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I was extraordinarily moved when my ex-grad-
uate students Gerard Jensen and Karl Jalkanen
informed me of their plan to organize a special
issue of Theoretical Chemistry Accounts to cele-
brate my scientific career. I am deeply grateful
to all of the contributors to this issue, and, most
of all, to Gerard and Karl for their work on this
project.
Gerard and Karl asked me to contribute a sum-
mary of my scientific career. To do this I have
had to read all of my papers again! The Mem-
oir which follows attempts to describe how my
career evolved.

King Edward (VI)’s School, Birmingham

I entered King Edward’s School, Birmingham, a “Direct
Grant” high school for boys, in 1950. All of the teachers
were Oxford and Cambridge graduates and the primary
aim of the school was to send as many students as pos-
sible to these elite Universities. For the first 5 years, the
curriculum was very broad; I took Chemistry, Physics,
Biology, and Maths each year, as well as English, French,
German, Latin, History, Geography, Music, and Art.
During the last 3 years, the curriculum narrowed in order
to prepare for A-level exams and University entrance
exams. My father encouraged me to specialize in Chem-
istry, undoubtedly because he had worked for a chemi-
cal company manufacturing plastics in the 1920s, which
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unfortunately went out of business during the Depres-
sion. As a result, my last 3 years I took only Chemis-
try, Physics, and Maths classes. After A-levels, I applied
to Christ Church College (Ch. Ch.), Oxford, to study
Chemistry. After the famously challenging entrance
exams, I was lucky enough to be offered an open schol-
arship at Ch. Ch., beginning in Autumn 1958.

Christ Church (Ch. Ch.) College, Oxford University

The Ch. Ch. Chemistry tutors in 1958 were Dr. A. David
Buckingham (ADB) and Dr. Paul W. Kent (PWK).
ADB was responsible for teaching me physical and inor-
ganic chemistry, and PWK for organic chemistry. Since
ADB was a theoretical chemist, I learned a lot of the-
oretical chemistry under his guidance, and this led to
my choosing him as my Part II Thesis supervisor. The
Oxford Chemistry B.A. degree was unique (in England)
in requiring a year of research, leading to a thesis, after
3 years of normal undergraduate studies.

For my Part II Thesis, I worked on two projects: (1)
the theory of the Stark effect in the microwave spec-
tra of molecules containing atoms with nuclear quad-
rupoles; (2) the theory of the NMR shielding constants
of H atoms directly bonded to transition-metal atoms.
The purpose of the first project was to assess the impact
of nuclear quadrupole coupling on the electric dipole
moment of a molecule determined via microwave spec-
troscopy. While working on this project, I read Townes
and Schawlow’s famous monograph Microwave spec-
troscopy, which greatly boosted my knowledge of the
quantum mechanics of molecules. The second project
originated in a lecture at Oxford by Joseph Chatt on
the subject of his newly synthesized transition-metal
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hydride complexes. Very large high-field proton
chemical shifts are exhibited by H atoms bonded to tran-
sition metals. The question was: what is the mechanism
of this phenomenon? In order to address this question, I
studied the theory of NMR spectroscopy, elegantly cov-
ered in the famous monograph of Pople, Bernstein and
Schneider, High-resolution nuclear magnetic resonance,
and applied the concept of the neighbour-anisotropy
effect on proton chemical shifts to the known transi-
tion-metal hydride complexes. The anisotropy of the
magnetic susceptibility of transition-metal ions could
be predicted using ligand-field theory and enabled the
variation of proton chemical shift with transition-metal,
oxidation state, and coordination geometry to be under-
stood. These two projects eventually led to my first four
papers, published in 1964–1965 [1–4].

In 1962, after receiving my B.A. degree, I began work
on my D.Phil. thesis, under the continuing supervision of
ADB. My D.Phil. research focused on the development
of the theory of the Faraday effect, the optical rota-
tion (OR) induced by an external longitudinal magnetic
field, and of the closely related phenomenon of mag-
netic circular dichroism (MCD). At this time, studies of
the anomalous dispersion of the OR of chiral molecules
and the closely related phenomenon, circular dichroism
(CD) (also known as the Cotton effect), were increas-
ing rapidly, due to advances in instrumentation, per-
mitting OR and CD measurements across the visible
and near-UV spectral regions, and the development of
the Octant Rule, relating the Cotton effect of organic
molecules containing carbonyl groups to the molecular
Absolute Configuration (AC) and conformation, and
similar sector rules for other electronic chromophores.
Djerassi’s famous monograph, Optical rotatory disper-
sion: application to organic chemistry, had just been
published. Achiral molecules do not exhibit OR but, as
Faraday showed in 1846, OR is induced when an exter-
nal magnetic field is applied, parallel to the light beam.
To explore the theory of magneto-optical rotatory dis-
persion (MORD) and of MCD and to assess the poten-
tial applications of these phenomena to the elucidation
of the geometrical and electronic structures of mole-
cules was an exciting project, which enormously broad-
ened my knowledge of the literature pertaining to the
theories and applications of magneto-optical phenom-
ena, as well as OR and CD. By the time my D.Phil.
Thesis was submitted in 1964, the theories of anomalous
MORD and of MCD were established. The contribu-
tions of an electronic transition to the two phenomena
comprised three contributions, which I labeled A, B,
and C terms. A terms originate in the Zeeman splitting
of the transition, which occurs when either the ground
state or excited state is degenerate, or when both are.

