reproduction in the Island Night Lizard, Xantusia
443	riversiana. Herpetologica 30:350-360.

444 Herrel, A., K. Huyghe, B. Vanhooydonck, T. Backeljau, K. Breugelmans, I. Grbac, R. Van

- 445 **Damme, and D. J. Irschick.** 2008. Rapid large-scale evolutionary divergence in
- 446 morphology and performance associated with exploitation of a different dietary resource.
- 447 Proceedings of the National Academy of Sciences 105:4792–4795.

448 Holmes, I. A., W. J. Mautz, and A. R. Davis Rabosky. 2016. Historical environment is

- 449 reflected in modern population genetics and biogeography of an island endemic lizard
- 450 (*Xantusia riversiana reticulata*). PLoS ONE 11(11): e0163738.

451 Johnson, N. K. 1972. Origin and differentiation of the avifauna of the Channel Islands,

- 452 California. The Condor 74:295–315
- 453 Knowlton, G. F. 1949. Food of the Island Night Lizard. Herpetologica 5:45–46.

454 Leavitt, D. H., R. L. Bezy, K. A. Crandall, and J. W. Sites, Jr. 2007. Multi-locus DNA

- 455 sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in
- 456 the Desert Night Lizard *Xantusia vigilis* species complex (Squamata: Xantusiidae).
- 457 Molecular Ecology 16:4455–4481.

458 Noonan, B. P., J. B. Pramuk, R. L. Bezy, E. A. Sinclair, K. de Queiroz, and J. W. Sites, Jr.

- 459 2013. Phylogenetic relationships within the lizard clade Xantusiidae: using trees and
- 460 divergence times to address evolutionary questions at multiple levels. Molecular
- 461 Phylogenetics and Evolution 69:109–122.

462	O'Donnell, R. P., C. A. Drost, G. M. Fellers, B. A. Crabb, K. E. Mock. 2018. Rare long-
463	distance dispersal of the Island Night Lizard, Xantusia riversiana, maintains high diversity
464	in a fragmented environment. Conservation Genetics https://doi.org/10.1007/s10592-018-
465	1055-x

466	Pauly, G. B., O. Piskurek, and H. B. Shaffer. 2007. Phylogeographic concordance in the
467	southeastern United States: The Flatwoods Salamander, Ambystoma cingulatum, as a test
468	case. Molecular Ecology 16:415–429.

469 Pergams, O. R. W., and M. V. Ashley. 1999. Rapid morphological change in Channel Island
470 deer mice. Evolution 53:1573–1581.

- 471 Pergams, O. R. W., R. C. Lacy, and M. V. Ashley. 2000. Conservation and management of
 472 Ancapa Island deer mice. Conservation Biology 14:819–832.
- 473 Qualls, F. J., and R. Shine. 1998. Geographic variation in lizard phenotypes: importance of the
 474 incubation environment. Biological Journal of the Linnean Society 64:477–491.
- 475 **R Core Team.** 2015. R: A language and environment for statistical computing. R Foundation for

476 Statistical Computing, Vienna, Austria. http://www.R-project.org/

477 Savage, J. M. 1951. Studies on the lizard family Xantusiidae, II: Geographical variation in

- 478 *Xantusia riversiana* from the Channel Islands of California. Journal of the Washington
- 479 Academy of Sciences 41:357–360.
- 480 Savage, J. M. 1955. The Lizard Family Xantusiidae: An Evolutionary Study. Doctoral

481 Dissertation, Stanford University.

482 Savage, J. M. 1957. Studies on the lizard family Xantusiidae, III: A new genus for *Xantusia*483 *riversiana* Cope, 1883. Zoologica 42:83–86.

484 Schoenherr, A. A., C. R. Feldmeth, and M. J. Emerson. 1999. Natural History of the Islands

485 of California. University of California Press, Berkeley, CA.

486 Schwenkmeyer, R. C. 1949. Food habits of the Island Night Lizard, *Xantusia riversiana*

- *reticulata,* from San Clemente Island. Natural History Miscellanea, Chicago Academy of
 Sciences 38:1–3.
- 489 Smith, H. M. 1946. A subspecies of the lizard *Xantusia riversiana*. Journal of the Washington
 490 Academy of Sciences 36:392–393.
- 491 Soulé, M. 1966. Trends in the insular radiation of a lizard. American Naturalist 100:47–64.

492 **Stebbins, R. C.** 1985. A Field Guide to Western Reptiles and Amphibians, 2nd Edition.

