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Abstract 
 
Environmental factors play a critical role in healthy aging, yet data sources capturing these 

exposures remain limited, particularly in low- and middle-income countries (LMICs). To address 

this gap, we developed a protocol to leverage Google Street View (GSV) images and machine 

learning (ML) methods to capture features of the physical and built environment (e.g., vehicle 

congestion, greenspace) in four major Indian cities. We first fine-tuned computer vision models 

on the Indian Driving Dataset (IDD), where our object detection and segmentation results 

outperformed state-of-the-art models found in the literature in identifying common street-level 

features. We then validated ML-derived features from GSV by comparing predictions to human-

coded image audits, field-based interviewer assessments, and existing indicators derived from 

satellites. ML predictions showed strong performance for features such as vehicles, pedestrians, 

roads, and greenery, and comparatively lower performance for context-specific features such as 

autorickshaws, sidewalks, and traffic signs. Results underscore limitations of pairing GSV with 

existing machine learning models given the static and incomplete nature of GSV data and the 

cultural constraints of applying pre-trained models developed in high-income contexts across 

cultural settings. Nonetheless, our findings also showcase the reliability of our implemented 

approach in detecting key features of the urban environment in India. 
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1. Introduction 
 

The global demographic shift toward older populations is reshaping priorities in public 

health and aging research [1–3]. Despite advances in medicine, promoting healthy aging 

increasingly requires attention to non-clinical social, environmental, and behavioral factors [4–6]. 

One such factor is the physical and built environment in which our societies age. The 

neighborhoods we live in determine access to greenspace, exposure to traffic and noise, as well as 

opportunities for physical activity and social interaction, thereby shaping our physical, mental, and 

cognitive health. Cities concentrate both risks and resources. While access to services and 

infrastructure may support aging in place, dense traffic, pollution, limited greenery, and inadequate 

pedestrian environments may accelerate physical and cognitive decline [6]. With the rapidly 

growing population of older adults in urban areas, there is a pressing need to understand and 

measure how environments support or impede healthy aging.  

 

The fastest-growing populations of older adults are now found in low- and middle-income 

countries (LMICs), yet our understanding of how physical and built environment features 

influence healthy aging in these settings remains limited. A key barrier is the lack of spatial data 

infrastructure in LMICs. Much of what we know about the relationship between the physical and 

built environment and healthy aging comes from studies in high-income countries (HICs) whose 

urban environments differ substantially from those in LMICs. Recent advances in computer vision 

and the availability of Google Street View (GSV) imagery offer a scalable way to observe features 

of the physical and built environment. Machine learning models can be trained to identify elements 

such as vehicles, greenery, and infrastructure within their location-specific contexts using GSV 
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images. While this approach has been applied in HICs to study various urban exposures such as 

walkability, greenness [7], and traffic [8], applications in LMICs remain sparse and limited [9–

12]. This raises concerns about the performance and validity of these methods in LMICs, where 

image coverage, visual complexity, and infrastructure design may differ markedly from the 

settings in which models were originally developed. 

 

To address this gap, this study assessed the validity of using a machine learning model on GSV 

imagery to capture environmental features in an urban LMIC setting using India as an example. 

Indian cities provide a compelling case for this validation due to the rapidly urbanizing 

environment, variable infrastructure quality, and non-standard features that are poorly captured in 

existing global datasets from HICs. We first fine-tuned existing pretrained machine learning 

models on an Indian dataset to improve context-specific performance, then utilized a spatial 

prediction method to predict indicators when images are missing. We then triangulated ML-

derived indicators against three complementary sources for validation: manual audits of images by 

human raters, neighborhood observations from a household aging survey, and secondary 

geospatial data. Our goal was to evaluate how well the combination of automated image analysis 

and spatial predictions reflects urban environmental conditions in a data-constrained context, and 

to highlight practical considerations in applying this method for aging and health research. 

2. Literature Review 
2.1. Built Environment and Aging 

 
Urban environmental exposures relevant to healthy aging include features such as air quality, 

green and blue spaces, social dimensions of neighborhoods such as socioeconomic conditions and 

social cohesion, and human-made “built” infrastructure where we live, work, and age [6,13,14]. 
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Characteristics of the built environment such as street and sidewalk layout, infrastructure quality, 

and land use can impact walkability, density, exposure to noise and pollution, and access to 

services and green spaces which may influence aging outcomes through both protective and risk 

pathways [15,16]. More recently, the concept of cognability has emerged to capture the degree to 

which a neighborhood supports cognitive health among aging residents [16]. This framework 

emphasizes the combined influence of natural, social, and built features in promoting or hindering 

healthy cognitive aging. Environments that offer opportunities for physical activity, social 

engagement, and cognitive stimulation within safe and accessible spaces may support 

cerebrovascular function and cognitive resilience through neuroprotective mechanisms [8,17]. 

 

Despite growing recognition of environmental influences on healthy aging outcomes in general, 

most studies have been conducted in high-income countries [17–22]. This limits our ability to 

understand how these exposures impact aging in LMICs and if they may operate differently. 

Research on the built environment in LMICs, and India in particular, remains sparse due to limited 

data [23]. Some studies have linked air pollution [24–26] and poor housing quality [27] to declines 

in physical and cognitive functioning among Indian older adults, highlighting environmental risks 

that may be relevant to the LMIC context. A few qualitative studies have also noted poor 

walkability, unsafe pedestrian infrastructure, and limited access to parks and communal spaces as 

key challenges, emphasizing how neighborhood design shapes opportunities for active and healthy 

aging [28–30]. Yet, there have been limited large-scale, systematic quantitative investigations of 

how built environment features in India affect aging outcomes, in part due to the lack of data 

infrastructure to capture such environmental exposures at scale. This study aimed to address that 
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gap by developing and validating machine learning-derived measures of the built environment 

using GSV imagery. 

2.2. GSV and Machine Learning in Health and Urban Research: 
 

Google Street View (GSV) has emerged as a scalable resource for assessing built 

environment characteristics relevant to health, mobility, and social conditions. Early studies in 

HICs demonstrated the feasibility of using GSV for virtual audits of neighborhood infrastructure, 

showing high inter-rater reliability for features like sidewalks, crosswalks, land use, and pedestrian 

safety [31–34]. These findings have since been extended with the use of deep learning and 

computer vision methods, allowing researchers to automatically extract features such as street 

greenery, visual complexity, as well as highway and sidewalk presence from GSV imagery [35–

37]. GSV-derived indicators of walkability, greenery, and urbanicity have been associated with 

higher physical activity and lower mortality rates in studies in the U.S. and Hong Kong [7,37,38]. 

Similar approaches have been used to assess environmental predictors of active play among 

children in Canada [8], and to model neighborhood socioeconomic conditions across 12 cities in 

five high-income countries [39]. These applications highlight GSV’s capacity to detect features 

with epidemiological and social relevance across diverse domains. 