C terms originate in the population differences between
the Zeeman levels of the ground state, when it is degen-
erate. B terms are due to mixing of the ground and
excited states with other electronic states, due to the
magnetic field perturbation. A terms exhibit a different
frequency dependence from B and C terms; A and B
terms are temperature independent, while C terms are
temperature dependent. Simply put, anomalous MORD
and MCD permit the Zeeman splittings of electronic
transitions to be measured, despite their much smaller
magnitudes than transition bandwidths, and the Zeeman
splittings of degenerate ground states to be measured,
providing an alternative to the phenomena of magnetic
susceptibility and EPR.

Following this theoretical analysis, it became clear
to me that the most productive area of application of
MORD and MCD would be transition-metal chemistry.
As a result, I applied for a post-doctoral fellowship to
work in the group of Professor Carl Ballhausen at the
University of Copenhagen, Denmark.

The Ørsted Institute, University of Copenhagen,
Denmark

My first task in Copenhagen was to publish my D.Phil.
thesis work. After discussion with ADB, it was decided
that I should write a review of the field of magnetic
optical activity. Doing this further enlarged my familiar-
ity with the field and the contributions of many famous
physicists including Becquerel, Van Vleck, Bethe,
Serber, and Kramers. Eventually, the review appeared
in the 1966 edition of the Annual Reviews of Physical
Chemistry [11].

At the same time, I was working through such famous
monographs as Wigner’s Group theory, Condon and
Shortley’s The theory of atomic spectra, Griffith’s The
theory of transition metal ions, and Ballhausen’s
Introduction to ligand field theory, and beginning to ana-
lyze the existing MORD and MCD data on transition-
metal complexes. The most exciting application was to
the Fe(CN)3−

6 ion, whose visible-near-UV spectrum is
dominated by charge-transfer transitions. The MORD
of Fe(CN)3−

6 had been reported by Bernard Briat at the
ESPCI in Paris. It was simple to show that the signs of
the dominant C terms of the allowed charge-transfer
transitions depend on the symmetry of the excited state
and that the MORD allowed the UV spectrum to be
assigned [5]. The application of MCD to the assignment
of the charge-transfer spectra of transition-metal com-
plexes subsequently became one of its major applica-
tions.
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The University of Chicago

After a year in Copenhagen, I moved in 1965 to the
University of Chicago to work in the group of Pro-
fessor Don McClure, another of the leading figures in
transition-metal spectroscopy. An added benefit of this
move was that I was then much closer to the Univer-
sity of Virginia, where Professor Paul Schatz was set-
ting up MORD and MCD instrumentation. Paul had
been on sabbatical in Oxford with ADB during the year
before I graduated and we had many discussions of my
research on the Faraday effect. As a result, and also
because Oxford Instruments was just beginning to mar-
ket superconducting magnets, Paul decided to jump into
the MORD/MCD field. I was lucky enough to be in
Charlottesville on the occasion when the MORD/MCD
instrument (consisting of a JASCO ORD/CD instrument
and an Oxford Instruments superconducting magnet)
was first turned on and the MORD and MCD spectra
of inorganic complexes such as MnO−

4 and Fe(CN)3−
6

first appeared on the chart recorder. Following this,
I collaborated with Paul and his group (which included
Tony McCaffery, who had been in Copenhagen at the
same time as me) on many MORD/MCD projects [7,9,
10,12–16,19,26,45].

The main focus of the McClure group at that time
was the spectroscopy of transition-metal ions in crystal-
line solids. Two topics were particularly hot: (1) effects,
such as magnon sidebands, arising from inter-ionic mag-
netic interactions in magnetic solids; and (2) the Ham
effect, arising from Jahn-Teller effects. Ham had recently
shown that the Jahn–Teller effect could reduce the mag-
nitude of spin–orbit coupling and Zeeman splittings of
degenerate electronic states. I thought that it would
be interesting to explore the Ham effect by measuring
the Zeeman effects of zero-phonon bands of transition-
metal ions in crystals. McClure was very receptive to this
idea and promptly acquired a superconducting magnet.
Together with Marian Lowe–Pariseau, a post-doc in the
McClure group (who had been a post-doc with ADB
during my D.Phil. studies), I then measured the Zee-
man effect of the 3T2g excited state of V3+, doped in
Al2O3. The results provided spectacular evidence of the
Ham effect [17,20].

