Online Supplemental Materials

Section 1: Preliminary Analyses Examining Relationships Between Demographic Variables and Academic Outcomes and Possible Identity Scores

Table S1.

Correlation between child and school level measures

Measure	1	2	3	4	5	6	7	8
1. FRPL (School-								
Level)								
2. FRPL (Child-								
level)	0.188**							
3. Latinx (School-								
Level)	0.072	-0.051						
4. Latinx (Child-								
level)	0.098	-0.009	0.763**					
5. Black (School-								
Level)	0.020	0.070	-0.995**	-0.758**				
6. Black (Child-								
level)	0.002	0.074	-0.824**	-0.898**	0.829**			
7. Female (Student-								
Level)	-0.043	0.045	-0.044	-0.084	0.042	0.110		
8. Student-Teacher								
Ratio	-0.063	-0.018	0.410**	0.268**	-0.378**	-0.300**	0.008	

Note: ** p<.01; FRPL = Free or reduced-price lunch status

	FRPL (School-	FRPL (Child-	Latinx (School-	Latinx (Child-	Female (Student-	Student-Teacher
	Level)	level)	Level)	level)	Level)	Ratio
Core GPA 6th	-0.263**	-0.143*	-0.076	-0.073	0.280**	0.182**
Core GPA 7th	-0.095	-0.111	-0.176**	-0.141*	0.284**	-0.046
Core GPA 8th	-0.224**	-0.155*	-0.050	-0.053	0.299**	0.089
6th-7th GPA						
Change	0.280**	0.050	-0.174**	-0.118	0.015	-0.386**
7th-8th GPA						
Change	-0.165**	-0.029	0.255**	0.183**	-0.075	0.223**
17 O1		1 1 1	1 1 / /			

Table S2.Correlation between child and school level measures and GPA

Note: * p<.01, ** p<.01; FRPL = Free or reduced-price lunch status

Table S3.

Correlation between child and school level measures and possible identity scores

	FRPL (School-	FRPL	Latinx	Latinx	Female	Student-
	Level)	(Child-level)	(School-Level)	(Child-level)	(Student-Level)	Teacher Ratio
Fall School-Focused PI Count	0.111	0.047	-0.024	-0.009	-0.032	0.011
Fall School-Focused PI						
Balance Count	0.058	0.038	0.008	0.037	-0.003	0.022
Fall School-Focused PI with						
Strategies Count	0.081	0.021	-0.031	-0.048	-0.064	0.001
Fall School-Focused PI						
Plausibility	0.064	0.085	-0.031	-0.038	0.029	0.076
Spring School-Focused PI						
Count	0.081	-0.032	0.061	0.120	0.093	-0.082
Spring School-Focused PI						
Balance Count	0.103	0.062	0.048	0.089	0.128*	-0.008
Spring School-Focused PI						
with Strategies Count	0.053	-0.025	-0.019	0.050	0.067	-0.116
Spring School-Focused PI						
Plausibility	0.083	-0.011	0.048	0.099	0.152*	0.006

School-Focused PI Count						
Change	0.059	-0.043	0.068	0.125*	0.102	-0.087
School-Focused PI Balance						
Count Change	0.092	0.054	0.047	0.083	0.133*	-0.014
School-Focused PI with						
Strategies Count Change	0.037	-0.03	-0.013	0.062	0.082	-0.119
School-Focused PI						
Plausibility Change	0.072	-0.029	0.055	0.109	0.149*	-0.009

Note: PI=possible identity

Table S4 Post-hoc sensitivity analyses for Models 1, 3, 4 (Table 5) with n=247: Possible Identity Change Scores Predicting End-of-Year GPA

Model 1 -- change score predicting end-of-8th-grade GPA

School-focused	Model 1		Model 3		Model 4		
Identities							
	Effect Size (f2)	Power	Effect Size (f2)	Power	Effect Size (f2)	Power	
Count	.037	.86	.039	.87	.039	.87	
Balance	.033	.81	.037	.86	.036	.85	
Count + Strategies	.035	.83	.042	.89	.041	.89	
Plausibility	.051	.94	.030	.78	.028	.74	

Note: Model 1 = no controls, Model 3 = controlling for school variables and prior GPA, Model 4 = controlling for school variables, prior GPA, and demographics

Table S5.

Effect of interaction between school focused possible identity scores and school-level context variables on 8th grade core GPA

		School-Level FRPL School Level Latinx Stude			tudent/Teacher Ra	atio			
Predictor	В	95% CI	р	В	95% CI	р	В	95% CI	р

School-focused possible identity count	.005	013, .022	.595	.001	003, .005	.626	.040	116, .036	.305
School-focused possible identity balance count	.000	018, .019	.979	001	006, .003	.634	037	111, .037	.324
School-focused possible identities with strategies count	.010	007, .027	.263	.002	002, .007	.300	011	085, .063	.774
School-focused possible identities plausibility score	.013	004, .029	.131	.003	002, .007	.221	.017	056, .089	.654

Notes: In each model the dependent variable is 8th grade core grade point average; the regression coefficients in each cell are for the interaction between the possible identity metric in the left column and the school-level context variables in the top row.

Section 2: File Setup and Python Code for Developing and Using Possible Selves Classifier

File Setup

The code is written to read possible self training data in the following format (The code ensures that only the possible self code is used to train the algorithm.)