- 493 Houghton Mifflin, Boston.
- 494 Stebbins, R. C. 2003. A Field Guide to Western Reptiles and Amphibians, 3rd Edition.
 495 Houghton Mifflin, Boston.
- 496 United States Fish and Wildlife Service (USFWS), Interior. 2014. Endangered and threatened
- 497 wildlife and plants; removing the Island Night Lizard from the Federal List of Endangered
- 498 and Threatened Wildlife. Federal Register 79:18190–18210.
- Wayne, R. K., S. B. George, D. Gilbert, P. W. Collins, and D. Steven. 1991. A morphologic
 and genetic study of the Island Fox, *Urocyon littoralis*. Evolution 45:1849–1868.

- Webb, R. G. 1965. The new night lizard (Genus *Xantusia*) from Durango, Mexico. American
 Museum Novitates 2231:1–16.
- 503 Zweifel, R. G., and C. H. Lowe. 1966. The ecology of a population of *Xantusia vigilis* the
- 504 Desert Night Lizard. American Museum Novitates 2247:1–57.

505 Figure Legends

506	Fig. 1. — Map of the Southern Channel Islands with location of the Channel Islands shown in
507	the inset map of the United States. Sample collection sites are indicated by square gray markers.
508	

- 509 Fig. 2. Plot of principle component axis 1 versus principle component axis 2 from log₁₀ body
- 510 measurements PCA for males and females including size (A, B) and corrected for size to

511 examine shape (C, D). Specimens indicated with letters as follows: B = Santa Barbara, C = San

- 512 Clemente, and N = San Nicolas.
- 513
- 514 Fig. 3. Plot of linear discriminant axis 1 versus linear discriminant axis 2 from log_{10} body

515 measurements LDA for males and females including size (A, B) and corrected for size to

516 examine shape (C, D). Specimens indicated with letters as follows: B = Santa Barbara, C = San

517 Clemente, and N = San Nicolas.

518 Appendix 1. Sample details for specimens used. Samples were provided by the California

519 Academy of Sciences (CAS), the Natural History Museum of Los Angeles County (LACM), and

520 the San Diego Natural History Museum (SDSNH). Specimens with latitudes and longitudes not

521 reported are indicated with "NR".

Sample	Specimen	Subpecies	Island	Latitude	Longitude	Sex	Year Collected
1	LACM 3330	reticulata	San Clemente	32.82529	118.39041	F	1939
2	LACM 3368	reticulata	San Clemente	32.82529	118.39041	М	1939
3	LACM 3371	reticulata	San Clemente	32.82529	118.39041	F	1939
4	LACM 3389	reticulata	San Clemente	32.82529	118.39041	М	1939
5	LACM 3390	reticulata	San Clemente	32.82529	118.39041	М	1939
6	LACM 3401	reticulata	San Clemente	32.82529	118.39041	F	1939
7	LACM 3408	reticulata	San Clemente	32.86165	118.47454	F	1941
8	LACM 3415	reticulata	San Clemente	32.90913	118.50242	F	1941
9	LACM 3419	reticulata	San Clemente	32.87532	118.46787	F	1941
10	LACM 3420	reticulata	San Clemente	32.87532	118.46787	М	1941
11	LACM 108511	reticulata	San Clemente	33.02304	118.58582	М	1972
12	LACM 108512	reticulata	San Clemente	33.02304	118.58582	М	1972
13	LACM 108513	reticulata	San Clemente	33.02304	118.58582	М	1972
14	LACM 108514	reticulata	San Clemente	33.02304	118.58582	М	1972
15	LACM 108516	reticulata	San Clemente	33.02304	118.58582	М	1972
16	LACM 108517	reticulata	San Clemente	33.02304	118.58582	М	1972
17	LACM 108518	reticulata	San Clemente	33.02304	118.58582	F	1972
18	LACM 108519	reticulata	San Clemente	33.02304	118.58582	F	1972
19	LACM 108520	reticulata	San Clemente	33.02304	118.58582	F	1972
20	LACM 108521	reticulata	San Clemente	33.02304	118.58582	F	1972
21	LACM 108523	reticulata	San Clemente	33.02304	118.58582	F	1972