The University of Southern California, USC

During my second year in Chicago, I accepted an offer of
an Assistant Professorship from the Chemistry Depart-
ment at USC. I knew the Department Chair, Professor
David Dows, because he had spent a sabbatical year with
ADB in Oxford while I was a student, and he had also

hired another ADB student, James Bridge, as a post-doc.
I moved to Los Angeles in Fall 1967. My goal was to
further develop the field of MCD spectroscopy. Initially,
I focused on the application of moment analysis to the
theory of MCD, a methodology well known in solid-
state NMR spectroscopy, and recently applied to MCD
by Slichter and coworkers [18,23,26,29,37,46]. At the
same time, of course, proposals for external funding had
to be written and submitted. Fortunately, by September
1968 I had received an Alfred P. Sloan Fellowship and
an NIH grant, and had been able to hire my first post-
doc, Dr. George Osborne from Perth, Australia. George
began the construction of an MCD instrument, designed
to include the near-IR spectral region. Up till then, all
CD instrumentation was based on KDP electro-optic
phase modulators (Pockels cells), but they are not usable
in the IR. Very fortunately, the photo-elastic modulator
(PEM) had recently been invented, and commercial-
ized by Jim Kemp and Morvue Instruments. By using
a near-IR transmitting quartz PEM, we were able to
extend the spectral range of CD/MCD instrumentation
into the near-IR [32]. At the same time, I began to inter-
act with Cary Instruments, who at that time were located
in Monrovia, a suburb of LA, and were manufacturing
visible-UV CD spectrometers. I was able to interest Jim
Duffield and Ahmed Abu-Shumays at Cary in MCD and
they acquired a superconducting magnet, interfaced it
with their CD instrument and began measuring MCD
spectra. This led to a paper on the MCD of the LiF
F center [24] and an increase in sales of Cary 61 CD
instruments. Another fortunate consequence of mov-
ing to USC was that Professor Otto Schnepp (who had
obtained his Ph.D. with Don McClure at Berkeley) was
simultaneously building a vacuum-UV CD spectrom-
eter, to extend the application of CD spectroscopy to
higher energies than previously possible. Being close to
another group working on CD was an enormous benefit,
and eventually led to collaborative vacuum-UV MCD
measurements on a number of gases, the first MCD mea-
surements in this spectral region [38–40].

After 3 years at USC, George Osborne moved on.
Very fortunately, I was able to hire Dr. Jack Cheng,
a graduate of the Jim Kemp group at the University of
Oregon, one of the birthplaces of the PEM. One of Jack’s
Ph.D. projects had been the measurement of MCD–
EPR double resonance, an exciting new development
for the MCD field. Over the next 3 years, Jack vastly
improved and extended our near-IR MCD spectrome-
ter [32], especially by improving the electronics and by
building new PEMs to extend the spectral range further
into the IR.

Together with a newly acquired Cary CD spectrom-
eter, our near-IR instrument allowed us to make MCD
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measurements over a very wide spectral range. Much
of this work involved transition-metal ions in crystalline
solids and was carried out by graduate students Allen
Mann and Joe LoMenzo and post-doc Dr. Barry Bird
from Peter Day’s group at Oxford [25,30,31,35,36].

In 1972, in collaboration with Bill Eaton at NIH,
we carried out our first MCD experiments on metal-
loproteins, specifically met-hemoglobin and met-myglo-
bin, and their cyano-complexes. Ferric heme proteins
exhibit near-IR electronic transitions. Their MCD is sen-
sitive to the heme ligation and the ground state spin.
The near-IR MCD of HbCN and MbCN confirmed the
assignment of the near-IR transitions as ligand-to-metal
charge-transfer transitions. The potential value of MCD
in characterizing the ligation and spin states of heme
proteins, demonstrated by this work, led us to publish
it in Nature [33]. Further studies of heme proteins were
carried out by post-doc Dr. John Sutherland [47,57].
This was the beginning of more than 20 years of work
on the MCD of metalloproteins.