 

Although using GSV for environmental sensing has promise, most of the studies demonstrating its 

validity have been conducted in high-income countries. Two reviews of GSV-based research on 

urban physical environments found that nearly all applications occurred in cities with robust digital 

and transportation infrastructure (e.g., street networks that allow geographically dense GSV 

coverage almost everywhere in an urban environment) [40,41].  While these reviews highlight that 

GSV is well-suited for capturing static and visible features of the built environment such as 
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sidewalks, greenspace, and signage, only a few studies have explored similar approaches in LMIC 

contexts. Research in Brazil, for example, showed strong agreement between GSV-based audits 

and in-person assessments of neighborhood walkability [42]. In India, emerging work has used 

satellite imagery, Google Maps APIs, and platforms like Google Earth Engine to estimate traffic 

volumes, classify urban land use, and analyze infrastructure expansion across major cities [43,44]. 

These studies underscore the feasibility of using open-source and image-based methods and 

publicly available datasets to characterize built environments in data-scarce settings. As machine 

learning applications using GSV continue to expand, validation studies in LMICs are critical, 

where differences in urban form, infrastructure quality, and GSV coverage may affect the 

reliability and generalizability of these measures, as well as their validity as exposures in research 

on links with late-life health outcomes such as dementia.  

 

This study sought to fill this gap by assessing the validity of ML-derived indicators of urban 

environmental features from GSV images of street intersections in four Indian cities. By 

comparing ML-derived indicators against a range of other data sources, including human audits of 

the same GSV images, survey-based neighborhood observations, and geospatial data on air quality 

and greenspace, we seek to gain insights into the strengths and weaknesses of ML-derived GSV-

based exposures for use in health research in India. 

3. Data and Methods 
Our methodological approach consisted of three main phases: identification, prediction, and 

validation (Figure 1). In the identification phase, we retrieved Google Street View (GSV) images 

from street intersections across four major Indian cities and applied machine learning models to 

extract environmental features. The prediction phase involved using spatial modeling techniques 
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to generate complete city-wide coverage of environmental indicators. Finally, the validation phase 

compared our machine learning-derived measures against three independent data sources to assess 

their accuracy and reliability.  

3.1. Machine Learning Feature Extraction 
3.1.1. Image Retrieval and Fine-Tuning on Indian Driving Dataset 
 
We retrieved GSV images from four major Indian cities (Chennai, Delhi, Kolkata, and 

Mumbai) by querying the Google Street View API at known street intersections within each city’s 

boundaries [45]. We included intersections only since they offer broad unobstructed views of the 

streetscape while reducing the cost of querying additional mid-block images that provide limited 

incremental information. To ensure a comprehensive view of the built environment, we collected 

Figure 1.  Methodological workflow for extracting and validating built environment features from GSV images in Indian cities 
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four directional images at each location, corresponding to 0°, 90°, 180°, and 270° orientations. 

This approach improves coverage of the surrounding streetscape and increases the likelihood of 

detecting detailed and relevant physical features [36].  We then extracted environmental features 

from those images by fine-tuning two deep learning models using the Indian Driving Dataset 

(IDD). IDD contains annotated road-level images collected under diverse driving conditions in 

India, and captures unique elements such as vehicle types and various traffic conditions [46].  

 

The first model we fine-tuned using IDD is a Detection Transformer (DETR) model that identifies 

and counts discrete objects, including persons, riders, cars, trucks, buses, autorickshaws, 

motorcycles, bicycles, traffic signs, and traffic lights [47]. We started with the detr-resnet-50 

weights, which were originally trained on the Common Objects in Context (COCO) dataset. 

COCO is a benchmark containing over 200,000 images from real-world scenarios and over 80 

categories of objects such as people, vehicles, animals, household items, and traffic signs [48]. 

Figure 2 (a) shows a typical output of object-level predictions on the IDD dataset in the form of 

bounding boxes. To reduce redundant and noisy predictions, we further conducted non-maximum 

suppression and small-object filtering (further details in Supplementary Materials S1 Fig. 1) 

[47,49]. 

 

Figure 2.  Example annotations from the Indian Driving Dataset 
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The second model we fine-tuned using IDD is a SegFormer model that performs semantic 

segmentation by classifying each pixel in the image into predefined categories such as road, 

sidewalk, vegetation, and pole [50]. We started with the segformer-b1-finetuned-cityscapes-1024-

1024 weights, which were originally trained on the Cityscapes dataset. The Cityscapes dataset 

contains high-resolution street-view images from 50 Western European cities focusing on urban 

scenes [51]. Figure 2 (b) shows typical output of semantic segmentation on the IDD dataset where 

each pixel is classified into one category, such as roads, vegetation, and buildings. By fine-tuning 

both these models on the IDD dataset, we seek to improve comprehensive extraction of built 

environment features from GSV images from India, capturing both countable elements and broader 

spatial characteristics unique to the Indian context. The output of this process is feature predictions 

for object detection and segmentation at each street intersection. 

 
3.1.2. Spatial Predictions 

 
GSV coverage is sparse and geographically unevenly distributed within Indian cities. To 

address this limitation, we developed a spatial prediction model to predict built environment 

features in areas lacking images and to smooth model output. As shown in Figure 3, we divided 

each city into uniform spatial units using Uber’s H3 spatial indexing system at resolution level 8, 

where each hexagonal cell has an average edge length of 500 meters. In cells where GSV images 

are available, we extracted features using the machine learning models described in Section 3.1.1 

and computed mean values per H3 cell. In other cells, we predicted the same set of features using 

a Graph Neural Network (GNN) [52]. The GNN models each H3 cell as a node and connects it to 

neighboring cells using bidirectional edges based on geographic adjacency, enabling the model to 

capture spatial dependencies and local variation. To inform predictions, we used geospatial 

embeddings generated by Cross-Modal Knowledge Injected Embedding (CooKIE) [53], a region 
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representation learning model that integrates PLANET satellite imagery [54], Points of Interest 

(POIs), and Areas of Interest (AOIs) from OpenStreetMap [55] to encode spatial characteristics of 

each cell, including physical features from satellite imagery and functional attributes from POIs 

and AOIs. By combining CooKIE embeddings with a GNN, we predicted built environment 

features in areas without GSV imagery using spatial patterns learned from neighboring cells and 

created a smoothed output for each environmental feature. The result is a complete, city-wide 

dataset of built environment features at the H3-cell level, combining observed values from GSV 

imagery where available and GNN-predicted values elsewhere. Further details about the 

implementation of the spatial prediction model are presented in Supplementary Materials S1 

Section 1.2. 

