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Abstract

Environmental factors play a critical role in healthy aging, yet data sources capturing these
exposures remain limited, particularly in low- and middle-income countries (LMICs). To address
this gap, we developed a protocol to leverage Google Street View (GSV) images and machine
learning (ML) methods to capture features of the physical and built environment (e.g., vehicle
congestion, greenspace) in four major Indian cities. We first fine-tuned computer vision models
on the Indian Driving Dataset (IDD), where our object detection and segmentation results
outperformed state-of-the-art models found in the literature in identifying common street-level
features. We then validated ML-derived features from GSV by comparing predictions to human-
coded image audits, field-based interviewer assessments, and existing indicators derived from
satellites. ML predictions showed strong performance for features such as vehicles, pedestrians,
roads, and greenery, and comparatively lower performance for context-specific features such as
autorickshaws, sidewalks, and traffic signs. Results underscore limitations of pairing GSV with
existing machine learning models given the static and incomplete nature of GSV data and the
cultural constraints of applying pre-trained models developed in high-income contexts across
cultural settings. Nonetheless, our findings also showcase the reliability of our implemented

approach in detecting key features of the urban environment in India.



1. Introduction

The global demographic shift toward older populations is reshaping priorities in public
health and aging research [1-3]. Despite advances in medicine, promoting healthy aging
increasingly requires attention to non-clinical social, environmental, and behavioral factors [4—6].
One such factor is the physical and built environment in which our societies age. The
neighborhoods we live in determine access to greenspace, exposure to traffic and noise, as well as
opportunities for physical activity and social interaction, thereby shaping our physical, mental, and
cognitive health. Cities concentrate both risks and resources. While access to services and
infrastructure may support aging in place, dense traffic, pollution, limited greenery, and inadequate
pedestrian environments may accelerate physical and cognitive decline [6]. With the rapidly
growing population of older adults in urban areas, there is a pressing need to understand and

measure how environments support or impede healthy aging.

The fastest-growing populations of older adults are now found in low- and middle-income
countries (LMICs), yet our understanding of how physical and built environment features
influence healthy aging in these settings remains limited. A key barrier is the lack of spatial data
infrastructure in LMICs. Much of what we know about the relationship between the physical and
built environment and healthy aging comes from studies in high-income countries (HICs) whose
urban environments differ substantially from those in LMICs. Recent advances in computer vision
and the availability of Google Street View (GSV) imagery offer a scalable way to observe features
of the physical and built environment. Machine learning models can be trained to identify elements

such as vehicles, greenery, and infrastructure within their location-specific contexts using GSV



images. While this approach has been applied in HICs to study various urban exposures such as
walkability, greenness [7], and traffic [8], applications in LMICs remain sparse and limited [9—
12]. This raises concerns about the performance and validity of these methods in LMICs, where
image coverage, visual complexity, and infrastructure design may differ markedly from the

settings in which models were originally developed.

To address this gap, this study assessed the validity of using a machine learning model on GSV
imagery to capture environmental features in an urban LMIC setting using India as an example.
Indian cities provide a compelling case for this validation due to the rapidly urbanizing
environment, variable infrastructure quality, and non-standard features that are poorly captured in
existing global datasets from HICs. We first fine-tuned existing pretrained machine learning
models on an Indian dataset to improve context-specific performance, then utilized a spatial
prediction method to predict indicators when images are missing. We then triangulated ML-
derived indicators against three complementary sources for validation: manual audits of images by
human raters, neighborhood observations from a household aging survey, and secondary
geospatial data. Our goal was to evaluate how well the combination of automated image analysis
and spatial predictions reflects urban environmental conditions in a data-constrained context, and

to highlight practical considerations in applying this method for aging and health research.

2. Literature Review

2.1.Built Environment and Aging

Urban environmental exposures relevant to healthy aging include features such as air quality,
green and blue spaces, social dimensions of neighborhoods such as socioeconomic conditions and

social cohesion, and human-made “built” infrastructure where we live, work, and age [6,13,14].



Characteristics of the built environment such as street and sidewalk layout, infrastructure quality,
and land use can impact walkability, density, exposure to noise and pollution, and access to
services and green spaces which may influence aging outcomes through both protective and risk
pathways [15,16]. More recently, the concept of cognability has emerged to capture the degree to
which a neighborhood supports cognitive health among aging residents [16]. This framework
emphasizes the combined influence of natural, social, and built features in promoting or hindering
healthy cognitive aging. Environments that offer opportunities for physical activity, social
engagement, and cognitive stimulation within safe and accessible spaces may support

cerebrovascular function and cognitive resilience through neuroprotective mechanisms [8,17].

Despite growing recognition of environmental influences on healthy aging outcomes in general,
most studies have been conducted in high-income countries [17-22]. This limits our ability to
understand how these exposures impact aging in LMICs and if they may operate differently.
Research on the built environment in LMICs, and India in particular, remains sparse due to limited
data [23]. Some studies have linked air pollution [24—26] and poor housing quality [27] to declines
in physical and cognitive functioning among Indian older adults, highlighting environmental risks
that may be relevant to the LMIC context. A few qualitative studies have also noted poor
walkability, unsafe pedestrian infrastructure, and limited access to parks and communal spaces as
key challenges, emphasizing how neighborhood design shapes opportunities for active and healthy
aging [28-30]. Yet, there have been limited large-scale, systematic quantitative investigations of
how built environment features in India affect aging outcomes, in part due to the lack of data

infrastructure to capture such environmental exposures at scale. This study aimed to address that



gap by developing and validating machine learning-derived measures of the built environment

using GSV imagery.

2.2.GSV and Machine Learning in Health and Urban Research:

Google Street View (GSV) has emerged as a scalable resource for assessing built
environment characteristics relevant to health, mobility, and social conditions. Early studies in
HICs demonstrated the feasibility of using GSV for virtual audits of neighborhood infrastructure,
showing high inter-rater reliability for features like sidewalks, crosswalks, land use, and pedestrian
safety [31-34]. These findings have since been extended with the use of deep learning and
computer vision methods, allowing researchers to automatically extract features such as street
greenery, visual complexity, as well as highway and sidewalk presence from GSV imagery [35—
37]. GSV-derived indicators of walkability, greenery, and urbanicity have been associated with
higher physical activity and lower mortality rates in studies in the U.S. and Hong Kong [7,37,38].
Similar approaches have been used to assess environmental predictors of active play among
children in Canada [8], and to model neighborhood socioeconomic conditions across 12 cities in
five high-income countries [39]. These applications highlight GSV’s capacity to detect features

with epidemiological and social relevance across diverse domains.