22	LACM 108524	reticulata	San Clemente	33.02304	118.58582	F	1972
23	LACM 108532	reticulata	San Clemente	33.02304	118.58582	М	1972
24	LACM 108534	reticulata	San Clemente	33.02304	118.58582	М	1972
25	LACM 108536	reticulata	San Clemente	33.02304	118.58582	F	1972
26	LACM 108537	reticulata	San Clemente	33.02304	118.58582	М	1972
27	LACM 108538	reticulata	San Clemente	33.02304	118.58582	М	1972
28	LACM 108542	reticulata	San Clemente	33.02304	118.58582	М	1972
29	LACM 108544	reticulata	San Clemente	33.02304	118.58582	F	1972
30	LACM 108546	reticulata	San Clemente	33.02304	118.58582	F	1972
31	LACM 108548	reticulata	San Clemente	33.02304	118.58582	F	1972
32	LACM 108551	reticulata	San Clemente	33.02304	118.58582	F	1972
33	LACM 108554	reticulata	San Clemente	33.02304	118.58582	М	1972
34	LACM 108555	reticulata	San Clemente	33.02304	118.58582	М	1972
35	LACM 108557	reticulata	San Clemente	33.02304	118.58582	F	1972
36	LACM 108621	reticulata	San Clemente	33.01600	118.59685	М	1972
37	LACM 108622	reticulata	San Clemente	33.01600	118.59685	М	1972
38	LACM 108623	reticulata	San Clemente	33.01600	118.59685	М	1972
39	LACM 108624	reticulata	San Clemente	33.01600	118.59685	М	1972
40	LACM 108625	reticulata	San Clemente	33.01600	118.59685	М	1972
41	LACM 108628	reticulata	San Clemente	33.01600	118.59685	М	1972
42	LACM 108629	reticulata	San Clemente	33.01600	118.59685	М	1972
43	LACM 108630	reticulata	San Clemente	33.01600	118.59685	F	1972
44	LACM 108631	reticulata	San Clemente	33.01600	118.59685	F	1972
45	LACM 108632	reticulata	San Clemente	33.01600	118.59685	F	1972
46	LACM 108635	reticulata	San Clemente	33.01600	118.59685	F	1972
47	LACM 108637	reticulata	San Clemente	33.01600	118.59685	F	1972
48	LACM 108638	reticulata	San Clemente	33.01600	118.59685	F	1972

49	LACM 108640	reticulata	San Clemente	33.01600	118.59685	F	1972
50	LACM 108641	reticulata	San Clemente	33.01600	118.59685	F	1972
51	LACM 108643	reticulata	San Clemente	33.01600	118.59685	F	1972
52	LACM 108644	reticulata	San Clemente	33.01600	118.59685	F	1972
53	LACM 108645	reticulata	San Clemente	33.01600	118.59685	F	1972
54	LACM 108646	reticulata	San Clemente	33.01600	118.59685	М	1972
55	LACM 108650	reticulata	San Clemente	33.02285	118.58589	М	1972
56	LACM 108651	reticulata	San Clemente	33.02285	118.58589	М	1972
57	LACM 108665	reticulata	San Clemente	33.02472	118.59718	F	1972
58	LACM 108668	reticulata	San Clemente	33.02285	118.58589	F	1972
59	LACM 108671	reticulata	San Clemente	33.02285	118.58589	М	1972
60	LACM 108672	reticulata	San Clemente	33.02285	118.58589	М	1972
61	LACM 185320	reticulata	San Clemente	32.99580	118.55195	F	2014
62	LACM 185322	reticulata	San Clemente	32.89626	118.46345	М	2014
63	LACM 185323	reticulata	San Clemente	32.89677	118.46358	F	2014
64	LACM 185324	reticulata	San Clemente	32.89617	118.47187	F	2014
65	LACM 185325	reticulata	San Clemente	33.01844	118.59362	F	2014
66	LACM 185326	reticulata	San Clemente	33.01844	118.59362	F	2014
67	LACM 185329	reticulata	San Clemente	32.84679	118.39451	F	2014
68	LACM 185330	reticulata	San Clemente	32.84810	118.39650	М	2014
69	LACM 185331	reticulata	San Clemente	32.84810	118.39650	М	2014
70	CAS-SU 8849	reticulata	Santa Barbara	33.47556	119.03528	F	1931
71	CAS-SU 10116	reticulata	Santa Barbara	33.47556	119.03528	F	1939
72	CAS 35571	reticulata	Santa Barbara	33.47556	119.03528	М	1912
73	CAS 35574	reticulata	Santa Barbara	33.47556	119.03528	F	1912
74	CAS 35578	reticulata	Santa Barbara	33.47556	119.03528	F	1912
75	CAS 35580	reticulata	Santa Barbara	33.47556	119.03528	F	1912