In 1973, I launched an exciting new project: the mea-
surement of vibrational CD (VCD). While there had
been speculation regarding the measurability of VCD,
no measurements had been reported. Having a near-IR
CD instrument, already capable of measurements down
to ∼3,000 nm, the limit of the InAs detector, extension of
the spectral range to cover more of the fundamental IR
seemed practical. To accomplish this, I hired two new
post-docs to work with Jack Cheng, Dr. Larry Nafie
(from U. Oregon) and Dr. Tim Keiderling (from Prince-
ton). It was at this time, and for this reason, that Jack
explored a range of new optical elements for the PEM
having superior IR transmission to that of quartz. Many
of the standard IR window materials turned out to be too
fragile mechanically to permit sufficient phase modula-
tion. However, serendipitously, an ex-student of Otto
Schnepp’s, Susan Allen, now working at the Hughes
Research Labs in Malibu, asked me if Jack could build a
PEM using ZnSe, to make possible infrared laser ellips-
ometry experiments. We immediately realized that ZnSe
could be the solution to the VCD problem, since it is
mechanically strong and transmits down to ∼650 cm−1.
With ZnSe provided by Hughes, Jack built PEMs, and
our first successful VCD measurements, published in
1975, followed soon thereafter [44]. Also critical to the
measurement of VCD was a method which Jack invented
to reduce the magnitude of pseudo-CD signals (termed
artifacts) which originate in optical phenomena unre-
lated to the sample CD. The method involved placing a
second PEM, with a different frequency than the first
PEM, after the sample. We called this “Polarization
Scrambling” [43]. Unfortunately, our VCD measure-
ments were not the very first: George Holzwarth at the

University of Chicago had just published his first mea-
surements, also made with a PEM-based IR CD instru-
ment. However, our instrument had significantly higher
sensitivity, and we were able in the next year to measure
the VCD of a wide-range of chiral organic molecules
[48,49,54,60]. [For a detailed account of the early VCD
measurements by the Holzwarth group and at USC, see
Publication 59.]

By 1976, Jack had moved on to the Lawrence Liv-
ermore Laboratory, and Larry and Tim had become
Assistant Professors at Syracuse University and the Uni-
versity of Illinois at Chicago, respectively. Both Larry
and Tim continued working on VCD, initially build-
ing dispersive instruments and subsequently extending
the PEM-based modulation methodology to Fourier-
transform IR spectrometers. Over the next 30 years,
both have continued to develop the VCD field. I am
extremely proud of their brilliant contributions.

In 1975, we began a collaboration with Harry Gray’s
group at Caltech, focusing on determining the structures
of copper proteins. Ed Solomon, who had been a grad-
uate student of Don McClure’s at Princeton and a post-
doc with Carl Ballhausen in Copenhagen, had recently
come to Caltech and was working with Harry on blue
copper proteins, such as stellacyanin, plastocyanin and
azurin. In order to characterize the ligation of the Cu(II)
in these proteins, Ed came over to USC and measured
their CD and MCD. The near-IR d→d transitions of
Cu(II) were particularly informative [50,53,64]. Subse-
quently, we studied laccase, ceruloplasmin and ascorbate
oxidase copper proteins [62,63,65].

Another important bioinorganic collaboration began
in 1976 when Andrew Thomson of the University of East
Anglia in England brought a huge number of iron–sulfur
proteins to USC in order to study their near-IR CD and
MCD. I had known Andrew since my time in Oxford;
he also did his D.Phil. research in the ICL, with R. J. P.
Williams. Our experiments demonstrated that the MCD
of Fe–S clusters is a sensitive function of their structure
and oxidation state and, hence, that MCD is a useful
technique for characterizing Fe–S proteins [56,58]. This
work led to a later visit by Barry Smith of the Nitrogen
Fixation Institute at the University of Sussex in England
and a collaboration with Professor Charles McKenna
at USC in which CD and MCD were used to study the
iron–molybdenum and iron proteins of the nitrogenase
enzyme [61,66–68,70,74,81].

In 1977, I hired a new post-doc, Dr. Frank Devlin,
who had obtained his Ph.D. from University College,
Dublin in Ireland. This was one of the smartest things I
ever did. Frank is a brilliant instrumentalist and he has
been responsible for all of the instrumental develop-
ments in my laboratories from his arrival to the present
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time. I am deeply grateful to him for his work over the
past three decades. Initially, Frank worked on enhancing
our MCD instrumentation, so as to permit temperature-
dependent measurements on metalloproteins down to
pumped-liquid-helium temperatures (<4 K). Not only
does decreasing the temperature increase the MCD
magnitude when C terms are present, but it also permits
the saturation behavior of the MCD as the magnetic field
is increased to be measured, leading to electronic ground
state parameters such as g values and zero-field split-
tings [71]. Critical to this development was the acquisi-
tion of an Oxford Instruments superconducting magnet
with a split coil surrounding an optical cavity, permit-
ting the protein sample to be inserted into the center
of the magnetic field and cooled to liquid helium tem-
peratures. This magnet was interfaced with a JASCO
CD instrument, permitting liquid-helium temperature
MCD measurements over the near IR–visible–near UV
spectral range.

