
 

 

 
 

 
 

 Age and Sex Differences in the Genetic 
Architecture of Measures of Subjective Health: 

Relationships with Physical Health, 
Depressive Symptoms, and Episodic Memory 

 
 
  

 
Finkel, D., Gatz, M., Franz, C. E., Catts, V. S., 
Christensen, K., Kremen, W., Nygaard, M., 

Plassman, B. L., Perminder, S., Whitfield, K., 
Pedersen, N. L.  

 

Paper No: 2024-008 

CESR-SCHAEFFER 
 WORKING PAPER SERIES 

The Working Papers in this series have not undergone peer review or been edited by USC. The series is 
intended to make results of CESR and Schaeffer Center research widely available, in preliminary form, 
to encourage discussion and input from the research community before publication in a formal, peer-
reviewed journal. CESR-Schaeffer working papers can be cited without permission of the author so long 
as the source is clearly referred to as a CESR-Schaeffer working paper. 

cesr.usc.edu healthpolicy.usc.edu 



 1 

Age and sex differences in the genetic architecture of measures of subjective health: 

Relationships with physical health, depressive symptoms, and episodic memory 

 

Deborah Finkel, PhD1,2, Margaret Gatz, PhD1, Carol E. Franz, PhD3,4, Vibeke S. Catts, PhD5, 

Kaare Christensen, MD, PhD6, William Kremen, PhD3,4, Marianne Nygaard, PhD7, Brenda L. 

Plassman, PhD8, Perminder S. Sachdev, PhD5, Keith Whitfield, PhD9, and Nancy L. Pedersen, 

PhD10 

 

1. Center for Economic and Social Research, University of Southern California, Los Angeles, 
CA. 

2. Institute for Gerontology, College of Health and Welfare, Jönköping University, Jönköping, 
Sweden 

3. Department of Psychiatry, University of California, San Diego, San Diego, CA, USA  
4. Center for Behavior Genetics of Aging, University of California, San Diego, San Diego, CA, 

USA  
5. Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, 

School of Clinical Medicine, UNSW, Sydney, Australia   
6. Danish Aging Research Center, Department of Public Health, University of Southern 

Denmark, Odense, Denmark 
7. The Danish Twin Registry, University of Southern Denmark, Odense C, Denmark 
8. Departments of Psychiatry and Neurology, Duke University School of Medicine 
9. Department of Psychology and Brain and Health, University of Nevada Las Vegas, Las 

Vegas, NV, USA 
10. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 

Sweden 
 

Corresponding Author: Deborah Finkel, dgfinkel@usc.edu 

Word count main text:  5411 
References: 57 
Data elements:  5  



 2 

ABSTRACT 

Objectives. Subjective health (SH) is not just an indicator of physical health, but also reflects 

active cognitive processing of information about one’s own health and has been associated with 

emotional health measures, such as neuroticism and depression. Behavior genetic approaches 

investigate the genetic architecture of SH, i.e., genetic and environmental influences on 

individual differences in SH and associations with potential components such as physical, 

cognitive, and emotional health. Previous twin analyses have been limited by sex, sample size, 

age range, and focus on single covariates.  

Methods. The current analysis used data from 24,173 adults ranging in age from 40-90 years 

from the international Interplay of Genes and Environment Across Multiple Studies (IGEMS) 

consortium to investigate the genetic architecture of three measures of SH: self-rated health, 

health compared to others, and impact of health on activities. Independent pathways model of SH 

included physical health, depressive symptoms, and episodic memory, with age, sex, and country 

included as covariates.  

Results. Most or all of the genetic variance for SH measures was shared with physical health, 

depressive symptoms, and episodic memory. Genetic architecture of SH differed across 

measures, age groups (40-65, 66-90), and sexes. Age comparisons indicated stronger correlations 

with all 3 covariates in older adults, often resulting from greater shared genetic variance.  

Discussion. The predictive value of SH has been amply demonstrated. The higher genetic 

contributions to associations between SH and its components in older adults support the 

increasing conceptualization with age of SH as an intuitive summation of one’s vital reserve. 
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Subjective health is typically measured with a single item. The fact that this item can 

predict mortality and other health outcomes independent of objective health measures (Idler & 

Benyamini, 1997; Latham & Peek, 2013; McFadden et al., 2009) suggests that it taps more than 

just perceptions of physical health. Subjective health likely also reflects active cognitive 

processing of explicit information about one’s own health and intuitive knowledge of symptoms 

and physical sensations (Jylhä, 2009). Some researchers emphasize that culturally-influenced 

concepts of health in general play a role in subjective health (Jylhä, 2009). Subjective health has 

also been associated with emotional health measures, such as neuroticism and depression, that 

may influence response tendencies or may correlate with objective physical health measures 

(Östberg & Nordin, 2022; Svedberg, Bardage, Sandin, & Pedersen, 2006). In addition, individual 

differences in subjective health have been shown to be highly valid (predicting health outcomes) 

and reliable (Lundberg & Manderbacka, 1996). Therefore, it is of interest to investigate the 

mechanisms that drive these individual differences. 