76	CAS 35581	reticulata	Santa Barbara	33.47556	119.03528	F	1912
77	CAS 35583	reticulata	Santa Barbara	33.47556	119.03528	F	1912
78	CAS 35584	reticulata	Santa Barbara	33.47556	119.03528	М	1912
79	CAS 35585	reticulata	Santa Barbara	33.47556	119.03528	М	1912
80	CAS 35586	reticulata	Santa Barbara	33.47556	119.03528	М	1912
81	CAS 35587	reticulata	Santa Barbara	33.47556	119.03528	М	1912
82	LACM 3278	reticulata	Santa Barbara	33.47646	119.03430	F	1939
83	LACM 3281	reticulata	Santa Barbara	33.47646	119.03430	F	1939
84	LACM 3282	reticulata	Santa Barbara	33.47646	119.03430	F	1939
85	LACM 3283	reticulata	Santa Barbara	33.47646	119.03430	М	1939
86	LACM 3284	reticulata	Santa Barbara	33.47646	119.03430	F	1919
87	LACM 3285	reticulata	Santa Barbara	33.47646	119.03430	М	1919
88	LACM 3288	reticulata	Santa Barbara	33.47646	119.03430	F	1938
89	LACM 108822	reticulata	Santa Barbara	33.46752	119.03827	М	1972
90	LACM 108823	reticulata	Santa Barbara	33.46752	119.03827	F	1972
91	LACM 108824	reticulata	Santa Barbara	33.46752	119.03827	F	1972
92	LACM 108825	reticulata	Santa Barbara	33.46752	119.03827	F	1972
93	LACM 108826	reticulata	Santa Barbara	33.46752	119.03827	F	1972
94	LACM 108827	reticulata	Santa Barbara	33.46752	119.03827	F	1972
95	LACM 108828	reticulata	Santa Barbara	33.46752	119.03827	F	1972
96	LACM 108829	reticulata	Santa Barbara	33.46752	119.03827	F	1972
97	LACM 108830	reticulata	Santa Barbara	33.46752	119.03827	F	1972
98	LACM 108831	reticulata	Santa Barbara	33.46752	119.03827	F	1972
99	LACM 108832	reticulata	Santa Barbara	33.46752	119.03827	F	1972
100	LACM 108836	reticulata	Santa Barbara	33.46559	119.03552	М	1972
101	LACM 108837	reticulata	Santa Barbara	33.46559	119.03552	F	1972
102	LACM 125465	reticulata	Santa Barbara	33.46624	119.03400	F	1975

103	LACM 125466	reticulata	Santa Barbara	33.46624	119.03400	F	1975
104	LACM 125467	reticulata	Santa Barbara	33.46624	119.03400	F	1975
105	LACM 182905	reticulata	Santa Barbara	NR	NR	М	1974
106	SDSNH 31983	reticulata	Santa Barbara	33.47777	119.03439	М	1939
107	SDSNH 31984	reticulata	Santa Barbara	33.47777	119.03439	М	1939
108	SDSNH 31985	reticulata	Santa Barbara	33.47777	119.03439	F	1939
109	SDSNH 44469	reticulata	Santa Barbara	NR	NR	F	1963
110	CAS 30758	riversiana	San Nicolas	33.25000	119.50833	М	1911
111	CAS 30761	riversiana	San Nicolas	33.25000	119.50833	М	1911
112	CAS 30764	riversiana	San Nicolas	33.25000	119.50833	М	1911
113	CAS 30765	riversiana	San Nicolas	33.25000	119.50833	М	1911
114	CAS 30767	riversiana	San Nicolas	33.25000	119.50833	М	1911
115	CAS 30768	riversiana	San Nicolas	33.25000	119.50833	М	1911
116	CAS 30770	riversiana	San Nicolas	33.25000	119.50833	М	1911
117	CAS 30771	riversiana	San Nicolas	33.25000	119.50833	М	1911
118	CAS 30779	riversiana	San Nicolas	33.25000	119.50833	М	1911
119	CAS 30780	riversiana	San Nicolas	33.25000	119.50833	М	1911
120	CAS 30784	riversiana	San Nicolas	33.25000	119.50833	М	1911
121	CAS 30831	riversiana	San Nicolas	33.25000	119.50833	М	1911
122	CAS 35793	riversiana	San Nicolas	NR	NR	М	1912
123	LACM 14487	riversiana	San Nicolas	33.2502	119.498	М	1958
124	LACM 108770	riversiana	San Nicolas	33.2323	119.461	F	1972
125	LACM 108771	riversiana	San Nicolas	33.2323	119.461	F	1972
126	LACM 108772	riversiana	San Nicolas	33.2323	119.461	F	1972
127	LACM 108773	riversiana	San Nicolas	33.2323	119.461	F	1972
128	LACM 108774	riversiana	San Nicolas	33.2323	119.461	М	1972
129	LACM 108777	riversiana	San Nicolas	33.2323	119.461	F	1972