Inter alia, this new instrumentation made possible
exciting studies of Ferredoxin I (FdI) of Azotobacter
vinelandii, which were carried out by Dr. Vance Morgan,
who had obtained his Ph.D. in Biochemistry at the Uni-
versity of Georgia and arrived to post-doc in 1980, in col-
laboration with Dave Stout at U. Pittsburgh and Barbara
Burgess at Kettering Research Institute. FdI contains
both 3Fe and 4Fe Fe–S clusters. We explored their
chemistry, using CD, MCD and EPR spectroscopies to
characterize cluster structures and oxidation states. A
particularly interesting reaction of FdI was its oxidation
by Fe(CN)3−

6 , which leads to destruction of the 4Fe clus-
ter. This permitted an EXAFS study on the 3Fe cluster
of FdI in the absence of the 4Fe cluster, which con-
clusively demonstrated that the structure of this cluster
determined by X-ray crystallography of native FdI was
incorrect [72,73,76–78,83].

Simultaneously with these bioinorganic studies, we
continued to work on VCD. After we had successfully
measured VCD spectra, it was clear that the productive
utilization of VCD data required a theory permitting
reliable calculations of VCD. In 1975, I was invited by
Jim Ferguson to be a Visiting Professor at the Austra-
lian National University in Canberra, Australia. While
in Canberra in Fall 1975, I worked on the theory of VCD.
VCD intensities are determined by vibrational rota-
tional strengths, which, in turn, depend on vibrational
electric dipole and magnetic dipole transition moments.
While the theory of vibrational electric dipole transi-
tion moments was well established, this was not the case
for the magnetic dipole transition moments. In addi-
tion, it turns out that within the Born–Oppenheimer
(BO) approximation, which is the basis for the stan-
dard theory of electric dipole transition moments, the

electronic contribution to magnetic dipole transition
moments vanishes. Consequently, to correctly predict
vibrational magnetic dipole transition moments, the
vibronic wavefunctions must be more accurate than BO
wavefunctions. Since the Jahn–Teller (JT) effect origi-
nates in the breakdown of the BO approximation, and
I had become very familiar with the JT effect literature
while in Chicago, it was easy for me to derive an equa-
tion for vibrational magnetic dipole transition moments,
incorporating corrections to the BO wavefunctions. Sim-
ply put, the nuclear kinetic energy operator, which is
not fully diagonalized in the BO approximation, mixes
the vibrational levels of the electronic ground state with
those of excited states and as a result ground state vibra-
tional transitions are mixed with electronic transitions.
Since electronic transitions can have non-zero magnetic
dipole transition moments, non-zero vibrational mag-
netic dipole transition moments result. The equation
I derived was formally correct, but involved both the
ground and all excited electronic state wavefunctions,
making it difficult to implement. Over the next few
years, I frequently revisited my theory of vibrational
magnetic dipole transition moments in the hopes of
finding a way to simplify the equation, and make its
implementation practical. Fortunately, lightning struck
in 1980. After revisiting the theories of other magnetic
phenomena, including paramagnetic susceptibilities and
paramagnetic NMR shielding constants, I found that the
“sum-over-states” equations for these properties had
been contracted into equations involving only ground
electronic state wavefunctions, and immediately under-
stood how to contract my “sum-over-states” equation
for vibrational magnetic dipole transition moments. The
result for the magnetic dipole transition moment of a
fundamental v = 0 → v = 1 transition involving the ith
normal mode was

〈
0
∣∣∣(µmag

)
β

∣∣∣1
〉
i
=

[
4π h̄3νi

]1/2∑
λ,α

Sλα,iMλ
αβ (1)

where νi is the frequency of the ith normal mode; Sλα,i
defines the ith normal coordinate, Qi, via

Xλα =
∑

i

Sλα,iQi (2)

where Xλα are the Cartesian nuclear displacement coor-
dinates from the equilibrium geometry (λ = nucleus,
α = x, y, z); and the tensor Mλ

αβ is the sum of electronic
and nuclear contributions, Iλαβ and Jλαβ , given by

Iλαβ = 〈
(∂ψG/∂Xλα)0

∣∣(∂ψG/∂Hβ

)
0

〉
(3)

Jλαβ = i
4h̄c

∑
γ

(Zλe)R0
λγ εαβγ (4)



10 Theor Chem Account (2008) 119:5–18

(∂ψG
/
∂Xλα)0 are the derivatives of the ground elec-

tronic state wavefunction, ψG with respect to the
Cartesian nuclear displacement coordinates, Xλα .(
∂ψG