 

3.2. Human-coding of GSV Images 
 

To validate the performance of the ML tool in extracting and predicting environmental 

features, we conducted manual coding of 800 GSV image sets, where an image set is the collection 

of four directional images (0°, 90°, 180°, and 270°) captured at a single location. We sampled 200 

Figure 3. Spatial prediction Workflow 

Mumbai City Boundary            City in H3 Cells              GSV Feature Data                Spatial Prediction 
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image sets per city across the four cities. For each city, we selected intersection locations using a 

two-step stratified random sampling strategy. First, we randomly selected administrative wards 

within each city. Then, within each selected ward, we randomly identified a street intersection 

from which to retrieve a GSV image set. In cities with fewer than 200 wards, some wards were 

selected more than once, with a different intersection sampled each time to ensure spatial diversity. 

This approach yielded a balanced and geographically varied set of images for human audit. 

Each image set was evaluated by two trained human raters familiar with the urban context in India 

(details on training process in Supplementary Materials S2 Section 2.1) using an instrument 

designed to assess objective and subjective features of the built environment relevant to health 

(full instrument is in Supplementary Materials S2 Section 2.2). The instrument captured 

information on vehicular and pedestrian traffic, sidewalk and street conditions, crosswalks, 

greenery, street lighting, neighborhood disorder, and potential hazards to mobility. To ensure 

balanced geographic coverage among the raters, we distributed the 800 image sets evenly across 

four raters, such that each image set was independently coded by two different raters and each 

rater assessed 100 image sets across each city. When two raters had significant disagreement for 

an image, some items were flagged for review and resolved through consensus discussions led by 

a trained moderator also familiar with the urban context in India (further details on the consensus 

process are in Supplementary Materials S2 Section 2.1). 

The following items were used in the analysis comparing ML-derived features to human ratings: 

Raters recorded the total number of vehicles (cars, buses, and trucks), autorickshaws, cycles 

(bicycles and motorcycles), and pedestrians across the four directional images. They also noted 

whether street signs and traffic lights were present in any image in the set. Sidewalk quality was 
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assessed using a five-point ordinal scale reflecting quality and availability, from which we created 

a binary variable with “no sidewalk” versus “some sidewalk” options for comparison with ML 

feature extraction since the SegFormer model could only detect sidewalk pixel presence and not 

quality. Greenspace was assessed with the question: “Are there trees/greenery visible?” with 

ordinal response options: (1) No, (2) Small amount, (3) Some, (4) More than average, and (5) Very 

green.   

3.3. Interviewer Observations from LASI-DAD Wave 2 

As a different form of validation, we used interviewer observations of the physical 

environment which were also collected as part of Wave 2 of the Harmonized Diagnostic 

Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) [56]. LASI-DAD 

is a nationally representative study of adults aged 60 years and above in India that aims to advance 

understanding of the determinants of late-life cognitive decline and dementia. The second wave of 

data collection was conducted between December 2022 and May 2024 across 22 Indian states and 

union territories with a total of 4,635 surveyed older adults. Informed consent was obtained 

directly from respondents for all study components, including geriatric assessments and 

environmental monitoring. For respondents with cognitive impairment, consent was obtained from 

a legally authorized family member, such as a spouse or adult child. Consent forms were available 

in 12 languages and read aloud when needed. Respondents unable to sign digitally marked the 

consent form and had a legally authorized representative sign on their behalf. All consent and 

interviews were conducted in the respondent’s preferred language. For the analysis in this study, 

we limited, the sample to 408 households that resided within the boundaries of the four cities. 
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As part of the Wave 2 fieldwork, interviewers completed a structured observation module 

assessing various aspects of the neighborhood’s physical, social, and built environment near each 

respondent’s home. From this broader instrument, we selected four items that aligned conceptually 

with features extracted from the ML model for comparison (see Table 1). These items assessed 

vehicular and pedestrian traffic, visible green space, and sidewalk condition. Data was accessed 

on September 1st, 2024, using a restricted data enclave that included respondents’ geocoded 

residences. 

 
Table 1. Interviewer Observations Responses 

Field Interviewer Observation Item N = 4081 
Vehicular Traffic: 'What is the volume of car/bus/motor/rickshaw traffic in the area near the home?'  
     -No traffic or not much 134 (33%) 
     -Some 188 (46%) 
     -More than usual or heavy 85 (21%) 
Pedestrian Volume: 'What is the volume of pedestrian traffic in the area near the home?'  
     -No traffic or not much 138 (34%) 
     -Some 181 (44%) 
     -More than usual or heavy 89 (22%) 
Visible Green Space: 'Is a park, garden, or other green space visible from the home?'  
     -No 253 (62%) 
     -Yes 155 (38%) 
Sidewalk Condition: 'Which best describes the condition of the sidewalks in the area near the home?'  
     -No sidewalks 75 (19%) 
     -Poor or average condition 292 (74%) 
     -Above average or very good condition 27 (6.9%) 
1 n (%) 

3.4. Geospatial Measures  

To further evaluate the validity of ML-derived features, we compared them to three 

independent geospatial measures: the normalized difference vegetation index (NDVI), nitrogen 

dioxide (NO₂) concentration, and population density. NDVI is a satellite-based indicator of 

vegetation density, commonly used as a proxy for greenspace exposure [57,58]. We used data 

available through the Google Earth Engine derived at 250-meter resolution images captured by the 

Moderate Resolution Imaging Spectroradiometer aboard NASA’s Terra Satellite (MODIS-Terra 

MOD13Q1) to calculate the mean NDVI in 2020 across each of the four cities [59]. NO₂ 
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concentrations are commonly associated with the transportation sector and traffic in urban areas. 

For our analysis, we used concentrations estimated at 50 meter resolution from global land use 

regression models that integrate satellite data from the Ozone Monitoring Instrument (OMI) with 

information on roads, built environments, and meteorological variables [60]. We used annual 

estimates of ambient NO₂ for 2020. Population density estimates were from the LandScan 2021 

Global Population dataset, which provides gridded estimates of ambient population at a one 

kilometer resolution [61]. 

3.5. Statistical Analysis 

We first evaluated the fine-tuned object detection and segmentation models and compared their 

performance with state-of-the-art models on the IDD dataset. Specifically, we compared the object 

detection model (DETR) with the Faster R-CNN (FRCNN) [62], which was previously identified 

as the best-performing model on the IDD dataset by Singh et al [63]. We fine-tuned both DETR 

and FRCNN using 31,000 images from the IDD dataset, and evaluated their performance on 1,151 

images. We used the average precision (mAP) per class across all cities to characterize 

performance. The mAP captures the precision-recall tradeoff, where precision refers to the 

proportion of correct detections out of all detections made, and recall refers to the proportion of 

true objects correctly detected.[64] Higher values closer to 1 reflect stronger agreement between 

model predictions and ground truth labels. We also compared the performance of the semantic 

segmentation model (SegFormer) with the Dilated Residual Networks (DRN) [65], which was 

identified as the best-performing segmentation model on the IDD dataset by Singh et al. [63] We 

fine-tuned both SegFormer and DRN using 7,034 IDD images for training and evaluated models’ 

performance on 1,055 test images using mean Intersection over Union (mIoU) per class. The mIoU 

quantifies the overlap between the predicted and ground truth segmentations for each class. It is 
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calculated as the area of overlap divided by the area of union between predicted and true pixel 

masks, averaged across all evaluated classes. mIoU values closer to 1 indicate greater accuracy in 

pixel-level classification [64]. 