Although using GSV for environmental sensing has promise, most of the studies demonstrating its
validity have been conducted in high-income countries. Two reviews of GSV-based research on
urban physical environments found that nearly all applications occurred in cities with robust digital
and transportation infrastructure (e.g., street networks that allow geographically dense GSV
coverage almost everywhere in an urban environment) [40,41]. While these reviews highlight that

GSV is well-suited for capturing static and visible features of the built environment such as



sidewalks, greenspace, and signage, only a few studies have explored similar approaches in LMIC
contexts. Research in Brazil, for example, showed strong agreement between GSV-based audits
and in-person assessments of neighborhood walkability [42]. In India, emerging work has used
satellite imagery, Google Maps APIs, and platforms like Google Earth Engine to estimate traffic
volumes, classify urban land use, and analyze infrastructure expansion across major cities [43,44].
These studies underscore the feasibility of using open-source and image-based methods and
publicly available datasets to characterize built environments in data-scarce settings. As machine
learning applications using GSV continue to expand, validation studies in LMICs are critical,
where differences in urban form, infrastructure quality, and GSV coverage may affect the
reliability and generalizability of these measures, as well as their validity as exposures in research

on links with late-life health outcomes such as dementia.

This study sought to fill this gap by assessing the validity of ML-derived indicators of urban
environmental features from GSV images of street intersections in four Indian cities. By
comparing ML-derived indicators against a range of other data sources, including human audits of
the same GSV images, survey-based neighborhood observations, and geospatial data on air quality
and greenspace, we seek to gain insights into the strengths and weaknesses of ML-derived GSV-

based exposures for use in health research in India.

3. Data and Methods

Our methodological approach consisted of three main phases: identification, prediction, and
validation (Figure 1). In the identification phase, we retrieved Google Street View (GSV) images
from street intersections across four major Indian cities and applied machine learning models to

extract environmental features. The prediction phase involved using spatial modeling techniques



to generate complete city-wide coverage of environmental indicators. Finally, the validation phase

compared our machine learning-derived measures against three independent data sources to assess

Figure 1. Methodological workflow for extracting and validating built environment features from GSV images in Indian cities
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their accuracy and reliability.

3.1.Machine Learning Feature Extraction

3.1.1. Image Retrieval and Fine-Tuning on Indian Driving Dataset

We retrieved GSV images from four major Indian cities (Chennai, Delhi, Kolkata, and
Mumbai) by querying the Google Street View API at known street intersections within each city’s
boundaries [45]. We included intersections only since they offer broad unobstructed views of the
streetscape while reducing the cost of querying additional mid-block images that provide limited

incremental information. To ensure a comprehensive view of the built environment, we collected



four directional images at each location, corresponding to 0°, 90°, 180°, and 270° orientations.
This approach improves coverage of the surrounding streetscape and increases the likelihood of
detecting detailed and relevant physical features [36]. We then extracted environmental features
from those images by fine-tuning two deep learning models using the Indian Driving Dataset
(IDD). IDD contains annotated road-level images collected under diverse driving conditions in

India, and captures unique elements such as vehicle types and various traffic conditions [46].

The first model we fine-tuned using IDD is a Detection Transformer (DETR) model that identifies
and counts discrete objects, including persons, riders, cars, trucks, buses, autorickshaws,
motorcycles, bicycles, traffic signs, and traffic lights [47]. We started with the detr-resnet-50
weights, which were originally trained on the Common Objects in Context (COCO) dataset.
COCO is a benchmark containing over 200,000 images from real-world scenarios and over 80
categories of objects such as people, vehicles, animals, household items, and traffic signs [48].
Figure 2 (a) shows a typical output of object-level predictions on the IDD dataset in the form of
bounding boxes. To reduce redundant and noisy predictions, we further conducted non-maximum
suppression and small-object filtering (further details in Supplementary Materials S1 Fig. 1)
[47,49].

Figure 2. Example annotations from the Indian Driving Dataset

(a) Object Detection Label (b) Semantic Segmentation Label



The second model we fine-tuned using IDD is a SegFormer model that performs semantic
segmentation by classifying each pixel in the image into predefined categories such as road,
sidewalk, vegetation, and pole [50]. We started with the segformer-b1-finetuned-cityscapes-1024-
1024 weights, which were originally trained on the Cityscapes dataset. The Cityscapes dataset
contains high-resolution street-view images from 50 Western European cities focusing on urban
scenes [51]. Figure 2 (b) shows typical output of semantic segmentation on the IDD dataset where
each pixel is classified into one category, such as roads, vegetation, and buildings. By fine-tuning
both these models on the IDD dataset, we seek to improve comprehensive extraction of built
environment features from GSV images from India, capturing both countable elements and broader
spatial characteristics unique to the Indian context. The output of this process is feature predictions

for object detection and segmentation at each street intersection.

3.1.2. Spatial Predictions

GSV coverage is sparse and geographically unevenly distributed within Indian cities. To
address this limitation, we developed a spatial prediction model to predict built environment
features in areas lacking images and to smooth model output. As shown in Figure 3, we divided
each city into uniform spatial units using Uber’s H3 spatial indexing system at resolution level &,
where each hexagonal cell has an average edge length of 500 meters. In cells where GSV images
are available, we extracted features using the machine learning models described in Section 3.1.1
and computed mean values per H3 cell. In other cells, we predicted the same set of features using
a Graph Neural Network (GNN) [52]. The GNN models each H3 cell as a node and connects it to
neighboring cells using bidirectional edges based on geographic adjacency, enabling the model to
capture spatial dependencies and local variation. To inform predictions, we used geospatial

embeddings generated by Cross-Modal Knowledge Injected Embedding (CooKIE) [53], a region
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representation learning model that integrates PLANET satellite imagery [54], Points of Interest
(POIs), and Areas of Interest (AOIs) from OpenStreetMap [55] to encode spatial characteristics of
each cell, including physical features from satellite imagery and functional attributes from POIs
and AOIs. By combining CooKIE embeddings with a GNN, we predicted built environment
features in areas without GSV imagery using spatial patterns learned from neighboring cells and
created a smoothed output for each environmental feature. The result is a complete, city-wide
dataset of built environment features at the H3-cell level, combining observed values from GSV
imagery where available and GNN-predicted values elsewhere. Further details about the
implementation of the spatial prediction model are presented in Supplementary Materials S1

Section 1.2.