/
∂Hβ

)
0 is the derivative of the ground electronic

state wavefunction of the molecule, to which the exter-
nal magnetic field perturbation −(µe

mag)β
Hβ(β = x, y, z)

is applied, with respect to Hβ . The corresponding elec-
tric dipole transition moment is given by

〈
0
∣∣(µel)β

∣∣1〉
i =

[
h̄

4πνi

]1/2∑
λ,α

Sλα,iPλαβ (5)

where the tensor Pλαβ is the sum of electronic and nuclear
contributions, Eλαβ and Nλ

αβ , given by

Eλαβ = 2
〈(
∂ψG

/
∂Xλα

)
0

∣∣∣(µe
el

)
β

∣∣∣ψ0
G

〉
(6)

Nλ
αβ = (Zλe)δαβ (7)

The tensors Pλαβ are termed the atomic polar tensors
(APTs). Since the magnetic dipole moment is an axial
vector, in contrast to the electric dipole moment which
is a polar vector, I named the tensors Mλ

αβ atomic axial
tensors (AATs). From Eqs. 3 and 6, it is clear that
the electronic AATs, Iλαβ , involve the same derivatives
(∂ψG

/
∂Xλα)0 as the electronic APTs, Eλαβ , but, in addi-

tion, involve the derivatives
(
∂ψG

/
∂Hβ

)
0. So the extra

challenge in calculating vibrational magnetic dipole tran-
sition moments as well as electric dipole transition
moments is to calculate

(
∂ψG

/
∂Hβ

)
0. Importantly, it

turns out that these derivatives are also present in the
contracted equations for paramagnetic susceptibilities
and paramagnetic NMR shielding tensors, so they were
not unheard of by quantum chemists. This fact led me to
discuss the practicality of calculating the

(
∂ψG

/
∂Hβ

)
0

derivatives with Professor Gerry Segal at USC. Gerry
was a quantum chemist, who had obtained his Ph.D. with
John Pople at Carnegie–Mellon, and was well versed in
ab initio methods. We arrived at the conclusion that the
most practical option was to calculate

(
∂ψG

/
∂Hβ

)
0 at

the ab initio Hartree–Fock (HF) level using the finite-
difference method for calculating derivatives.

Incredibly, after this decision was made, I received
a phone call from Professor Marian Lowe, my Chicago
collaborator, now at Boston University, who was looking
for a project on which to base an application to the new
NSF Visiting Professorships for Women in Science and
Engineering program. Marian was an expert in vibra-
tional spectroscopy, having obtained her Ph.D. with John
Overend at the University of Minnesota. After discuss-
ing my new theory of VCD and the planned ab initio cal-
culations, we decided to put together a proposal to NSF.
This was submitted in August 1982 and led to Marian’s

arrival at USC in 1983. With Gerry Segal’s assistance,
the calculation of electronic AATs was implemented
within the GAUSSIAN 80 program, and calculations of
the VCD spectra of trans-1,2-dideuterio-cyclopropane,
trans-1,2-dideuterio-cyclobutane and propylene oxide
carried out. For the latter two molecules, experimental
VCD spectra were already available and our calcula-
tions could be compared with experiment. The compar-
ison was quite encouraging. My theory of VCD and our
ab initio calculations were reported to the VCD com-
munity at a Symposium on VCD at the November 1983
APS meeting in San Francisco and at the Ohio State
University Symposium on Molecular Spectroscopy in
June 1984, and published in 1985–1986 [79,80,82,84].

I spent the 1984–1985 academic year at the Nitrogen
Fixation Institute at the University of Sussex in Eng-
land, thanks to a Guggenheim Fellowship, working with
Barry Smith on Klebsiella pneumoniae proteins, includ-
ing nitrogenase and nif J. In May 1985, I went up to
Cambridge, where ADB now occupied the Chair of The-
oretical Chemistry, to give a seminar on VCD. After
my talk, Nick Handy pointed out that the calculation
of