Because some areas lacked GSV coverage and instead relied on model-predicted values, we further 

assessed the performance of the spatial prediction models. We used 5-fold cross validation (80% 

to 20% training to validation split) by leaving whole intersections out at a time and compared 

model performance to a simpler Random Forest Regressor also trained on CooKIE embeddings. 

Evaluation metrics included the coefficient of determination (R²), mean absolute error (MAE), and 

Moran’s I for spatial autocorrelation in residuals. Metrics were computed across all detected 

objects and averaged for each city.  

Our following analyses focused on evaluating the validity of machine learning derived 

environment features by comparing the spatial predictions at the H3 cell level to the three 

complementary external sources: (1) human-coded audits of GSV images, (2) interviewer 

assessments from a nationally representative aging study, and (3) geospatial measures (NDVI, 

NO2, and population). Each comparison targeted overlapping features to assess the extent to which 

ML-extracted information aligned with human perception, field observation, and external 

environmental indicators. 

Data from the human-coded 800 GSV image sets was first compared to the spatial predictions. For 

continuous variables captured during the coding of the images (e.g., vehicle and pedestrian counts), 

we generated scatter plots and calculated linear regression coefficients, mean squared error (MSE), 

and intra-class correlation coefficients (ICC) to compare ML and human-coded values. For binary 

indicators (presence of sidewalks, street signs, and streetlights), we computed accuracy, sensitivity 
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(true positive rate), and specificity (true negative rate) of ML predictions relative to human-coded 

classifications.  For greenspace, we visualized the distribution of ML-derived green view index 

(GVI) values across ordinal human-coded categories using box plots and reported Spearman’s rank 

correlation and Kruskal–Wallis test results.  

To compare ML-derived features with field-based assessments from LASI-DAD, we retrieved 

respondents’ geocoded residential locations and constructed circular buffers at four spatial scales: 

0 m (point location), 100m, 250m, and 500m to capture the surrounding environment at varying 

levels of proximity. The buffers were then intersected with the H3 hexagons containing ML-

derived environmental features. For each buffer, we calculated area-weighted averages of ML 

features based on the proportion of each H3 hexagon that overlapped with the buffer. We then 

examined the association between buffer-averaged ML-derived measures and interviewer ratings 

by estimating four linear regression models, each predicting a separate ML feature: vehicular 

traffic, pedestrian traffic, sidewalk presence, and GVI, based on the corresponding interviewer-

assessed item. These models allow us to assess the extent to which interviewer perceptions of a 

neighborhood aligned with features extracted from street-level imagery in the same neighborhood. 

We used varying buffer sizes because interviewers were instructed to base their assessments on 

the immediate surroundings of the household, but the actual spatial scope of these judgments may 

be uncertain possibly extending beyond the immediate home. Simultaneously, features such as 

sidewalk quality or green space may vary significantly over short distances. By testing associations 

across a range of buffers, we account for potential mismatch in the spatial scale of perception 

versus measurement. 
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Finally, we compared ML-derived environmental features with the geospatial measures of NDVI, 

NO2, and population density aggregated to the same spatial scale. Specifically, the three measures 

(NO2, NDVI, and population density) were spatially joined to the H3 hexagonal grids produced 

for the four cities. For each H3 cell, we identified all intersecting raster pixels from the satellite- 

or model-based datasets. We then calculated the value for the cell by averaging the values of these 

pixels, weighted by the proportion of each pixel’s area that overlapped with the H3 cell. This 

process yielded a dataset of environmental exposures and population estimates linked to ML 

features at the H3 level. To assess correspondence between these data sources and ML-derived 

spatial predictions, we generated city-specific scatter plots comparing the number of vehicles from 

images to NO2 levels, GVI to NDVI levels, and the number of pedestrians to population levels, 

and calculated Spearman correlations to quantify the strength of association. 

4. Results 
4.1. Validation against IDD 

 
The number of image sets queried from the GSV API was as follows: 13,481 in Mumbai, 

18,591 in Kolkata, 68,409 in Delhi, and 76,888 in Chennai. GSV imagery was available for 11,361 

of these intersections in Mumbai (84.2%), 11,618 in Kolkata (62.5%), 52,039 in Delhi (76.1%), 

and 65,376 in Chennai (85.0%). Over 99% of these images were collected between October 2021 

and April 2023.  

 

DETR achieved moderate performance with mAP scores > 0.5 across several classes and 

consistently outperformed a previously top-performing model (FRCNN) for the Indian Driving 

Dataset across nearly all object classes. Particularly large gains were observed for detecting 

vehicles (e.g., +0.39 for trucks) and persons (+0.42). S1 Table 1 in Supplementary Materials shows 
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mAP for different classes of objects (pedestrians, trucks, cars, etc.) using DETR compared to 

FRCNN. While both models struggled with traffic lights and signs, DETR still achieved notable 

gains over FRCNN in those categories. We observed a similar performance trend in semantic 

segmentation. SegFormer demonstrated excellent performance for road and vegetation 

segmentation (>0.8), and fair performance for sidewalks (0.59) and poles (0.50). S1 Tabe 2 in 

Supplementary Materials shows mIoU for each segmentation class. Segformer had superior 

performance over a previously top-performing model (DRN) across the 4 evaluated classes. 

Improvements were especially pronounced for features like sidewalks, poles, and vegetation.  

4.2. Validation of Spatial Prediction Model 
 

Across all four cities, the GNN consistently outperformed the Random Forest regressor in 

predicting features in the hold-out set. Average R² improved from 0.12 to 0.66 in Mumbai, 0.18 to 

0.71 in Chennai, 0.15 to 0.51 in Delhi, and 0.11 to 0.31 in Kolkata. MAE also decreased, from 

4.50 to 1.08 in Mumbai, 1.29 to 0.38 in Chennai, 2.26 to 1.22 in Delhi, and 3.91 to 1.23 in Kolkata. 

MAE reflects the average size of the errors when comparing prediction to ground truth across 

several classes. The Random Forest regressor shows greater residual variation, suggesting poor 

spatial generalization and frequent over- or underprediction (Figure 4). In contrast, the GNN’s 

residuals are smaller and more tightly distributed, with fewer cells having large errors. This is 

further supported by the low spatial autocorrelation in GNN residuals (0.0257 of Moran’s I), 

suggesting reduced spatial bias compared to using the Random Forest model.  
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Figure compares Random Forest model (left) to the GNN model (right), both trained on the same input features. 