 Behavior genetic methods are a powerful tool for understanding what shapes individual 

differences in subjective health. Previous studies suggest that between 20% and 46% of 

individual differences in subjective health is explained by genetic factors, and most if not all of 

the remaining variance is explained by unique environmental factors (Franz et al., 2017). 

Multivariate behavior genetic analyses can provide insight into genetic architecture of subjective 

health, i.e., the genetic and environmental influences on individual differences in SH and its 

association with potential components such as physical health and emotional health. Because 

subjective health arises from a combination of component variables, it is likely that the genetic 

variance is not specific for subjective health but rather mediated through factors related to 

underlying perceptions of health. Shared genetic variance among SH and covariates would 
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indicate that a common set of genes contributes to individual differences in these variables, 

impacting our understanding of subjective health and what it measures. In addition, common 

environmental variance among SH and the covariates may arise from the effects of 

environmental resources to support multiple components of health. 

 Myriad potential components of subjective health have been investigated, and they tend 

to fall into three major domains: physical health, cognitive functioning, and emotional health 

(Benyamini, 2016; Huisman & Deeg, 2010; Jylhä, 2009; Layes, Asada, & Kephart, 2012). 

Moreover, measures in all three domains have been shown to have significant genetic variance 

(Finkel, Gerritsen, Reynolds, Dahl, & Pedersen, 2014; Pahlen et al., 2018; Petkus et al., 2017) 

and thus may contribute to the genetic architecture of subjective health. In Swedish twin data, the 

relationship between life satisfaction and subjective health arose from both genetic and unique 

environmental factors after age 65; whereas, before age 65 the correlation resulted from shared 

and unique environmental factors (J. R. Harris, Pedersen, Stacey, McClearn, & Nesselroade, 

1992). A co-twin control approach found genetic factors contributed to the relationship between 

subjective health and physical symptoms (Svedberg et al., 2006). Correlations between cognitive 

measures and subjective health were modest but significant (r’s ~ .10), and they arose primarily 

from shared genetic variance (Svedberg, Gatz, & Pedersen, 2009). In a sample of Dutch twins, 

the correlation between subjective health and exercise participation was completely explained by 

shared genetic variance (De Moor, Stubbe, Boomsma, & De Geus, 2007). In Australian and 

Swedish samples, the relationship between optimism and subjective health resulted largely from 

shared genetic factors (Mosing, Pedersen, Martin, & Wright, 2010; Mosing, Zietsch, Shekar, 

Wright, & Martin, 2009). In one of the few investigations to examine the genetic architecture of 

subjective health incorporating multiple covariates, Leinonen and colleagues (2005) found that 
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there was no genetic variance specific to subjective health in a sample of Danish female twins; 

instead, genetic variance associated with disease severity, walking speed, and depressive 

symptoms explained all of the genetic variance in subjective health.  

The studies reviewed here are limited by at least one of several factors: utilized a single 

domain of subjective health covariate, limited sample size to detect age or sex differences 

(Mosing, Pedersen, et al., 2010; Mosing et al., 2009), reduced age range (De Moor et al., 2007; 

Leinonen et al., 2005), or samples that included only one sex (De Moor et al., 2007; Leinonen et 

al., 2005). The experience of aging differs at midlife and later, and for men and women (Sainio 

et al., 2006); thus, the role of individual components of subjective health, and the genetic and 

environmental contributions to their inter-relationships, may vary across age and sex. The 

meaning of “good health” is unlikely to be the same for middle-aged and older adults; thus, 

genes associated with subjective health may vary between age groups. In fact, studies have 

suggested age differences in genetic influences on subjective health (Franz et al., 2017), as well 

as the genetic architecture of subjective health (J. R. Harris, Pedersen, Stacey, et al., 1992; 

Svedberg et al., 2009). Identification of age differences would highlight the developmental 

processes involved from mid- to late-life in personal conceptions of health 

Sex differences in genetic influences on subjective health have also been identified 

(Franz et al., 2017), while attempts to identify sex differences in genetic architecture of 

subjective health were suggestive but limited by sample size (Mosing, Pedersen, et al., 2010; 

Mosing et al., 2009). Men tend to have earlier and more compressed histories of major illnesses 

and disability before death; whereas women live longer and have high prevalence of chronic but 

not fatal diseases in later life (Sainio et al., 2006). Identifying sex differences in the genetic 

contribution to the relationship between objective health measures and subjective health may 
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contribute to our understanding of the differences in the experience of aging for men and women 

(Deeg, Portrait, & Lindeboom, 2002). Most investigations of subjective health use a single item 

asking participants to rate their overall health. In previous investigations, we have found that the 

phrasing of the subjective health item influences the frame of reference used to respond to the 

item and can significantly impact results (Finkel et al., 2022; Franz et al., 2017). Both sex and 

age may impact frames of reference. 