Figure 3. Spatial prediction Workflow

Mumbai City Boundary City in H3 Cells GSV Feature Data Spatial Prediction

3.2.Human-coding of GSV Images

To validate the performance of the ML tool in extracting and predicting environmental
features, we conducted manual coding of 800 GSV image sets, where an image set is the collection

of four directional images (0°, 90°, 180°, and 270°) captured at a single location. We sampled 200

11



image sets per city across the four cities. For each city, we selected intersection locations using a
two-step stratified random sampling strategy. First, we randomly selected administrative wards
within each city. Then, within each selected ward, we randomly identified a street intersection
from which to retrieve a GSV image set. In cities with fewer than 200 wards, some wards were
selected more than once, with a different intersection sampled each time to ensure spatial diversity.

This approach yielded a balanced and geographically varied set of images for human audit.

Each image set was evaluated by two trained human raters familiar with the urban context in India
(details on training process in Supplementary Materials S2 Section 2.1) using an instrument
designed to assess objective and subjective features of the built environment relevant to health
(full instrument is in Supplementary Materials S2 Section 2.2). The instrument captured
information on vehicular and pedestrian traffic, sidewalk and street conditions, crosswalks,
greenery, street lighting, neighborhood disorder, and potential hazards to mobility. To ensure
balanced geographic coverage among the raters, we distributed the 800 image sets evenly across
four raters, such that each image set was independently coded by two different raters and each
rater assessed 100 image sets across each city. When two raters had significant disagreement for
an image, some items were flagged for review and resolved through consensus discussions led by
a trained moderator also familiar with the urban context in India (further details on the consensus

process are in Supplementary Materials S2 Section 2.1).

The following items were used in the analysis comparing ML-derived features to human ratings:
Raters recorded the total number of vehicles (cars, buses, and trucks), autorickshaws, cycles
(bicycles and motorcycles), and pedestrians across the four directional images. They also noted

whether street signs and traffic lights were present in any image in the set. Sidewalk quality was
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assessed using a five-point ordinal scale reflecting quality and availability, from which we created
a binary variable with “no sidewalk” versus “some sidewalk” options for comparison with ML
feature extraction since the SegFormer model could only detect sidewalk pixel presence and not
quality. Greenspace was assessed with the question: “Are there trees/greenery visible?” with
ordinal response options: (1) No, (2) Small amount, (3) Some, (4) More than average, and (5) Very

green.

3.3.Interviewer Observations from LASI-DAD Wave 2

As a different form of validation, we used interviewer observations of the physical
environment which were also collected as part of Wave 2 of the Harmonized Diagnostic
Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) [56]. LASI-DAD
is a nationally representative study of adults aged 60 years and above in India that aims to advance
understanding of the determinants of late-life cognitive decline and dementia. The second wave of
data collection was conducted between December 2022 and May 2024 across 22 Indian states and
union territories with a total of 4,635 surveyed older adults. Informed consent was obtained
directly from respondents for all study components, including geriatric assessments and
environmental monitoring. For respondents with cognitive impairment, consent was obtained from
a legally authorized family member, such as a spouse or adult child. Consent forms were available
in 12 languages and read aloud when needed. Respondents unable to sign digitally marked the
consent form and had a legally authorized representative sign on their behalf. All consent and
interviews were conducted in the respondent’s preferred language. For the analysis in this study,

we limited, the sample to 408 households that resided within the boundaries of the four cities.
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As part of the Wave 2 fieldwork, interviewers completed a structured observation module
assessing various aspects of the neighborhood’s physical, social, and built environment near each
respondent’s home. From this broader instrument, we selected four items that aligned conceptually
with features extracted from the ML model for comparison (see Table 1). These items assessed
vehicular and pedestrian traffic, visible green space, and sidewalk condition. Data was accessed
on September 1%, 2024, using a restricted data enclave that included respondents’ geocoded

residences.

Table 1. Interviewer Observations Responses

Field Interviewer Observation Item N = 4081
Vehicular Traffic: 'What is the volume of car/bus/motor/rickshaw traffic in the area near the home?'

-No traffic or not much 134 (33%)

-Some 188 (46%)

-More than usual or heavy 85 (21%)
Pedestrian Volume: 'What is the volume of pedestrian traffic in the area near the home?'

-No traffic or not much 138 (34%)

-Some 181 (44%)

-More than usual or heavy 89 (22%)
Visible Green Space: 'Is a park, garden, or other green space visible from the home?’

-No 253 (62%)

-Yes 155 (38%)
Sidewalk Condition: 'Which best describes the condition of the sidewalks in the area near the home?"

-No sidewalks 75 (19%)

-Poor or average condition 292 (74%)

-Above average or very good condition 27 (6.9%)
' (%)

3.4.Geospatial Measures

To further evaluate the validity of ML-derived features, we compared them to three
independent geospatial measures: the normalized difference vegetation index (NDVI), nitrogen
dioxide (NO:) concentration, and population density. NDVI is a satellite-based indicator of
vegetation density, commonly used as a proxy for greenspace exposure [57,58]. We used data
available through the Google Earth Engine derived at 250-meter resolution images captured by the
Moderate Resolution Imaging Spectroradiometer aboard NASA’s Terra Satellite (MODIS-Terra

MOD13QI1) to calculate the mean NDVI in 2020 across each of the four cities [59]. NO:
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concentrations are commonly associated with the transportation sector and traffic in urban areas.
For our analysis, we used concentrations estimated at 50 meter resolution from global land use
regression models that integrate satellite data from the Ozone Monitoring Instrument (OMI) with
information on roads, built environments, and meteorological variables [60]. We used annual
estimates of ambient NO: for 2020. Population density estimates were from the LandScan 2021
Global Population dataset, which provides gridded estimates of ambient population at a one

kilometer resolution [61].

3.5.Statistical Analysis
We first evaluated the fine-tuned object detection and segmentation models and compared their
performance with state-of-the-art models on the IDD dataset. Specifically, we compared the object
detection model (DETR) with the Faster R-CNN (FRCNN) [62], which was previously identified
as the best-performing model on the IDD dataset by Singh et al [63]. We fine-tuned both DETR
and FRCNN using 31,000 images from the IDD dataset, and evaluated their performance on 1,151
images. We used the average precision (mAP) per class across all cities to characterize
performance. The mAP captures the precision-recall tradeoff, where precision refers to the
proportion of correct detections out of all detections made, and recall refers to the proportion of
true objects correctly detected.[64] Higher values closer to 1 reflect stronger agreement between
model predictions and ground truth labels. We also compared the performance of the semantic
segmentation model (SegFormer) with the Dilated Residual Networks (DRN) [65], which was
identified as the best-performing segmentation model on the IDD dataset by Singh et al. [63] We
fine-tuned both SegFormer and DRN using 7,034 IDD images for training and evaluated models’
performance on 1,055 test images using mean Intersection over Union (mloU) per class. The mloU

quantifies the overlap between the predicted and ground truth segmentations for each class. It is
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calculated as the area of overlap divided by the area of union between predicted and true pixel
masks, averaged across all evaluated classes. mloU values closer to 1 indicate greater accuracy in

pixel-level classification [64].