4.3. Validation against Image Audits 

Scatter plots illustrated adequate but varying agreement between ML predictions and 

human-coded counts (Figure 5). We found strong agreement for vehicle and pedestrian counts, 

with ICCs of 0.79 and 0.94, respectively, and corresponding Spearman correlations (r) of 0.84 and 

0.89 (p < 0.001 for both). For cycles and autorickshaws, the relationships were more moderate. 

Cycles, which included both bicycles and motorcycles, yielded an ICC of 0.75 and r = 0.61 (p < 

0.001), while autorickshaws had the weakest alignment (ICC = 0.35, r = 0.59, p < 0.001). Box 

plots comparing ML-derived green view index (GVI) scores with human-rated greenness on a 5-

point ordinal scale revealed a monotonic trend: both the mean and median GVI scores increased 

with each level of human-assigned ordinal greenness rating, which ranged from 1 (No greenery) 

to 5 (Very green) (Figure 6). The Kruskal–Wallis rank sum test confirmed significant differences 

in GVI across greenness levels (χ² = 476.99, df = 8, p < 2.2e−16), and Spearman’s rank correlation 

showed a strong positive association (ρ = 0.75, p < 2.2e−16). 

Figure 4. Spatial prediction residuals for pedestrian estimates in Kolkata. 
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Decimal values reflect average scores between raters when difference ≤ 2 

Figure 5. Scatter plots comparing ML features to human coded features. 

Figure 6. Box plot comparing ML-derived GVI from GSV images to human-rated greenness. 
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For traffic lights, traffic signs and sidewalks, the two human raters occasionally disagreed on 

whether images of intersections contained those features. Due to the large number of such cases, 

we didn’t resolve them through consensus but instead excluded them from the analysis to ensure 

valid comparisons. After these exclusions, ML detection of traffic lights showed high overall 

accuracy (96%) and sensitivity (99%), but low specificity (11%), indicating a tendency to under-

predict presence of traffic lights (Table 2). Here, “accuracy” reflects agreement with this reference 

label set and should be interpreted as a measure of consistency with human perception, not 

objective ground truth. Traffic signs showed moderate agreement, with 69% accuracy, 72% 

sensitivity, and 55% specificity, though 19.1% of images were excluded due to disagreement 

between raters. Sidewalk detection yielded the lowest accuracy (61%), with sensitivity and 

specificity of 68% and 59% respectively, and 21.8% of cases excluded for disagreement. 

 

Table 2. Performance metrics for ML binary feature extraction relative to human-coded assessments  

Feature Accuracy Sensitivity Specificity N Rated Excluded Images (% 
of 800 image sets 
with disagreement) 

N with 
Feature 
Present in 
Human 
assessment 

Traffic 
Lights 

0.96 0.11 0.99 776 

 

3% 18 

 
Traffic 
Signs 

0.69 0.55 0.72 647 

 

19.1% 142 

 
Sidewalks 0.61 0.59 0.68 625 

 

21.8% 331 
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4.4. Validation against LASI-DAD Interviewer Assessments 

Using buffers of 500 meters around each household, we found that areas rated by 

interviewers as having “some” vehicular traffic had on average 2.33 more vehicles detected in 

GSV images compared to those with no or not much traffic (95% CI: [1.32, 3.33], p < 0.001) 

(Figure 7). In areas rated as having more than usual or heavy traffic, the ML-detected vehicle count 

was 1.23 higher compared to those with no or not much traffic (95% CI: [0.16 to 2.31], p = 0.025). 

While ML-detected pedestrian counts were higher in areas rated as having more foot traffic, these 

associations were not statistically significant. Visible green space observed by interviewers near 

participants’ homes was associated with higher ML-derived Green View Index (GVI) scores, with 

a difference of 0.01 in GVI for areas with any greenspace detected by the interviewer (95% CI: 

Figure 5. Linear regression estimates comparing ML-derived features and LASI-DAD interviewer assessments 
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[0.00, 0.02], p = 0.010). Interviewer reports of poor or average sidewalk conditions were linked to 

significantly lower ML sidewalk pixel segmentation scores in those areas (-2.37e-04, 95% CI: 

[0.00, -5.10e-04], p = 0.034), while above average or very good sidewalk ratings were not 

significantly different compared to the reference category of no sidewalks, though the point 

estimates had similar magnitudes. The results across the four comparisons remained largely 

consistent for smaller buffer sizes (0m, 100m, 250m). 

4.5. Validation against Geospatial Data 

Across all four cities, ML-derived features showed meaningful alignment with external 

geospatial indicators, though the strength and consistency of these associations varied by feature 

type and location (Figure 8). For NDVI and GVI, we observed positive associations across all 

cities, though the correlation coefficient (r) was highest in Delhi (r = 0.48) and lowest in Mumbai 

(β = 0.28), indicating that higher GVI segmentation was moderately associated with more 
Figure 6. Validation of ML-derived features against geospatial data by city 
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vegetation as captured by satellite NDVI. For vehicular traffic, ML-derived car counts were most 

strongly associated with NO₂ concentrations in Chennai and Delhi (r = 0.67), but the relationships 

were weaker in Kolkata (r = 0.42), and Mumbai (r = 0.56). Despite differences in magnitude, all 

associations were statistically significant (p < 0.001). Finally, ML-derived pedestrian counts were 

positively associated with population density in all cities, despite the presence of clear outliers in 

pedestrian predictions.  

5. Discussion 
This study assessed the performance of ML models trained on an Indian dataset to detect 

and quantify environmental features from GSV images using three complementary data sources: 

human-coded image audits, field-based interviewer observations, and geospatial indicators from 

satellite and population data. Overall, the ML models produced estimates that are reasonably 

related to observations from the other datasets, especially for more universally recognizable 

features such as vehicles, pedestrians, and greenery. In contrast, performance was lower for 

features that are more ambiguous like sidewalk quality or features specific to LMIC urban 

environments, such as rickshaws. These results highlight the promises and challenges of deploying 

ML models for scalable feature detection in complex and heterogeneous urban environments in 

LMIC. 

Before triangulating the models’ predictions against human-coded and geospatial data sources, we 

evaluated model performance using out-of-sample data from the Indian Driving Dataset. Overall, 

the DETR object detection model outperformed the previously top-performing model (FRCNN) 

on IDD across all evaluated object classes [62]. Performance gains were particularly notable for 

commonly occurring street elements such as vehicles and persons, highlighting DETR’s ability to 

generalize to complex Indian streetscapes across these categories. However, gains were smaller 
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for more ambiguous features like traffic signs and traffic lights. These results demonstrate that 

while DETR offers improved detection accuracy overall, feature-specific limitations remain. For 

semantic segmentation, the SegFormer model outperformed the DRN baseline across all evaluated 

classes, achieving higher accuracy for both broad surfaces like roads and more granular elements 

such as sidewalks, greenery, and poles.  