(
∂ψG

/
∂Hβ

)
0 derivatives was carried out in his pro-

gram CADPAC, using analytical derivative techniques
based on the Coupled Hartree–Fock (HF) methodology,
a much more efficient approach than our finite-
difference technique. As a result, we agreed to incor-
porate the calculation of AATs, and thence vibrational
rotational strengths, in the CADPAC program. This pro-
ject was funded by a NATO UK–US collaborative
research grant, which enabled Roger Amos to carry out
the necessary code development and to bring the CAD-
PAC program to USC, install it on the IBM computer
at USC and the CRAY supercomputer at the San Diego
Supercomputer Center, and teach my students how to
use it. This was accomplished in 1986 [88]. At that time,
Karl Jalkanen and Ron Kawiecki were Ph.D. students in
my group, working on VCD. Karl had participated in the
VCD experiments on matrix-isolated molecules carried
out in 1981 by my post-doc Don Schlosser [69]. Subse-
quently, he moved to the Math Department to obtain an
MS in Applied Mathematics. After that, he returned to
my group to work on VCD theory. Initially, he contin-
ued finite-difference calculations using GAUSSIAN, but
when CADPAC arrived he was able to carry out calcu-
lations more rapidly and accurately. Karl was amazingly
hard working and very productive [88,90,91,94,95,97–
99,106,108–110,112,113,117,127,131].

Several other important developments occurred dur-
ing this period. On the experimental side, during my
absence in 1984–1985 Frank Devlin carried out major
improvements to our IR CD spectrometer. Most impor-
tantly, a closed-cycle refrigerator was installed, permit-
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ting IR detectors to be cooled below liquid nitrogen
temperatures, both increasing their sensitivities and
enabling the low frequency limit to be extended. With
a new As-doped Si detector operating at ∼10 K, VCD
measurement down to the ZnSe transmission limit of
∼650 cm−1 became possible for the first time [92]. On
the theoretical side, the first advance was the intro-
duction and implementation of the distributed origin
gauge equation for AATs, which led for the first time
to vibrational rotational strengths which were origin
independent [89]. The second was the application of
the RPA methodology to the calculation of electronic
AATs, using the “sum-over-states” formalism. This was
made possible by Professor Paolo Lazzeretti of the Uni-
versità di Modena in Italy, who pointed out the formal
connection between electronic AATs and the nuclear
shielding tensors, ξλαβ , which determine the electric field
at a nucleus when the molecule is subjected to an exter-
nal magnetic field. Paolo, together with Riccardo Zanasi,
had incorporated the calculation of these (and other)
nuclear shielding tensors in their RPA program, SYSMO.
I arranged for Paolo to bring the SYSMO program to
USC, to permit us to use it in calculating VCD spectra.
This led to a detailed comparison of APTs and AATs
calculated using analytical derivative methods and the
RPA method [86,98,99,108,110]. The collaboration with
Paolo also led to Roberta Bursi’s arrival in 1987 to obtain
her Ph.D. at USC, working on VCD [114,118].

Around 1990, two important advances in the ab ini-
tio calculation of vibrational force fields occurred: the
implementation of analytical derivative methods for cal-
culating MP2 and density functional theory (DFT)
Hessians. MP2 Hessians were incorporated in Gaussian
92 and DFT Hessians in Gaussian 92-DFT. Before these
correlated methods were available our VCD calcula-
tions were based on Pulay-scaled-HF force fields [85,96,
117,119], which added considerable labor to the calcu-
lations. We therefore enthusiastically switched to using
the more accurate force fields (without scaling) when
they became available. Calculations using MP2 force
fields gave significantly improved predictions, but were
restricted to relatively small molecules [127,130]. The
most important development turned out to be the use
of DFT force fields. Our initial calculations using DFT
force fields were carried out in collaboration with Mike
Frisch at Gaussian Inc., who was responsible for the
DFT Hessian code in GAUSSIAN. We first compared
the three classes of density functionals, local, gradient-
corrected, and hybrid, the latter having very recently
been introduced by Becke. Our results for a variety
of molecules unambiguously demonstrated the inade-
quacy of local functionals and the superiority of hybrid
functionals such as Becke’s B3PW91 functional and the

related functional B3LYP formulated by Mike Frisch
[132,136,138,139,142,144]. The hybrid force fields were
shown to be at least as accurate as MP2 force fields.
Given the much smaller computational labor involved
in DFT calculations, DFT became the method of choice
for calculating force fields. This has continued to be the
case up to the present.

At that time, DFT force fields were coupled with DFT
APTs and distributed origin gauge AATs combining
DFT APTs and HF AATs. It was immediately clear that
the next important advance in calculating VCD spectra
would be to calculate AATs using DFT. As had been
shown by Keld Bak and Poul Jørgensen in Denmark,
the calculation of AATs is significantly enhanced by
the use of the magnetic-field-dependent basis functions
known as gauge-invariant atomic orbitals (GIAOs). The
ideal DFT calculation of AATs would then incorporate
GIAOs. Mike Frisch assigned the task of implementing
the DFT/GIAO calculation of AATs to Jim Cheeseman
at Gaussian Inc. One of the most exciting days in my life
was the day Jim informed me that he had succeeded in
doing this, and that we could now do VCD calculations
simultaneously using DFT Hessians, APTs, and GIAO-
based AATs. We immediately switched to this meth-
odology [143,145], which was eventually distributed in
GAUSSIAN 98. Thorough studies of the two monoterp-
enes camphor and α-pinene fully documented the reli-
ability of the new DFT methodology [146,149,150,158].