130	LACM 108779	riversiana	San Nicolas	33.2323	119.461	F	1972
131	LACM 108780	riversiana	San Nicolas	33.2323	119.461	F	1972
132	LACM 108782	riversiana	San Nicolas	33.2323	119.461	F	1972
133	LACM 108783	riversiana	San Nicolas	33.2323	119.461	F	1972
134	LACM 108785	riversiana	San Nicolas	33.2323	119.461	F	1972
135	LACM 108786	riversiana	San Nicolas	33.2323	119.461	F	1972
136	LACM 108787	riversiana	San Nicolas	33.2323	119.461	F	1972
137	LACM 108788	riversiana	San Nicolas	33.2323	119.461	F	1972
138	LACM 108791	riversiana	San Nicolas	33.2323	119.461	F	1972
139	LACM 108793	riversiana	San Nicolas	33.2323	119.461	F	1972
140	LACM 108794	riversiana	San Nicolas	33.2323	119.461	F	1972
141	LACM 108795	riversiana	San Nicolas	33.2323	119.461	М	1972
142	LACM 108796	riversiana	San Nicolas	33.2323	119.461	М	1972
143	LACM 108797	riversiana	San Nicolas	33.2323	119.461	М	1972
144	LACM 108798	riversiana	San Nicolas	33.2323	119.461	М	1972
145	LACM 108799	riversiana	San Nicolas	33.2323	119.461	М	1972
146	LACM 108802	riversiana	San Nicolas	33.2323	119.461	М	1972
147	LACM 108805	riversiana	San Nicolas	33.2267	119.462	М	1972
148	LACM 108806	riversiana	San Nicolas	33.2267	119.462	М	1972
149	LACM 121670	riversiana	San Nicolas	33.2502	119.498	М	1975
150	LACM 121671	riversiana	San Nicolas	33.2502	119.498	F	1975
151	LACM 122572	riversiana	San Nicolas	33.2502	119.498	М	1975
152	LACM 125505	riversiana	San Nicolas	33.2502	119.498	М	1975
153	LACM 125511	riversiana	San Nicolas	33.2502	119.498	F	1975
154	LACM 125512	riversiana	San Nicolas	33.223	119.472	М	1975
155	LACM 125514	riversiana	San Nicolas	33.223	119.472	М	1975
156	LACM 125516	riversiana	San Nicolas	33.223	119.472	F	1975

157	LACM 126017	riversiana	San Nicolas	33.2502	119.498	F	
158	LACM 126232	riversiana	San Nicolas	33.223	119.472	F	1975
159	LACM 126996	riversiana	San Nicolas	33.223	119.472	М	
160	SDSNH 15487	riversiana	San Nicolas	33.2502	119.498	М	1930
161	SDSNH 15488	riversiana	San Nicolas	33.2502	119.498	F	1930
162	SDSNH 15489	riversiana	San Nicolas	33.2502	119.498	F	1930
163	SDSNH 15490	riversiana	San Nicolas	33.2502	119.498	F	1930
164	SDSNH 15491	riversiana	San Nicolas	33.2502	119.498	F	1930
165	SDSNH 15492	riversiana	San Nicolas	33.2502	119.498	F	1930
166	SDSNH 15494	riversiana	San Nicolas	33.2502	119.498	F	1930
167	SDSNH 15495	riversiana	San Nicolas	33.2502	119.498	F	1930
168	SDSNH 17213	riversiana	San Nicolas	33.2502	119.498	F	1938
169	SDSNH 17215	riversiana	San Nicolas	33.2502	119.498	F	1938
170	SDSNH 36334	riversiana	San Nicolas	33.2502	119.498	F	1945
171	SDSNH 36671	riversiana	San Nicolas	33.2502	119.498	F	1945
172	SDSNH 41615	riversiana	San Nicolas	33.2502	119.498	М	1949

522

Table 1. Mean \pm 1 SD for 15 morphological traits for males and females for each island. For each trait, we list the raw measurements (mm) \pm 1 SD with the ranges in parentheses. For the morphometric characters, we also list the median residuals \pm 1 SD from regressions of log10 trait values on log10 SVL in square brackets.