To extend the geographic reach of GSV-derived features into areas lacking image coverage, we 

implemented a spatial prediction model using a Graph Neural Network (GNN). Compared to a 

Random Forest Regressor, the GNN achieved greater predictive accuracy and spatial 

generalizability in cross-validation, but results differed across cities. It is important to note that the 

reliability of those predictions for intersections missing images hinges on the assumption that those 

locations are not systematically different in ways unobservable to the model. If image coverage is 

missing significantly or non-randomly, this could introduce bias into the predictions.  

 

The comparison with human-coded image audits provides reasonable support for the models’ 

validity in identifying features directly observable by a human eye. ML predictions were highly 

correlated with rater-derived counts of vehicles and pedestrians, with relatively high ICC and 

correlation coefficients. Notably, the ML model was more likely to undercount vehicles and cycles 

while overcounting pedestrians when compared to humans. Refinements to the object detection 

pipeline, such as the removal of small objects and application of non-maximum suppression, 

helped reduce noise and improve alignment with the protocol used by human raters. Still, model 

performance was comparatively lower for features that were less frequent or more visually 

ambiguous or underrepresented in HIC datasets. For example, autorickshaws were sometimes 

misclassified as cars, likely due to their similar shapes and visual features, and the model’s 
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extraction of sidewalks, street signs, and poles was inconsistent, reflecting both model limitations 

and the inherent variability and subjectivity in these features across cityscapes. Other binary 

features such as traffic lights showed very high specificity but low sensitivity, meaning the model 

was good at confirming the absence of traffic lights but often failed to detect them when present. 

This conservative prediction bias is in line with poorer prediction performance on these elements 

in the IDD dataset re-emphasizing the need for greater representation of rare but relevant built 

environment elements. 

The alignment between interviewer assessments from LASI-DAD and ML-derived features was 

generally weaker. Measures of vehicular traffic aligned well with interviewer reports whereas 

pedestrian traffic showed the expected direction of association but was not statistically significant, 

possibly due to variability in both the model's pedestrian detection and timing mismatches between 

when GSV images were captured and when interviewers made their observations. Another reason 

for this mismatch could be that the ML-detection does not differentiate between nearby and far 

pedestrians, while interviewers might have considered this difference. Surprisingly, despite being 

a static feature, sidewalk results showed the weakest alignment. ML-derived segmentation scores 

did not correspond well with interviewer ratings of sidewalk presence. One factor that could 

explain this is varied definitions of sidewalks as designated by the interviewer compared to the 

ML. Another factor is the spatial mismatch between the areas being evaluated by the GSV 

aggregation and the interviewers’ observations. While ML features were averaged across larger 

circular buffers around the household, interviewer assessments typically reflected the immediate 

area surrounding the home. As a result, interviewer ratings may have a more precise spatial 

resolution than what is captured by the buffers, leading to discrepancies. While we attempted to 

ameliorate this by taking smaller buffer sizes, we were ultimately constrained by the resolution of 
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the H3 cells, which cover 0.74 square kilometers and therefore span several blocks with potentially 

differing sidewalk conditions. If sidewalk presence varies significantly from block to block, this 

coarse aggregation could mask meaningful variation. This highlights the need for finer-grained 

spatial units, non-uniform spatial units (e.g., street blocks), or more targeted sampling within 

smaller geographic extents when evaluating features like sidewalks that may vary sharply over 

short distances. 

Overall, there was strong agreement between different indicators of greenness, suggesting that ML 

predictions from GSV provided a reasonable approximation of greenery in this setting. ML-

predicted GVI showed strong correlation with human-coded ratings of greenery from the image 

audits, reinforcing the model’s ability to detect eye-level vegetation in street imagery. GVI also 

aligned well with LASI-DAD interviewer assessments: Respondents living in areas where 

interviewers reported visible greenery tended to have higher average GVI values in the 

corresponding buffer. In all four cities, GVI was positively associated with satellite-derived NDVI, 

although the strength of the association varied by city. Observed variation may reflect the ways in 

which satellite and street-level imagery capture complementary but distinct dimensions of 

greenness [66–68]. NDVI reflects vegetation and canopy cover visible from above, while GVI 

captures human-scale vegetation visible from the street. Differences in urban form, vegetation 

placement, size, and quality, and building density as well as seasons likely account for variation 

in how well these measures align across different settings. These results support the use of GVI 

from GSV as a scalable proxy for neighborhood greenery but also emphasize the benefit of 

triangulating multiple sources of data to better characterize environmental exposures such as 

greenery.  
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Other geospatial comparisons provided further insight into the strengths and limits of ML-derived 

features. The relatively mixed correlations between car counts and NO₂ concentrations suggest 

that while vehicular presence is a contributor to air pollution, other sources such as industrial 

emissions may dilute this relationship. Similarly, associations between pedestrian counts and 

population density were generally positive, though visual inspection illustrated the presence of 

outliers. GSV imagery of intersections may disproportionately capture areas of concentrated 

pedestrian activity, such as intersections, markets, or commercial corridors, which reflect 

momentary crowding rather than the underlying residential population density. As a result, ML-

derived pedestrian counts may overrepresent transient activity in high-traffic nodes rather than 

providing an even spatial estimate of where people live. 

The patterns observed in our results point to the broader challenges in applying ML tools to GSV 

images [8,34,40,41]. First, incomplete image coverage remains a constraint especially in LMIC. 

Many intersections within the cities lacked GSV imagery, necessitating the interpolation of feature 

values across space. While this approach, coupled with ML prediction using multimodal geospatial 

embeddings with H3-cell aggregation, helped extend geographic coverage, it potentially 

introduced measurement uncertainty, especially given that GSV image availability is unlikely to 

be random. Areas with lower infrastructure or informal settlement patterns may be systematically 

underrepresented, potentially leading to bias in model extrapolation. Second, GSV provides only 

a static snapshot of the built environment. Features like vehicles and pedestrians are transient and 

can vary widely by time of day, day of the week, or season. Without incorporating GSV timestamp 

metadata – which is challenging to collect – temporal misalignment between imagery and other 

data sources (such as interviewer observations or field assessments) is difficult to account for. 

Third, the image perspective used by GSV may miss key parts of the streets such as alleys or 
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spaces behind obstructions limiting the completeness of visual information. In the Indian context, 

additional challenges arise from the cultural specificity of certain features. Elements like 

autorickshaws, irregular sidewalk structures, and informal signage are underrepresented in HIC 

datasets or inconsistently labeled, making them difficult for ML models to detect with accuracy. 