ID	Possible Self	CODE	Strategy	CODE
1	On honor roll	1	Study every day	1
2	More popular	2	Hang out after school	2
3	Playing my x-box	5	Do my chores	5

The code is written to classify or code uncoded possible self data in the following format:

ID	Possible Self	Strategy
1	On honor roll	Study every day
2	More popular	Hang out after school
3	Playing my x-box	Do my chores

Running the code will output possible self classification in the format below. The 'Combined" column shows which words in the responses were used by the algorithm. The 'Vecs' column can be ignored. The 'Class' column has the possible self code generated by the algorithm.

ID	Possible Self	Strategy	Combined	Vecs	Class
1	On honor roll	Study every day	['honor', 'roll', 'study', 'every', 'day']	[-0.0802 - 0.34582]	1
2	More popular	Hang out after school	['More', 'pouplar', 'Hang', 'after', 'school']	[1.416e-01 5.060e-01]	2
3	Playing my x-box	Do my chores	['Playing', 'x-box', 'chores']	[-0.02734 0.103027]	0

Python Code

#Import the necessary packages

import pandas as pd import gensim from autocorrect import spell import string from nltk.corpus import stopwords import numpy as np from sklearn import svm from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score import sklearn.metrics import fl_score import xlrd import openpyxl

#Defining classification functions

```
def CombineFiles(files):
    t = pd.DataFrame()
    list = []
    for file in files :
        data = pd.read_excel(file)
        list.append(data)
    return pd.concat(list,ignore_index=True)
```

```
def listCreation(X):
    X_n = []
```

for i in X: X_n.append(i) return X_n

```
def combineClass(class_codes,t):
    df = t.copy()
    for i in class_codes:
        df.ix[df.CODE == i, 'CODE'] = 0
    return df
```

```
def classifyingResult(cv,classifier,X,Y):
    accuracies = []
    for train_index, test_index in cv.split(X):
        X_tr = [X[i - 1] for i in train_index]
        X_tes = [X[i - 1] for i in test_index]
        y_tr = [Y[i - 1] for i in train_index]
        y_tes = [Y[i - 1] for i in test_index]
        clf = classifier.fit(X_tr, y_tr)
        y_pred = clf.predict(X_tes)
        a = accuracy_score(y_tes, y_pred)
        c = confusion_matrix(y_tes, y_pred)
        accuracies.append(a)
        print a
        print c
        print "Mean Accuracy : " , np.mean(accuracies)
```

```
def classifyingResultWithSeprateTrainTest(X_tr,y_tr,X_tes):
    classifier_SVM = svm.SVC(kernel='linear',decision_function_shape='ovr')
```

classifier = classifier_SVM clf = classifier.fit(X_tr, y_tr) y_pred = clf.predict(X_tes) t_test['Class']=y_pred t_test.to_excel('output_cycle.xlsx')

#Defining stopwords and importing word representations #Google doc2vec file location can be downloaded from https://github.com/mmihaltz/word2vec-GoogleNews-vectors

stop = set(stopwords.words('english'))
model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)

#This section first combines files with training data (if there are multiple files) then preprocess them (including ensuring there is a single code -- the possible self code -- for each response), and combines necessary classes (here, 3, 4, 5, and 7) into one class

```
files = [[Names of Files with training data in them]]
t = CombineFiles(files)
t = t[pd.notnull(t['CODE'])]
t.loc[t['CODE'] != t['CODE.1'], 'Strategy'] = "
t["Combined"] = t['Possible Self"] +' '+ t["Strategy"]
t['Combined'].fillna(", inplace=True)
t['Combined'] = t['Combined'].apply(lambda x:x.encode('utf-8'))
t['Combined'] = t['Combined'].apply(lambda x:str(x))
t['Combined'] = t['Combined'].apply(lambda x:x.lower())
t['Combined'] = t['Combined'].apply(lambda x:x.translate(None,string.punctuation))
t['Combined'] = t['Combined'].apply(lambda x: [spell(str(item)) for item in x.split() if
            spell(str(item)) not in stop and spell(str(item)) in model.vocab])
```

```
t['Vecs'] = t['Combined'].apply(lambda s:reduce(lambda x, y: x + y, map(lambda e: np.array(model[e]), s)) if len(s)!=0 else np.zeros(300, dtype='float32'))
```

```
original = t.copy()
```

class_codes= [3,4,5,7] #combining classes 3, 4, 5, 7 (or whichever classes you wish to combine into one class)

 $t = combineClass(class_codes, original)$

X = t['Vecs'] Y = t['CODE'] X = listCreation(X)

Y = listCreation(Y)

print confusion_matrix(Y,Y) #To get an idea of the data distribution

#Split the data based on parameters provided n_splits = 10 test_size = 0.15

#10-fold cross validation SVM classification

cv = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0)
classifier_SVM = svm.SVC(kernel='linear',decision_function_shape='ovr')
classifier = classifier_SVM
classifyingResult(cv,classifier,X,Y)

#this section of the code should be run if a seperate test file needs to be coded. First, it trains on the combined pre-processed files from the previous portion, then it preprocesses the test file, and runs the classification

files_test = [Name of file with data to be coded]
t_test = CombineFiles(files_test)

X_test = t_test['Vecs'] X_test = listCreation(X_test)

 $classifyingResultWithSeprateTrainTest(X,Y,X_test)$