	Santa Barbara (X. r. reticulata)		San Clemente (X. r. r	reticulata)	San Nicolas (X. r. r.	iversiana)
	F (n = 28)	M (n = 12)	F (n = 37)	M (n = 32)	F (n = 32)	M (n = 31)
SVL	85.17 ± 6.57	81.78 ± 6.49	85.97 ± 5.16	82.63 ± 4.73	91.08 ± 7.69	87.37 ± 7.07
	(75.65 – 101.06)	(75.88 – 97.77)	(78.11 - 97.93)	(71.69 – 91.65)	(75.17 – 105.02)	(75.52 – 106.29)
Head length	29.78 ± 2.87	29.86 ± 2.38	30.25 ± 2.13	29.93 ± 1.84	32.20 ± 2.40	32.31 ± 2.68
	(23.36 – 35.47)	(25.95 – 35.16)	(26.07 – 34.56)	(24.81 – 32.96)	(26.74 – 36.05)	(27.60 - 38.33)
	$[0.004 \pm 0.026]$	$[0.006 \pm 0.023]$	$[0.002 \pm 0.018]$	$[0.002 \pm 0.015]$	$[3.22 x 10^{-4} \pm 0.015]$	$[-4.83 x 10^{-4} \pm 0.013]$
Head width	14.37 ± 0.99	14.49 ± 0.92	14.96 ± 1.05	15.04 ± 1.02	15.62 ± 1.27	15.75 ± 1.63
	(12.87 – 16.51)	(13.32 – 16.43)	(13.43 – 17.12)	(13.18 – 17.00)	(13.07 – 18.73)	(12.26 – 20.31)
	$[2.09 x 10^{\text{-4}} \pm 0.018]$	$[0.002 \pm 0.012]$	$[0.004 \pm 0.018]$	$[-0.001\pm 0.017]$	$[-0.002\pm 0.013]$	$[0.001 \pm 0.017]$
Head depth	9.32 ± 0.72	9.28 ± 0.67	9.48 ± 0.59	9.34 ± 0.51	10.14 ± 0.89	10.32 ± 1.15
	(7.96 – 10.71)	(8.47 – 10.70)	(8.49 – 11.22)	(8.18 – 10.32)	(8.29 – 11.61)	(8.59 – 12.60)
	$[-0.003\pm 0.019]$	$[9.73 x 10^{\text{4}} \pm 0.012]$	$[-0.002\pm 0.014]$	$[3.69 x 10^{\text{-4}} \pm 0.009]$	$[0.004 \pm 0.023]$	$[-1.87 x 10^{\text{-4}} \pm 0.028]$
Snout length	5.91 ± 0.38	5.83 ± 0.38	5.82 ± 0.31	5.81 ± 0.37	6.42 ± 0.47	6.38 ± 0.51
	(5.18 – 6.81)	(5.51 - 6.75)	(5.06 - 6.36)	(5.00 - 6.34)	(5.12 – 7.05)	(5.51 – 7.54)
	$[7.35 x 10^{-4} \pm 0.012]$	$[0.004 \pm 0.013]$	$[3.38 x 10^{\text{-5}} \pm 0.013]$	$[-0.002\pm 0.013]$	$[0.004 \pm 0.014]$	$[4.58 x 10^{\text{4}} \pm 0.016]$
Interorbital	9.00 ± 0.68	9.01 ± 0.48	8.93 ± 0.51	8.94 ± 0.51	9.74 ± 0.88	9.91 ± 1.00
distance	(7.79 – 10.01)	(8.04 – 10.13)	(8.16 – 9.87)	(8.04 – 10.22)	(8.09 – 11.21)	(7.51 – 12.25)
	$[0.009 \pm 0.025]$	$[-0.005 \pm 0.014]$	$[-0.004 \pm 0.016]$	$[0.001 \pm 0.017]$	$[1.12x10^{-4} \pm 0.020]$	$[-0.002 \pm 0.023]$

Forelimb	18.77 ± 0.96	18.44 ± 1.04	18.79 ± 1.16	18.79 ± 0.99	19.85 ± 1.26	19.63 ± 1.21
length	(16.18 - 20.10)	(16.54 - 20.66)	(16.55 - 21.24)	(16.80 - 20.36)	(16.60 - 22.08)	(17.27 - 22.47)
10118011	$[0.001 \pm 0.014]$	$[0.003 \pm 0.012]$	$[0.002 \pm 0.015]$	$[-2.04 \times 10^{-4} \pm 0.015]$	$[2.69 \times 10^{-5} \pm 0.013]$	$[0.002 \pm 0.012]$
Hind limb	24.11 ± 1.29	23.54 ± 1.49	23.97 ± 1.40	23.82 ± 1.32	25.39 ± 1.67	25.57 ± 1.79
length	(21.18 – 26.53)	(20.72 – 26.46)	(20.77 – 26.27)	(20.80 - 25.83)	(21.28 - 30.23)	(21.14 - 29.43)
	$[-0.001\pm 0.018]$	$[7.97 x 10^{\text{-4}} \pm 0.019]$	$[0.002 \pm 0.018]$	$[-3.74 x 10^{-4} \pm 0.013]$	$[-0.004 \pm 0.016]$	$[-0.001 \pm 0.015]$
Pectoral	13.55 ± 1.10	13.13 ± 0.95	13.98 ± 1.02	13.60 ± 1.13	14.80 ± 1.29	14.62 ± 1.32
width	(11.96 – 15.70)	(11.73 – 15.10)	(12.28 – 16.87)	(11.43 – 15.46)	(11.99 – 17.07)	(11.77 – 17.19)
	$[2.33 x 10^{-4} \pm 0.016]$	$[6.16 {\rm x} 10^{\text{-4}} \pm 0.018]$	$[0.003 \pm 0.016]$	$[0.006 \pm 0.021]$	$[-0.002 \pm 0.019]$	$[0.001 \pm 0.018]$
Tail length	72.64 ± 12.19	69.70 ± 7.93	68.59 ± 6.28	70.85 ± 8.18	83.93 ± 8.79	83.09 ± 5.01
	(51.42 – 97.01)	(56.05 – 79.20)	(56.50 - 80.39)	(43.34 - 83.98)	(68.44 – 98.50)	(74.12 - 88.95)
	$[0.006 \pm 0.054]$	$[-0.005\pm 0.047]$	$[-0.001 \pm 0.030]$	$[0.008 \pm 0.052]$	$[-8.3 x 10^{-4} \pm 0.037]$	$[-5.23 x 10^{-4} \pm 0.029]$
Ventral	34.30 ± 1.10	34.00 ± 1.21	33.51 ± 0.93	33.34 ± 0.83	33.06 ± 1.05	32.90 ± 1.19
scales	(32 – 36)	(32 – 36)	(32 – 36)	(31 – 35)	(31 – 35)	(31 – 35)
Gular scales	50.96 ± 3.11	50.91 ± 2.47	48.43 ± 2.24	48.63 ± 2.55	43.63 ± 2.12	45.07 ± 2.51
	(45 – 57)	(45 – 54)	(43 – 52)	(43 – 55)	(38 – 47)	(40 – 51)
Preanal	5.19 ± 0.96	5.08 ± 0.79	4.78 ± 0.82	5.59 ± 1.01	4.28 ± 0.96	4.94 ± 0.78
scales	(3 – 7)	(4 – 6)	(3 – 7)	(4 – 7)	(3 – 6)	(4 – 7)
Femoral	10.57 ± 0.79	10.75 ± 0.45	10.35 ± 0.82	10.81 ± 0.54	10.63 ± 0.71	10.61 ± 0.97
pores	(9 – 12)	(10 – 11)	(8 – 13)	(10 – 12)	(9 – 12)	(9 – 13)
4 th toe	23.38 ± 0.94	22.91 ± 1.04	22.68 ± 1.18	22.31 ± 1.18	21.59 ± 1.41	21.45 ± 1.35
lamellae	(22 – 25)	(22 – 25)	(20 – 25)	(20 – 25)	(19 – 24)	(19 – 25)