This study showed that even when models are fine-tuned on locally sourced data, transfer learning 

alone may not fully suffice. Purpose-built training datasets and annotations tailored to regional 

visual features will likely be necessary to further improve model performance. 

More fundamentally, future research aiming to assess the impact of the built environment on 

healthy aging in LMICs must grapple with two key challenges. First, while this study addressed 

limitations in detecting visible built environment features using models trained on data from HICs, 

accurate detection does not guarantee meaningful interpretation for downstream health outcomes. 

Features such as congestion, sidewalk availability or greenery may carry different implications for 

mobility, safety, and cognitive stimulation in settings like India. This points to the need for more 

contextually grounded definitions of key constructs such as walkability or cognability, that reflect 

local lived experiences and environmental conditions. Second, uncertainty remains about the 

spatial scale at which built environment features influence health outcomes related to aging.[69,70] 

While this study aggregated ML-derived features over standardized buffers broadly capturing a 

neighborhood, other sources such as interviewer assessments reflect more localized perceptions of 

the area surrounding a household. The appropriate geographic unit of analysis may vary by feature 

and context. While theory-driven approaches can help guide decisions about the appropriate spatial 

scale, future studies should also consider incorporating sensitivity analyses that pairs ML-derived 

features with complementary data sources at multiple scales. 
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6. Conclusion 

Our findings highlight the validity of ML-derived features in India where we lack data on 

environmental features. Overall, our results suggest that ML predictions on GSV images, though 

imperfect, are sufficiently reliable to capture several important urban environmental features. 

While prediction of ambiguous features and those specific to the Indian urban environment can 

still be improved, these scalable tools offer valuable potential for characterizing the built 

environment using ML. Moving forward, ML offers opportunities to identify environmental 

elements that promote cognitive engagement, reduce stress, or facilitate mobility in LMIC, 

especially when information on local contexts and theoretical insights are incorporated.  
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S1. Machine Learning Model Post-processing and Performance 
Evaluation. 
1.1  Post-processing on Machine Learning-Based Feature Extraction  
Despite the success of automatic feature extraction, we identified instances with redundant and 

noisy predictions where the DETR object detection model generated overlapping predictions on 

the same objects. For instance, we show the predictions from the fine-tuned DETR model in Figure 

1-(a), highlighting several redundant bounding boxes for overlapping objects.  

To address this, we implement post-processing using non-maximum suppression (NMS), which 

eliminated redundant bounding boxes [47,49]. As shown in Figure 1-(b), we apply NMS to the 

prediction results from Figure 1-(a) and eliminate these noisy and repetitive predictions. Further 

refining our results, we implement an additional filtering step to remove small predictions that 

were challenging for human coders to distinguish the objects in Figure 1-(c). 

 

S1 Fig 1 
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1.2  Spatial Prediction Model Implementation 
 

The graph neural network used for spatial prediction implements a three-layer GraphSAGE 

model, with each layer consisting of 128 hidden units, ReLU activations, and a dropout rate of 0.1 

applied to the hidden layers. The model is trained from scratch using the Adam optimizer with a 

learning rate of 0.001 and mean squared error (MSE) as the loss function. Each H3 cell is 

represented as a node in the graph, and edges are defined based on second-order adjacency, i.e., 

each node is connected to its immediate and next-nearest neighbors in the H3 grid. To incorporate 

uncertainty into the model’s predictions, we apply Monte Carlo dropout during inference. For each 

H3 cell, we run the model 50 times with dropout activated and generate a prediction on each pass. 

We then take the average of these 50 predictions to produce the final output. This process reduces 

prediction variance and results in more stable and reliable predictions across space. 

 

1.3  Object Detections Results across Classes 
Class DETR Faster RCNN (FRCNN) 

Person 0.649 0.225 

Truck 0.684 0.293 

Motorcycle 0.594 0.304 

Bicycle 0.482 0.100 

Rider 0.550 0.248 

Bus 0.523 0.348 

Car 0.615 0.401 

Traffic light 0.354 0.095 

Traffic sign 0.449 0.127 
S1 Table 1 
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From Table 1, DETR significantly outperformed FRCNN across all classes. Specifically, notable 

performance improvements were observed for trucks with an increase of 0.391 and motorcycles 

with an increase of 0.290. DETR consistently exhibited superior performance in vehicle detection, 

showing the performance differences for cars of 0.214, autorickshaw of 0.246, and bus of 0.175. 

Additionally, DETR substantially outperformed FRCNN in detecting humans, including person 

with an improvement of 0.424 and rider with an improvement of 0.302. Despite consistently high 

performance in detecting vehicles and persons, DETR showed comparatively lower mAP values 

for traffic lights and signs. This was likely due to confusion caused by the similarity of these 

objects' shapes to poles, frequently present in dense and visually complex Indian urban landscapes. 

Nevertheless, DETR still significantly improved detection accuracy for traffic signs (difference of 

0.322) and traffic lights (difference of 0.259) over FRCNN.These results demonstrate that DETR 

fine-tuned on IDD more effectively captured physical environment objects compared to FRCNN. 

 

1.4  Semantic Segmentation Results across Classes 

Class (IoU) Segformer DRN 

road 0.9648 0.9377 

sidewalk 0.5871 0.3294 

pole 0.4978 0.2170 

vegetation 0.8912 0.7972 
S1 Table 2  

In Table 2, SegFormer significantly outperformed DRN across all four evaluated classes, 

achieving notable improvements of 0.2577 for sidewalk, 0.2808 for pole, and 0.094 for vegetation. 

The highest segmentation accuracy was recorded for the road class (mIoU = 0.9648), showcasing 

SegFormer’s effectiveness in segmenting extensive and clearly defined surfaces compared to DRN 
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(mIoU = 0.9377). Despite the relatively lower absolute accuracy for poles (mIoU = 0.4978), the 

considerable gap compared to DRN’s performance (mIoU = 0.2170) highlighted SegFormer’s 

superior ability to detect smaller and intricate objects, often complicated by occlusions. Similarly, 

SegFormer’s significant improvement in sidewalk segmentation (from 0.3294 to 0.5871) 

highlighted its ability in handling complex Indian urban sidewalks characterized by diverse 

textures, unclear boundaries, or inconsistent construction quality. Vegetation segmentation 

accuracy also improved notably from 0.7972 to 0.8912, which indicated SegFormer’s 

effectiveness in accurately identifying complicated natural components within urban contexts. 

Overall, this model’s segmentation performance improvement demonstrated SegFormer’s robust 

and consistent advantage over DRN in addressing challenging segmentation tasks in Indian urban 

environments. 
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S2. Image Rating Protocol and Instrument. 