Because some areas lacked GSV coverage and instead relied on model-predicted values, we further
assessed the performance of the spatial prediction models. We used 5-fold cross validation (80%
to 20% training to validation split) by leaving whole intersections out at a time and compared
model performance to a simpler Random Forest Regressor also trained on CooKIE embeddings.
Evaluation metrics included the coefficient of determination (R?), mean absolute error (MAE), and
Moran’s I for spatial autocorrelation in residuals. Metrics were computed across all detected

objects and averaged for each city.

Our following analyses focused on evaluating the validity of machine learning derived
environment features by comparing the spatial predictions at the H3 cell level to the three
complementary external sources: (1) human-coded audits of GSV images, (2) interviewer
assessments from a nationally representative aging study, and (3) geospatial measures (NDVI,
NOz2, and population). Each comparison targeted overlapping features to assess the extent to which
ML-extracted information aligned with human perception, field observation, and external

environmental indicators.

Data from the human-coded 800 GSV image sets was first compared to the spatial predictions. For
continuous variables captured during the coding of the images (e.g., vehicle and pedestrian counts),
we generated scatter plots and calculated linear regression coefficients, mean squared error (MSE),
and intra-class correlation coefficients (ICC) to compare ML and human-coded values. For binary

indicators (presence of sidewalks, street signs, and streetlights), we computed accuracy, sensitivity
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(true positive rate), and specificity (true negative rate) of ML predictions relative to human-coded
classifications. For greenspace, we visualized the distribution of ML-derived green view index
(GVI) values across ordinal human-coded categories using box plots and reported Spearman’s rank

correlation and Kruskal-Wallis test results.

To compare ML-derived features with field-based assessments from LASI-DAD, we retrieved
respondents’ geocoded residential locations and constructed circular buffers at four spatial scales:
0 m (point location), 100m, 250m, and 500m to capture the surrounding environment at varying
levels of proximity. The buffers were then intersected with the H3 hexagons containing ML-
derived environmental features. For each buffer, we calculated area-weighted averages of ML
features based on the proportion of each H3 hexagon that overlapped with the buffer. We then
examined the association between buffer-averaged ML-derived measures and interviewer ratings
by estimating four linear regression models, each predicting a separate ML feature: vehicular
traffic, pedestrian traffic, sidewalk presence, and GVI, based on the corresponding interviewer-
assessed item. These models allow us to assess the extent to which interviewer perceptions of a
neighborhood aligned with features extracted from street-level imagery in the same neighborhood.
We used varying buffer sizes because interviewers were instructed to base their assessments on
the immediate surroundings of the household, but the actual spatial scope of these judgments may
be uncertain possibly extending beyond the immediate home. Simultaneously, features such as
sidewalk quality or green space may vary significantly over short distances. By testing associations
across a range of buffers, we account for potential mismatch in the spatial scale of perception

VEersus measurement.
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Finally, we compared ML-derived environmental features with the geospatial measures of NDVI,
NOsz, and population density aggregated to the same spatial scale. Specifically, the three measures
(NO2, NDVI, and population density) were spatially joined to the H3 hexagonal grids produced
for the four cities. For each H3 cell, we identified all intersecting raster pixels from the satellite-
or model-based datasets. We then calculated the value for the cell by averaging the values of these
pixels, weighted by the proportion of each pixel’s area that overlapped with the H3 cell. This
process yielded a dataset of environmental exposures and population estimates linked to ML
features at the H3 level. To assess correspondence between these data sources and ML-derived
spatial predictions, we generated city-specific scatter plots comparing the number of vehicles from
images to NO2 levels, GVI to NDVI levels, and the number of pedestrians to population levels,

and calculated Spearman correlations to quantify the strength of association.

4. Results
4.1.Validation against IDD

The number of image sets queried from the GSV API was as follows: 13,481 in Mumbai,
18,591 in Kolkata, 68,409 in Delhi, and 76,888 in Chennai. GSV imagery was available for 11,361
of these intersections in Mumbai (84.2%), 11,618 in Kolkata (62.5%), 52,039 in Delhi (76.1%),
and 65,376 in Chennai (85.0%). Over 99% of these images were collected between October 2021

and April 2023.

DETR achieved moderate performance with mAP scores > 0.5 across several classes and
consistently outperformed a previously top-performing model (FRCNN) for the Indian Driving
Dataset across nearly all object classes. Particularly large gains were observed for detecting

vehicles (e.g., +0.39 for trucks) and persons (+0.42). S1 Table 1 in Supplementary Materials shows
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mAP for different classes of objects (pedestrians, trucks, cars, etc.) using DETR compared to
FRCNN. While both models struggled with traffic lights and signs, DETR still achieved notable
gains over FRCNN in those categories. We observed a similar performance trend in semantic
segmentation. SegFormer demonstrated excellent performance for road and vegetation
segmentation (>0.8), and fair performance for sidewalks (0.59) and poles (0.50). S1 Tabe 2 in
Supplementary Materials shows mloU for each segmentation class. Segformer had superior
performance over a previously top-performing model (DRN) across the 4 evaluated classes.

Improvements were especially pronounced for features like sidewalks, poles, and vegetation.

4.2.Validation of Spatial Prediction Model

Across all four cities, the GNN consistently outperformed the Random Forest regressor in
predicting features in the hold-out set. Average R? improved from 0.12 to 0.66 in Mumbai, 0.18 to
0.71 in Chennai, 0.15 to 0.51 in Delhi, and 0.11 to 0.31 in Kolkata. MAE also decreased, from
4.50 to 1.08 in Mumbai, 1.29 to 0.38 in Chennai, 2.26 to 1.22 in Delhi, and 3.91 to 1.23 in Kolkata.
MAE reflects the average size of the errors when comparing prediction to ground truth across
several classes. The Random Forest regressor shows greater residual variation, suggesting poor
spatial generalization and frequent over- or underprediction (Figure 4). In contrast, the GNN’s
residuals are smaller and more tightly distributed, with fewer cells having large errors. This is
further supported by the low spatial autocorrelation in GNN residuals (0.0257 of Moran’s I),

suggesting reduced spatial bias compared to using the Random Forest model.
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Figure 4. Spatial prediction residuals for pedestrian estimates in Kolkata.

| BEERHD p= ~ [ - 1210 f [‘
W -2-6 - | Woe-so AR Y A
[] -6--050115) 4 ] -6--05013) y 1
[ ]-05-05[34] prs J \ % -05-05(119] = i
e~ o \ 05-6[81] F acag q - :
[Jos-e1461 / ), | e | ; J {(
WMo S/ s i H e o ¢ s
12-1803] 12-1810)
INo Observations, . No Observations

& J

Residuals 6f Graph Neural Né'fﬁnjﬁvrk wj/-Coo

Figure compares Random Forest model (left) to the GNN model (right), both trained on the same input features.