Table 2. Results of univariate analyses on all individuals and for *X. r. reticulata* only (which excludes specimens from San Nicolas Island) with island and sex as factors. Body characters were log10 transformed data corrected for size, meristic characters were untransformed but corrected for size. Statistical significance indicated by **bold** values (from ANOVAs for log10 SVL and ANCOVAs for all other traits with log10 SVL as a covariate).

					Р	
		Island	Subspecies	Sex	Sex (Island)	Sex (Subspecies)
SVL	All individuals	1.42 x 10 ⁻⁵	2.41 x 10 ⁻⁶	4.62 x 10 ⁻³	4.13 x 10 ⁻⁴	5.15 x 10 ⁻⁴
	X. r. reticulata	0.74		2.69 x 10 ⁻³	5.95 x 10 ⁻⁴	
Head length	All individuals	6.72 x 10 ⁻³	2.51 x 10 ⁻³	1.67 x 10 ⁻⁶	1.54 x 10 ⁻⁶	9.69 x 10 ⁻⁷
	X. r. reticulata	0.39		6.09 x 10 ⁻⁴	8.11 x 10 ⁻⁴	
Head width	All individuals	7.93 x 10 ⁻⁶	0.147	2.80 x 10 ⁻¹¹	2.14 x 10 ⁻¹¹	3.74 x 10⁻¹²
	X. r. reticulata	6.90 x 10 ⁻⁶		2.31 x 10 ⁻⁶	2.07 x 10 ⁻⁶	
Head depth	All individuals	7.66 x 10 ⁻⁶	1.80 x 10 ⁻⁶	8.61 x 10 ⁻⁷	9.82 x 10 ⁻⁷	6.17 x 10 ⁻⁷
	X. r. reticulata	0.18		5.54 x 10 ⁻⁴	5.42 x 10 ⁻⁴	
Snout length	All individuals	4.43 x 10 ⁻¹⁶	1.45 x 10 ⁻¹⁵	2.55 x 10 ⁻⁷	2.25 x 10 ⁻⁷	2.47 x 10 ⁻⁶
	X. r. reticulata	0.01		4.32 x 10 ⁻⁵	4.15 x 10 ⁻⁵	