This appendix provides additional detail on the process used for the human-coding of GSV 

images. It outlines the training and standardization procedures used to prepare raters, the survey 

raters undertook, the criteria and process for resolving disagreements through consensus review, 

and the final scoring rules applied to create a dataset of environmental features in the four cities. 

These methods were designed to ensure consistency, reliability, and comparability across raters 

and cities in the study. 

2.1  Image Rating Protocol 
2.1.1 Rater Training 

To ensure consistency across raters, all coders participated in a structured training process prior to 

the full coding of the complete list of image sets. This began with a collaborative review of a 

handpicked list of 40 image sets (10 from each city), during which all raters discussed their scoring 

of the same images as well as their interpretations of respective survey items. All team members 

participated in this training process including project investigators. This training established shared 

definitions for subjective or ambiguous categories, such as levels of congestion, sidewalk quality, 

and perceived greenery which could differ between individuals assessing those features in urban 

India. 

As part of the training, raters were instructed not to exclude duplicate items in their counts of 

vehicles, pedestrians, cycles, and rickshaws when those features were in multiple images from 

different angles (0°, 90°, 180°, and 270°) within an image set since it would be too difficult to 

ascertain unique features across images. Additionally, vehicles parked in areas meant for moving 

traffic were included in the vehicular count. For counting pedestrians, the scores reflected the 
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number of people in the image grid, regardless of their activity, such as walking, standing, or 

sitting. Raters were also asked to avoid zooming in too much on images to discern the exact count 

of features such as cars and pedestrians. This recommendation was given to avoid capturing what 

was outside the area interest on the street intersection. Following training, each rater was assigned 

200 images (100 per city), ensuring balanced geographic coverage and that each of the 800 image 

sets was independently rated by two raters. 

2.1.2 Consensus Process and Final Scoring 

To resolve differences in scoring by the two raters, we defined variable-specific thresholds for 

triggering consensus review by a third, trained moderator (Table S 3). These thresholds varied by 

variable type: 

S2 Table 1 

-  Continuous count variables (vehicles, pedestrians, cycles, rickshaws): If the difference 

between the two raters exceeded a threshold based on the magnitude of their average rating, 

the image was flagged for review. 

- Ordinal variables (e.g., greenspace): If raters differed by three or more points on the 1–5 

scale, the item was reviewed. Smaller differences were resolved by averaging the two 

scores (e.g., 2 and 3 became 2.5). 

Variable Consensus Threshold 

Vehicle Count If average ≤ 20, difference ≥ 5; if average > 20, difference ≥ 10 

Cycles If average ≤ 15, difference ≥ 5; if average > 15, difference ≥ 8 

Rickshaws If average ≤ 15, difference ≥ 5; if average > 15, difference ≥ 8 

Pedestrians If average ≤ 20, difference ≥ 5; if average > 20, difference ≥ 15 
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- Binary variables (e.g., traffic lights, street signs, sidewalks): No consensus process was 

used. Cases where raters disagreed on presence/absence were excluded from computation 

of metrics (accuracy, sensitivity, specificity) comparing performance to ML algorithm. 

Consensus scores replaced the original ratings only when disagreements exceeded the above 

thresholds. For items not triggering review, the final score was determined by averaging the scores 

across the two rater values. When a consensus review was triggered, the moderator reviewed the 

original images and both raters’ justifications. A final score was then assigned based reference to 

training guidelines and occasional team discussion. Some items showed consistently large 

differences between raters. To simplify the process, we monitored which survey items had the 

highest alignment between individual raters and final moderator-assigned ratings. For these items, 

we assigned default consensus scores based on the rater who demonstrated the most consistent 

agreement with the moderator’s previous decisions. To ensure the reliability of this approach, we 

conducted a validation step in which a random 20% of these default consensus ratings were 

reviewed independently by the moderator. In cases where the default and validation ratings 

disagreed, the moderator reassessed the item and assigned a final consensus rating. This process 

helped streamline adjudication while maintaining rigor and internal consistency across the dataset. 

2.2  Image Audit Instrument 

The GSV image audit was conducted using an instrument developed and deployed through 

REDCap (Research Electronic Data Capture), a secure web-based platform hosted at the 

University of Southern California. The survey was designed to systematically capture key features 

of the built environment relevant to health. Raters completed one survey per image set, which 



 46 

consisted of four directional GSV images taken from a single street intersection. The instrument 

included the following questions: 

1. Select city where photo was taken  
 
• Chennai 
• Delhi 
• Mumbai 
• Kolkata 
 

2. What is the density of all types of vehicles (cars, buses, trucks, bicycles, motorbikes & rickshaws)? 

• Very low 
• Low 
• Medium 
• High 
• Very high 

3. What is the density of pedestrians? 

• Very low 
• Low 
• Medium 
• High 
• Very high 

4. Total number of vehicles (cars, buses, trucks 
 

5. Total number of cycles (bicycles and motorbikes) 
 
6. Total number of rickshaws 
 
7. Total number of pedestrians 
 
8. Are there any streetlights? Yes/No 
 
9. Are there any street signs? Yes/No 
 
10. Are there any traffic lights? Yes/No 
 
11. Amenities/Greenspace: Are there trees/greenery visible? 

• No 
• Small amount 
• Some 
• More than average 
• Very green, park visible 
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12. Are there pedestrians, motorists, and bikes inter-mingled together on the road, creating potential for 
conflict? 

• No 
• Low risk 
• Some risk 
• High risk 
• Very high risk 

13. Are there walking paths in good condition? 

• No walking paths (sidewalks) available 
• Available but in poor condition with many hazards 
• Available in moderate condition 
• Available in good condition 
• Available with no hazards 

14. Are the streets in good condition? 

• Poor condition with many hazards 
• Moderate condition 
• Good condition 
• Excellent condition with no hazards 

15. Are there obstructions in the walking paths (beggars, street vendors, motorbikes or cars parked)? 

• No 
• Some 
• Many 

16. Are there street crossings (crosswalks) available? 

• Yes 
• No 

17. Are the buildings well-maintained? 

• Buildings are in disarray 
• Poorly maintained 
• Somewhat maintained 
• Well maintained 
• Very well maintained 
• N/A (e.g. no visible buildings) 

18. Is there visible trash on the streets/sidewalks? 

• None 
• Some 
• A lot 

19. Does the area appear to be safe (crime)? 

• Very safe 
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• Somewhat safe 
• Neutral 
• Somewhat unsafe 
• Very unsafe 

20. Rate image confidence: 

• Poor and low confidence in ratings 
• Some issues with ratings due to image quality and moderate confidence 
• Image quality acceptable and moderate to high confidence 
• No issues with image quality and high confidence 

21. Issues with image (check all that apply): 

• Blurry portions in image 
• Obstructions blocking view 
• Dark pictures 
• Early morning 
• Not a road intersection 
• No buildings 
• None 

22. Any other comments (Text response) 
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