4.3.Validation against Image Audits

Scatter plots illustrated adequate but varying agreement between ML predictions and
human-coded counts (Figure 5). We found strong agreement for vehicle and pedestrian counts,
with ICCs 0f 0.79 and 0.94, respectively, and corresponding Spearman correlations (r) of 0.84 and
0.89 (p < 0.001 for both). For cycles and autorickshaws, the relationships were more moderate.
Cycles, which included both bicycles and motorcycles, yielded an ICC of 0.75 and r = 0.61 (p <
0.001), while autorickshaws had the weakest alignment (ICC = 0.35, r = 0.59, p < 0.001). Box
plots comparing ML-derived green view index (GVI) scores with human-rated greenness on a 5-
point ordinal scale revealed a monotonic trend: both the mean and median GVI scores increased
with each level of human-assigned ordinal greenness rating, which ranged from 1 (No greenery)
to 5 (Very green) (Figure 6). The Kruskal-Wallis rank sum test confirmed significant differences
in GVI across greenness levels (y* =476.99, df = 8, p <2.2e—16), and Spearman’s rank correlation

showed a strong positive association (p = 0.75, p <2.2e—16).
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Machine-Learned GVI Score

Figure 5. Scatter plots comparing ML features to human coded features.

Figure 6. Box plot comparing ML-derived GVI from GSV images to human-rated greenness.
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For traffic lights, traffic signs and sidewalks, the two human raters occasionally disagreed on
whether images of intersections contained those features. Due to the large number of such cases,
we didn’t resolve them through consensus but instead excluded them from the analysis to ensure
valid comparisons. After these exclusions, ML detection of traffic lights showed high overall
accuracy (96%) and sensitivity (99%), but low specificity (11%), indicating a tendency to under-
predict presence of traffic lights (Table 2). Here, “accuracy” reflects agreement with this reference
label set and should be interpreted as a measure of consistency with human perception, not
objective ground truth. Traffic signs showed moderate agreement, with 69% accuracy, 72%
sensitivity, and 55% specificity, though 19.1% of images were excluded due to disagreement
between raters. Sidewalk detection yielded the lowest accuracy (61%), with sensitivity and

specificity of 68% and 59% respectively, and 21.8% of cases excluded for disagreement.

Table 2. Performance metrics for ML binary feature extraction relative to human-coded assessments

Feature Accuracy | Sensitivity | Specificity | N Rated | Excluded Images (% | N with
of 800 image sets | Feature
with disagreement) | Present in
Human
assessment
Traffic 0.96 0.1 0.99 776 3% 18
Lights
Traffic 0.69 0.55 0.72 647 19.1% 142
Signs
Sidewalks | 0.61 0.59 0.68 625 21.8% 331
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4.4.Validation against LASI-DAD Interviewer Assessments

Using buffers of 500 meters around each household, we found that areas rated by
interviewers as having “some” vehicular traffic had on average 2.33 more vehicles detected in
GSV images compared to those with no or not much traffic (95% CI: [1.32, 3.33], p < 0.001)
(Figure 7). In areas rated as having more than usual or heavy traffic, the ML-detected vehicle count
was 1.23 higher compared to those with no or not much traffic (95% CI: [0.16 to 2.31], p = 0.025).
While ML-detected pedestrian counts were higher in areas rated as having more foot traffic, these
associations were not statistically significant. Visible green space observed by interviewers near
participants’ homes was associated with higher ML-derived Green View Index (GVI) scores, with

a difference of 0.01 in GVI for areas with any greenspace detected by the interviewer (95% CI:

Figure 5. Linear regression estimates comparing ML-derived features and LASI-DAD interviewer assessments
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[0.00, 0.02], p =0.010). Interviewer reports of poor or average sidewalk conditions were linked to
significantly lower ML sidewalk pixel segmentation scores in those areas (-2.37e-04, 95% CI:
[0.00, -5.10e-04], p = 0.034), while above average or very good sidewalk ratings were not
significantly different compared to the reference category of no sidewalks, though the point

estimates had similar magnitudes. The results across the four comparisons remained largely

consistent for smaller buffer sizes (Om, 100m, 250m).

4.5.Validation against Geospatial Data
Across all four cities, ML-derived features showed meaningful alignment with external
geospatial indicators, though the strength and consistency of these associations varied by feature
type and location (Figure 8). For NDVI and GVI, we observed positive associations across all
cities, though the correlation coefficient (r) was highest in Delhi (r = 0.48) and lowest in Mumbai

(B = 0.28), indicating that higher GVI segmentation was moderately associated with more

Figure 6. Validation of ML-derived features against geospatial data by city
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vegetation as captured by satellite NDVI. For vehicular traffic, ML-derived car counts were most
strongly associated with NO: concentrations in Chennai and Delhi (r = 0.67), but the relationships
were weaker in Kolkata (r = 0.42), and Mumbai (r = 0.56). Despite differences in magnitude, all
associations were statistically significant (p < 0.001). Finally, ML-derived pedestrian counts were
positively associated with population density in all cities, despite the presence of clear outliers in

pedestrian predictions.

5. Discussion

This study assessed the performance of ML models trained on an Indian dataset to detect
and quantify environmental features from GSV images using three complementary data sources:
human-coded image audits, field-based interviewer observations, and geospatial indicators from
satellite and population data. Overall, the ML models produced estimates that are reasonably
related to observations from the other datasets, especially for more universally recognizable
features such as vehicles, pedestrians, and greenery. In contrast, performance was lower for
features that are more ambiguous like sidewalk quality or features specific to LMIC urban
environments, such as rickshaws. These results highlight the promises and challenges of deploying
ML models for scalable feature detection in complex and heterogeneous urban environments in

LMIC.