The DFT implementation of my equation for vibra-
tional rotational strengths revolutionized VCD spec-
troscopy, by making it possible to reliably predict VCD
spectra and, as a result, to carry out the Configura-
tional and Conformational Analysis of chiral molecules
using their experimental VCD spectra. This develop-
ment stimulated the commercialization of FT VCD
instrumentation by several instrument companies,
including Bomem, Bruker, Bio-Rad, and Jasco, making
VCD spectroscopy much more accessible to Organic
Chemists. The well-known advantages of FTIR instru-
ments over dispersive IR spectrometers in turn led in
1997 to the installation of a FT VCD instrument in
our laboratories and the closing down of our disper-
sive spectrometer. Since then, we have worked hard to
expand the applications of VCD to the determination of
the stereochemistries of chiral organic molecules. By far
the most important application is to the determination
of Absolute Configurations and this has been our pri-
mary focus [151,152,155,159,160,163–165,167,169,171,
174,176,180,183,184,186,187,189–192]. As a result of
our work, interest in the use of VCD by organic chemists
has grown considerably, especially in the Pharmaceuti-
cal industry, where chiral drugs are increasingly impor-
tant. For example, in 1999, the French pharmaceutical



12 Theor Chem Account (2008) 119:5–18

company Sanofi sent Dr. Ahmed Aamouche to my lab
to explore the potential of VCD spectroscopy.

Despite the boom in VCD originating in my develop-
ment of the equation for vibrational rotational strengths,
our work in the bioinorganic field continued, with
emphasis on Fe–S proteins. After Barbara Burgess and
Dave Stout moved to Southern California (U.C. Irvine
and Scripps, La Jolla, respectively) we continued work
on FdI of Azotobacter vinelandii, using site-directed
mutagenesis to investigate the relationship of the struc-
tures and properties of its Fe–S clusters to the amino-
acid sequence. Among the cluster properties of interest
were their redox potentials, which brought the elec-
trochemist Professor Fraser Armstrong, also at U.C.
Irvine, into the collaboration. This project led Gerard
Jensen, who transferred from UCLA to USC in 1986
after obtaining his BS in Biochemistry, to join my group.
Gerard was responsible for the spectroscopic studies
of FdI and its mutants, including liquid-helium tem-
perature MCD and EPR studies [111,115,122,128]. In
addition, in collaboration with Professor Arieh Warshel
at USC he initiated calculations of the redox poten-
tials of Fe–S clusters, using Warshel’s POLARIS pro-
gram, which treated solvent effects using a Langevin
dipoles methodology. The calculations led to a much
more detailed understanding of Fe–S cluster redox
potentials than had previously been possible [125,133].
After Gerard’s graduation, this work was continued by
Dr. David Jollie [129,147], who also continued studies
of FdI mutants [134,140,148].

Our efforts in bioinorganic chemistry have dimin-
ished since Barbara Burgess’ untimely death in 2001.
At the same time, our work on the optical activity of
chiral molecules has broadened in scope. The revolu-
tion in VCD spectroscopy due to the implementation
of DFT calculations of VCD spectra led us to consider
the application of DFT to the calculation of both elec-
tronic CD (ECD) spectra and OR. Discussions with
Jim Cheeseman and Mike Frisch at Gaussian Inc. in
August 1988 made it clear that the application of time-
dependent density functional theory (TDDFT), recently
implemented in GAUSSIAN, to the calculation of ECD
and OR was feasible. By 1999, the code was in place
in GAUSSIAN and calculations underway. The earliest
results, reported at the 7th International CD Conference
in Poland in August 1999 and the Chirality Symposium at
the San Francisco ACS meeting in March 2000, demon-
strated that the TDDFT methodology gives much more
accurate results than the HF theory [157,162,166,168].
Since then, TDDFT calculations of optical rotations and
ECD spectra have expanded enormously, both at USC
[173,177–179,181,188] and, after the release of GAUSS-
IAN 03, elsewhere, driven by their application to deter-

mining Absolute Configurations (ACs). As of now, we
are able, when determining the Absolute Configuration
of a molecule, to utilize DFT calculations of its VCD,
ECD, and OR simultaneously, considerably enhancing
the certainty of the resulting AC. Very recent appli-
cations to the cytotoxic sesquiterpene natural product
quadrone, to alkaloid and iridoid natural products, and
to a novel calcium channel blocking molecule illustrate
the power of this approach [187,190–192].
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