Interorbital	All individuals	7.15 x 10 ⁻⁸	1.91 x 10 ⁻⁸	2.98 x 10 ⁻⁷	2.76 x 10 ⁻⁷	7.88 x 10 ⁻⁷
distance	X. r. reticulata	0.29		2.03×10^{-3}	1.93 x 10 ⁻³	
Forelimb length	All individuals	6.41 x 10 ⁻³	2.75 x 10 ⁻³	6.31 x 10 ⁻⁵	5.97 x 10 ⁻⁵	3.96 x 10 ⁻⁵
	X. r. reticulata	0.30		8.81 x 10 ⁻⁴	8.57 x 10 ⁻⁴	
Hind limb length	All individuals	3.97 x 10 ⁻⁵	6.79 x 10 ⁻⁶	8.62 x 10 ⁻⁵	8.65 x 10 ⁻⁵	7.99 x 10 ⁻⁵
	X. r. reticulata	0.79		0.04	0.04	
Pectoral width	All individuals	7.53 x 10 ⁻⁴	0.03	0.01	0.01	5.77 x 10 ⁻³
	X. r. reticulata	2.03 x 10 ⁻³		0.16	0.16	
Tail length	All individuals	1.41 x 10 ⁻⁵	2.66 x 10 ⁻⁶	0.57	0.56	0.67
	X. r. reticulata	0.57		0.67	0.67	
Ventral scales	All individuals	3.94 x 10 ⁻⁷	5.83 x 10 ⁻⁵	0.24	0.24	0.11
	X. r. reticulata	1.42 x 10 ⁻⁴		0.43	0.43	
Gular scales	All individuals	$< 2 \ge 10^{-16}$	$< 2 \times 10^{-16}$	0.02	0.02	0.08
	X. r. reticulata	2.09 x 10 ⁻⁵		0.45	0.45	
Preanal scales	All individuals	0.03	8.56 x 10 ⁻³	8.48 x 10 ⁻⁴	9.77 x 10 ⁻⁴	1.01 x 10 ⁻³
	X. r. reticulata	0.94		0.03	0.03	

Femoral pores	All individuals	0.87	0.71	0.07	0.07	0.08
	X. r. reticulata	0.69		0.01	0.01	
4 th toe lamellae	All individuals	2.25 x 10 ⁻¹¹	2.72 x 10 ⁻¹⁰	0.36	0.36	0.18
	X. r. reticulata	3.56 x 10 ⁻³		0.15	0.14	

Table 3. Multivariate analyses of variance (MANOVAs) for various character sets (all characters, body measurements only, and scale characters only) and groups of specimens (all individuals or *X. r. reticulata* only). Statistical significance indicated by **bold** values. Does not include tail length.

			DF	Residuals	Approx. F	Р
All characters, All		Subspecies	1	169	13.72	3.19x 10 ⁻¹⁶
individuals		Island	2	168	8.96	< 2.2 x 10 ⁻¹⁶
		Sex (subspecies)	1	169	11.33	1.23 x 10 ⁻¹³
		Sex (island)	1	168	10.89	3.93 x 10 ⁻¹³
All characters, X. r.		Island	1	106	5.21	8.77 x 10 ⁻⁶
reticulata only		Sex	1	106	6.06	9.99 x 10⁻⁷
Body measurements, All	Male	Subspecies	1	73	7.09	4.5 x 10 ⁻⁷
individuals		Island	2	72	3.60	1.03 x 10 ⁻⁵
	Female	Subspecies	1	95	6.58	4.16 x 10 ⁻⁷
		Island	2	94	4.97	5.44 x 10 ⁻⁹
Body measurements, X. r.	Male	Island	1	42	1.93	0.080
reticulata only	Female	Island	1	63	3.97	0.001

Body measurements, All	Male	Subspecies	1	73	8.08	6.28 x 10 ⁻⁸
individuals, size removed		Island	2	72	4.27	4.81 x 10 ⁻⁷
	Female	Subspecies	1	95	7.34	6.94 x 10 ⁻⁸
		Island	2	94	5.39	7.16 x 10 ⁻¹⁰
Body measurements,	Male	Island	1	42	2.24	0.043
X. r. reticulata only, size	Female	Island	1	63	4.90	7.96 x 10 ⁻⁵
removed						
Scale counts, All individuals	Male	Subspecies	1	70	10.16	3.02 x 10 ⁻⁷
		Island	2	69	4.79	7.33 x 10 ⁻⁶
	Female	Subspecies	1	88	23.00	1.78 x 10 ⁻¹⁴
		Island	2	87	9.24	4.18 x 10 ⁻¹²
Scale counts, X. r. reticulata	Male	Island	1	40	2.05	0.095
only	Female	Island	1	56	3.90	0.004

DF = degrees of freedom.

Table 4. Posterior probabilities of correct island assignment from four Linear Discriminant Analyses. Values indicate the median and range (in parentheses) of posterior probabilities for correct island assignment.

		X. r. re	eticulata	X. r. riversiana
		Santa Barbara	San Clemente	San Nicolas
Body measurements	Male	0.50 (0.40 - 0.91)	0.80 (0.40 - 0.98)	0.83 (0.46 - 1.00)
	Female	0.62 (0.40 - 0.84)	0.79 (0.45 - 0.98)	0.80 (0.36 - 0.99)
Body	Male	0.53 (0.40 - 0.95)	0.76 (0.39 - 0.99)	0.88 (0.43 - 1.00)
measurements,				
Size removed	Female	0.62 (0.41 - 0.89)	0.80 (0.37 - 0.98)	0.82 (0.47 - 1.00)