Before triangulating the models’ predictions against human-coded and geospatial data sources, we
evaluated model performance using out-of-sample data from the Indian Driving Dataset. Overall,
the DETR object detection model outperformed the previously top-performing model (FRCNN)
on IDD across all evaluated object classes [62]. Performance gains were particularly notable for
commonly occurring street elements such as vehicles and persons, highlighting DETR’s ability to

generalize to complex Indian streetscapes across these categories. However, gains were smaller
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for more ambiguous features like traffic signs and traffic lights. These results demonstrate that
while DETR offers improved detection accuracy overall, feature-specific limitations remain. For
semantic segmentation, the SegFormer model outperformed the DRN baseline across all evaluated
classes, achieving higher accuracy for both broad surfaces like roads and more granular elements

such as sidewalks, greenery, and poles.

To extend the geographic reach of GSV-derived features into areas lacking image coverage, we
implemented a spatial prediction model using a Graph Neural Network (GNN). Compared to a
Random Forest Regressor, the GNN achieved greater predictive accuracy and spatial
generalizability in cross-validation, but results differed across cities. It is important to note that the
reliability of those predictions for intersections missing images hinges on the assumption that those
locations are not systematically different in ways unobservable to the model. If image coverage is

missing significantly or non-randomly, this could introduce bias into the predictions.

The comparison with human-coded image audits provides reasonable support for the models’
validity in identifying features directly observable by a human eye. ML predictions were highly
correlated with rater-derived counts of vehicles and pedestrians, with relatively high ICC and
correlation coefficients. Notably, the ML model was more likely to undercount vehicles and cycles
while overcounting pedestrians when compared to humans. Refinements to the object detection
pipeline, such as the removal of small objects and application of non-maximum suppression,
helped reduce noise and improve alignment with the protocol used by human raters. Still, model
performance was comparatively lower for features that were less frequent or more visually
ambiguous or underrepresented in HIC datasets. For example, autorickshaws were sometimes

misclassified as cars, likely due to their similar shapes and visual features, and the model’s
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extraction of sidewalks, street signs, and poles was inconsistent, reflecting both model limitations
and the inherent variability and subjectivity in these features across cityscapes. Other binary
features such as traffic lights showed very high specificity but low sensitivity, meaning the model
was good at confirming the absence of traffic lights but often failed to detect them when present.
This conservative prediction bias is in line with poorer prediction performance on these elements
in the IDD dataset re-emphasizing the need for greater representation of rare but relevant built

environment elements.

The alignment between interviewer assessments from LASI-DAD and ML-derived features was
generally weaker. Measures of vehicular traffic aligned well with interviewer reports whereas
pedestrian traffic showed the expected direction of association but was not statistically significant,
possibly due to variability in both the model's pedestrian detection and timing mismatches between
when GSV images were captured and when interviewers made their observations. Another reason
for this mismatch could be that the ML-detection does not differentiate between nearby and far
pedestrians, while interviewers might have considered this difference. Surprisingly, despite being
a static feature, sidewalk results showed the weakest alignment. ML-derived segmentation scores
did not correspond well with interviewer ratings of sidewalk presence. One factor that could
explain this is varied definitions of sidewalks as designated by the interviewer compared to the
ML. Another factor is the spatial mismatch between the areas being evaluated by the GSV
aggregation and the interviewers’ observations. While ML features were averaged across larger
circular buffers around the household, interviewer assessments typically reflected the immediate
area surrounding the home. As a result, interviewer ratings may have a more precise spatial
resolution than what is captured by the buffers, leading to discrepancies. While we attempted to

ameliorate this by taking smaller buffer sizes, we were ultimately constrained by the resolution of
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the H3 cells, which cover 0.74 square kilometers and therefore span several blocks with potentially
differing sidewalk conditions. If sidewalk presence varies significantly from block to block, this
coarse aggregation could mask meaningful variation. This highlights the need for finer-grained
spatial units, non-uniform spatial units (e.g., street blocks), or more targeted sampling within
smaller geographic extents when evaluating features like sidewalks that may vary sharply over

short distances.

Overall, there was strong agreement between different indicators of greenness, suggesting that ML
predictions from GSV provided a reasonable approximation of greenery in this setting. ML-
predicted GVI showed strong correlation with human-coded ratings of greenery from the image
audits, reinforcing the model’s ability to detect eye-level vegetation in street imagery. GVI also
aligned well with LASI-DAD interviewer assessments: Respondents living in areas where
interviewers reported visible greenery tended to have higher average GVI values in the
corresponding buffer. In all four cities, GVI was positively associated with satellite-derived NDVI,
although the strength of the association varied by city. Observed variation may reflect the ways in
which satellite and street-level imagery capture complementary but distinct dimensions of
greenness [66—68]. NDVI reflects vegetation and canopy cover visible from above, while GVI
captures human-scale vegetation visible from the street. Differences in urban form, vegetation
placement, size, and quality, and building density as well as seasons likely account for variation
in how well these measures align across different settings. These results support the use of GVI
from GSV as a scalable proxy for neighborhood greenery but also emphasize the benefit of
triangulating multiple sources of data to better characterize environmental exposures such as

greenery.
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Other geospatial comparisons provided further insight into the strengths and limits of ML-derived
features. The relatively mixed correlations between car counts and NO: concentrations suggest
that while vehicular presence is a contributor to air pollution, other sources such as industrial
emissions may dilute this relationship. Similarly, associations between pedestrian counts and
population density were generally positive, though visual inspection illustrated the presence of
outliers. GSV imagery of intersections may disproportionately capture areas of concentrated
pedestrian activity, such as intersections, markets, or commercial corridors, which reflect
momentary crowding rather than the underlying residential population density. As a result, ML-
derived pedestrian counts may overrepresent transient activity in high-traffic nodes rather than

providing an even spatial estimate of where people live.

The patterns observed in our results point to the broader challenges in applying ML tools to GSV
images [8,34,40,41]. First, incomplete image coverage remains a constraint especially in LMIC.
Many intersections within the cities lacked GSV imagery, necessitating the interpolation of feature
values across space. While this approach, coupled with ML prediction using multimodal geospatial
embeddings with H3-cell aggregation, helped extend geographic coverage, it potentially
introduced measurement uncertainty, especially given that GSV image availability is unlikely to
be random. Areas with lower infrastructure or informal settlement patterns may be systematically
underrepresented, potentially leading to bias in model extrapolation. Second, GSV provides only
a static snapshot of the built environment. Features like vehicles and pedestrians are transient and
can vary widely by time of day, day of the week, or season. Without incorporating GSV timestamp
metadata — which is challenging to collect — temporal misalignment between imagery and other
data sources (such as interviewer observations or field assessments) is difficult to account for.

Third, the image perspective used by GSV may miss key parts of the streets such as alleys or
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spaces behind obstructions limiting the completeness of visual information. In the Indian context,
additional challenges arise from the cultural specificity of certain features. Elements like
autorickshaws, irregular sidewalk structures, and informal signage are underrepresented in HIC
datasets or inconsistently labeled, making them difficult for ML models to detect with accuracy.
This study showed that even when models are fine-tuned on locally sourced data, transfer learning
alone may not fully suffice. Purpose-built training datasets and annotations tailored to regional

visual features will likely be necessary to further improve model performance.

More fundamentally, future research aiming to assess the impact of the built environment on
healthy aging in LMICs must grapple with two key challenges. First, while this study addressed
limitations in detecting visible built environment features using models trained on data from HICs,
accurate detection does not guarantee meaningful interpretation for downstream health outcomes.
Features such as congestion, sidewalk availability or greenery may carry different implications for
mobility, safety, and cognitive stimulation in settings like India. This points to the need for more
contextually grounded definitions of key constructs such as walkability or cognability, that reflect
local lived experiences and environmental conditions. Second, uncertainty remains about the
spatial scale at which built environment features influence health outcomes related to aging.[69,70]
While this study aggregated ML-derived features over standardized buffers broadly capturing a
neighborhood, other sources such as interviewer assessments reflect more localized perceptions of
the area surrounding a household. The appropriate geographic unit of analysis may vary by feature
and context. While theory-driven approaches can help guide decisions about the appropriate spatial
scale, future studies should also consider incorporating sensitivity analyses that pairs ML-derived

features with complementary data sources at multiple scales.
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6. Conclusion

Our findings highlight the validity of ML-derived features in India where we lack data on
environmental features. Overall, our results suggest that ML predictions on GSV images, though
imperfect, are sufficiently reliable to capture several important urban environmental features.
While prediction of ambiguous features and those specific to the Indian urban environment can
still be improved, these scalable tools offer valuable potential for characterizing the built
environment using ML. Moving forward, ML offers opportunities to identify environmental
elements that promote cognitive engagement, reduce stress, or facilitate mobility in LMIC,

especially when information on local contexts and theoretical insights are incorporated.
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S1. Machine Learning Model Post-processing and Performance
Evaluation.

1.1 Post-processing on Machine Learning-Based Feature Extraction

Despite the success of automatic feature extraction, we identified instances with redundant and
noisy predictions where the DETR object detection model generated overlapping predictions on
the same objects. For instance, we show the predictions from the fine-tuned DETR model in Figure

1-(a), highlighting several redundant bounding boxes for overlapping objects.

To address this, we implement post-processing using non-maximum suppression (NMS), which
eliminated redundant bounding boxes [47,49]. As shown in Figure 1-(b), we apply NMS to the
prediction results from Figure 1-(a) and eliminate these noisy and repetitive predictions. Further
refining our results, we implement an additional filtering step to remove small predictions that

were challenging for human coders to distinguish the objects in Figure 1-(c).

(a) Fine-tuned DETR predictions

-

ot

\o

(d) Post-processing 1: Apply NMS (e) Post-processing 2: Remove small predictions

SI Fig 1
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1.2 Spatial Prediction Model Implementation

The graph neural network used for spatial prediction implements a three-layer GraphSAGE

model, with each layer consisting of 128 hidden units, ReLU activations, and a dropout rate of 0.1

applied to the hidden layers. The model is trained from scratch using the Adam optimizer with a

learning rate of 0.001 and mean squared error (MSE) as the loss function. Each H3 cell is

represented as a node in the graph, and edges are defined based on second-order adjacency, i.e.,

each node is connected to its immediate and next-nearest neighbors in the H3 grid. To incorporate

uncertainty into the model’s predictions, we apply Monte Carlo dropout during inference. For each

H3 cell, we run the model 50 times with dropout activated and generate a prediction on each pass.

We then take the average of these 50 predictions to produce the final output. This process reduces

prediction variance and results in more stable and reliable predictions across space.

1.3 Object Detections Results across Classes

Class DETR Faster RCNN (FRCNN)
Person 0.649 0.225
Truck 0.684 0.293
Motorcycle 0.594 0.304
Bicycle 0.482 0.100
Rider 0.550 0.248
Bus 0.523 0.348
Car 0.615 0.401
Traffic light 0.354 0.095
Traffic sign 0.449 0.127
S1 Table 1
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From Table 1, DETR significantly outperformed FRCNN across all classes. Specifically, notable
performance improvements were observed for trucks with an increase of 0.391 and motorcycles
with an increase of 0.290. DETR consistently exhibited superior performance in vehicle detection,
showing the performance differences for cars of 0.214, autorickshaw of 0.246, and bus of 0.175.
Additionally, DETR substantially outperformed FRCNN in detecting humans, including person
with an improvement of 0.424 and rider with an improvement of 0.302. Despite consistently high
performance in detecting vehicles and persons, DETR showed comparatively lower mAP values
for traffic lights and signs. This was likely due to confusion caused by the similarity of these
objects' shapes to poles, frequently present in dense and visually complex Indian urban landscapes.
Nevertheless, DETR still significantly improved detection accuracy for traffic signs (difference of
0.322) and traffic lights (difference of 0.259) over FRCNN.These results demonstrate that DETR

fine-tuned on IDD more effectively captured physical environment objects compared to FRCNN.

1.4 Semantic Segmentation Results across Classes

Class (loU) Segformer DRN

road 0.9648 0.9377

sidewalk 0.5871 0.3294

pole 0.4978 0.2170

vegetation 0.8912 0.7972
S1 Table 2

In Table 2, SegFormer significantly outperformed DRN across all four evaluated classes,
achieving notable improvements of 0.2577 for sidewalk, 0.2808 for pole, and 0.094 for vegetation.
The highest segmentation accuracy was recorded for the road class (mloU = 0.9648), showcasing

SegFormer’s effectiveness in segmenting extensive and clearly defined surfaces compared to DRN
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(mIoU = 0.9377). Despite the relatively lower absolute accuracy for poles (mloU = 0.4978), the
considerable gap compared to DRN’s performance (mloU = 0.2170) highlighted SegFormer’s
superior ability to detect smaller and intricate objects, often complicated by occlusions. Similarly,
SegFormer’s significant improvement in sidewalk segmentation (from 0.3294 to 0.5871)
highlighted its ability in handling complex Indian urban sidewalks characterized by diverse
textures, unclear boundaries, or inconsistent construction quality. Vegetation segmentation
accuracy also improved notably from 0.7972 to 0.8912, which indicated SegFormer’s
effectiveness in accurately identifying complicated natural components within urban contexts.
Overall, this model’s segmentation performance improvement demonstrated SegFormer’s robust
and consistent advantage over DRN in addressing challenging segmentation tasks in Indian urban

environments.
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S2. Image Rating Protocol and Instrument.

This appendix provides additional detail on the process used for the human-coding of GSV
images. It outlines the training and standardization procedures used to prepare raters, the survey
raters undertook, the criteria and process for resolving disagreements through consensus review,
and the final scoring rules applied to create a dataset of environmental features in the four cities.
These methods were designed to ensure consistency, reliability, and comparability across raters

and cities in the study.

2.1 Image Rating Protocol

2.1.1 Rater Training

To ensure consistency across raters, all coders participated in a structured training process prior to
the full coding of the complete list of image sets. This began with a collaborative review of a
handpicked list of 40 image sets (10 from each city), during which all raters discussed their scoring
of the same images as well as their interpretations of respective survey items. All team members
participated in this training process including project investigators. This training established shared
definitions for subjective or ambiguous categories, such as levels of congestion, sidewalk quality,
and perceived greenery which could differ between individuals assessing those features in urban

India.

As part of the training, raters were instructed not to exclude duplicate items in their counts of
vehicles, pedestrians, cycles, and rickshaws when those features were in multiple images from
different angles (0°, 90°, 180°, and 270°) within an image set since it would be too difficult to
ascertain unique features across images. Additionally, vehicles parked in areas meant for moving

traffic were included in the vehicular count. For counting pedestrians, the scores reflected the
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number of people in the image grid, regardless of their activity, such as walking, standing, or
sitting. Raters were also asked to avoid zooming in too much on images to discern the exact count
of features such as cars and pedestrians. This recommendation was given to avoid capturing what
was outside the area interest on the street intersection. Following training, each rater was assigned
200 images (100 per city), ensuring balanced geographic coverage and that each of the 800 image

sets was independently rated by two raters.

2.1.2 Consensus Process and Final Scoring
To resolve differences in scoring by the two raters, we defined variable-specific thresholds for

triggering consensus review by a third, trained moderator (Table S 3). These thresholds varied by

variable type:

Variable Consensus Threshold

Vehicle Count If average < 20, difference = 5; if average > 20, difference = 10
Cycles If average < 15, difference = 5; if average > 15, difference = 8
Rickshaws If average < 15, difference = 5; if average > 15, difference = 8
Pedestrians If average < 20, difference = 5; if average > 20, difference = 15
S2 Table 1

- Continuous count variables (vehicles, pedestrians, cycles, rickshaws): If the difference
between the two raters exceeded a threshold based on the magnitude of their average rating,
the image was flagged for review.

- Ordinal variables (e.g., greenspace): If raters differed by three or more points on the 1-5
scale, the item was reviewed. Smaller differences were resolved by averaging the two

scores (e.g., 2 and 3 became 2.5).
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- Binary variables (e.g., traffic lights, street signs, sidewalks): No consensus process was
used. Cases where raters disagreed on presence/absence were excluded from computation

of metrics (accuracy, sensitivity, specificity) comparing performance to ML algorithm.

Consensus scores replaced the original ratings only when disagreements exceeded the above
thresholds. For items not triggering review, the final score was determined by averaging the scores
across the two rater values. When a consensus review was triggered, the moderator reviewed the
original images and both raters’ justifications. A final score was then assigned based reference to
training guidelines and occasional team discussion. Some items showed consistently large
differences between raters. To simplify the process, we monitored which survey items had the
highest alignment between individual raters and final moderator-assigned ratings. For these items,
we assigned default consensus scores based on the rater who demonstrated the most consistent
agreement with the moderator’s previous decisions. To ensure the reliability of this approach, we
conducted a validation step in which a random 20% of these default consensus ratings were
reviewed independently by the moderator. In cases where the default and validation ratings
disagreed, the moderator reassessed the item and assigned a final consensus rating. This process

helped streamline adjudication while maintaining rigor and internal consistency across the dataset.

2.2 Image Audit Instrument

The GSV image audit was conducted using an instrument developed and deployed through
REDCap (Research Electronic Data Capture), a secure web-based platform hosted at the
University of Southern California. The survey was designed to systematically capture key features

of the built environment relevant to health. Raters completed one survey per image set, which
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consisted of four directional GSV images taken from a single street intersection. The instrument

included the following questions:

1. Select city where photo was taken
e Chennai
e Delhi
e Mumbai
e Kolkata

2. What is the density of all types of vehicles (cars, buses, trucks, bicycles, motorbikes & rickshaws)?

Very low
Low
Medium
High
Very high

3. What is the density of pedestrians?

Very low
Low
Medium
High
Very high

4. Total number of vehicles (cars, buses, trucks

5. Total number of cycles (bicycles and motorbikes)
6. Total number of rickshaws

7. Total number of pedestrians

8. Are there any streetlights? Yes/No

9. Are there any street signs? Yes/No

10. Are there any traffic lights? Yes/No

11. Amenities/Greenspace: Are there trees/greenery visible?

No

Small amount

Some

More than average
Very green, park visible
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12.

13.

14.

15.

16.

17.

18.

19.

Are there pedestrians, motorists, and bikes inter-mingled together on the road, creating potential for
conflict?

e No

e Lowrisk

e Some risk

e High risk

e Very high risk

Are there walking paths in good condition?

No walking paths (sidewalks) available

Available but in poor condition with many hazards
Available in moderate condition

Available in good condition

Available with no hazards

Are the streets in good condition?

e Poor condition with many hazards
e Moderate condition

e  Good condition

e Excellent condition with no hazards

Are there obstructions in the walking paths (beggars, street vendors, motorbikes or cars parked)?

e No
e Some
e Many

Are there street crossings (crosswalks) available?

e Yes
e No

Are the buildings well-maintained?

Buildings are in disarray
Poorly maintained

Somewhat maintained

Well maintained

Very well maintained

N/A (e.g. no visible buildings)

Is there visible trash on the streets/sidewalks?

e None
e Some
e Alot

Does the area appear to be safe (crime)?

e Very safe
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Somewhat safe
Neutral
Somewhat unsafe
Very unsafe

20. Rate image confidence:

Poor and low confidence in ratings

Some issues with ratings due to image quality and moderate confidence
Image quality acceptable and moderate to high confidence

No issues with image quality and high confidence

21. Issues with image (check all that apply):

Blurry portions in image
Obstructions blocking view
Dark pictures

Early morning

Not a road intersection

No buildings

None

22. Any other comments (Text response)
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