 The goal of the current study is to investigate the genetic architecture of subjective health 

in a twin sample large enough to support examination of possible age and sex differences, 

incorporating a large age range, covariates in three domains (physical, cognitive, and emotional 

health), and multiple measures of subjective health. In these analyses we use data from 24,173 

twins ranging in age from 40 to 90 from 10 studies from the Interplay of Genes and Environment 

across Multiple Studies (IGEMS) consortium (Pedersen et al., 2013; Pedersen et al., 2019). Our 

aims are to investigate the extent to which measures of physical health, episodic memory, and 

depressive symptoms contribute to the genetic architecture of subjective health, and whether the 

relationships among the variables differ across age, sex, or measure of subjective health.  

METHOD 
 
Participants 

 IGEMS is an international consortium of 18 twin studies covering the adult lifespan 

(Pedersen et al., 2013; Pedersen et al., 2019). The sample sizes and age ranges of the 10 IGEMS 

studies that collected the variables included in the current analyses are presented in Table 1. Data 

come from Australia, Denmark, Sweden, and the U.S. Because sample sizes were quite small 

before age 40 and after age 90, only data from adults aged 40 to 90 were included in the current 

analyses (98.6% of the full sample). Mean age in the full sample was 62.58 (sd = 11.37). 
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Because two studies of veterans include only male twins (NAS/NRC and VETSA), the sample 

was 44.67% female. Only 3 of the studies included people of color: CAATSA (100% Black), 

MIDUS (10.74% non-White), and VETSA (9.2% non-White). As a result, people of color made 

up 3.3% of the total sample for the current analyses. 

Measures 

Subjective Health. Three self-reported variables are used to measure subjective health, 

based on which items were included in the 10 IGEMS studies. All 10 studies included the most 

common question used to assess subjective health: “How would you rate your overall health?” 

(SRH). Nine of the studies asked participants to compare their health to others (COMP). Seven 

of the studies included a single question about how their health affected their daily activities 

(ACT): “Is your health condition preventing you from doing things you like to do?” As part of 

SF-36 (Ware & Sherbourne, 1992) administered by VETSA and MIDUS, individuals indicated 

whether their health affected their participation in a list of activities: responses were averaged to 

create a single ACT score. Across studies, response scales varied from dichotomous options to 7-

point Likert scales. Previous analysis of harmonization methods (Gatz, Reynolds, et al., 2015) 

indicated that the most parsimonious approach was standardizing the variables within study, 

transforming to a T-score, and then combining data across studies. Higher scores indicated worse 

subjective health. 

Physical Health. The Cumulative Illness Rating Scale (CIRS) was developed to provide a 

brief assessment of physical impairment (Linn, Linn, & Gurel, 1968). Harmonization of an 

IGEMS version of the CIRS is derived from the Parmelee et al. (1995) modification geared 

toward geriatric patients. The IGEMS CIRS reflects self-reported illnesses and medical 

conditions in 13 domains: cardiac, hypertension, vascular, respiratory, otolaryngological, 
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gastrointestinal, hepatic, renal, musculo-skeletal, neurological, endocrine-metabolic, cancer, and 

stroke (Gatz, Petkus, Franz, Kaprio, & Christensen, 2015). The total score is prorated for up to 

three missing domains. Higher scores indicated illnesses in more domains. 

Depressive Symptoms. IGEMS studies administered various inventories to assess 

depressive symptoms (DEPR), including the including the Center for Epidemiologic Studies-

Depression (CES-D) scale (Radloff, 1977), the Cambridge Mental Disorders of the Elderly 

Examination (CAMDEX) (Roth et al., 1986), General Health Questionnaire (Goldberg, 1972), 

and the Geriatric Depression Scale (Yesavage & Sheikh, 1986). A crosswalk between all 

measures of depression was developed utilizing an independent sample administered each of the 

scales of interest (Gatz, Reynolds, et al., 2015). Rasch IRT modeling was used to obtain latent 

trait score estimates representing an underlying depressive symptoms continuum. Each scale was 

transformed to CAMDEX units. Higher scores indicated more depressive symptoms. 

Episodic Memory. The harmonized Word List variable (WORD) is a test of verbal recall 

that asked participants to listen to or read aloud 10 to 16 words (number varied across study), and 

then immediately repeat back as many words as possible. From the raw score, a percent correct 

score was created and then translated to a T-score within study, based on mean and standard 

deviation in the 65-70 age range (Luczak et al., 2023). Higher scores indicated better memory 

performance; however, for the current analyses WORD scores were reversed so that higher 

scores indicated worse functioning on all variables. 

Statistical Methods 

The standard twin method incorporates monozygotic (MZ) twins and dizygotic (DZ) 

twins to decompose the variance of any trait into the proportion attributed to additive genetic 

influences (A), shared environmental influences that contribute to similarity within families (C), 
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and unique environmental influences that contribute to differences within families (E). MZ twins 

share all their genetic material (A) and DZ twins share on average half of their segregating 

genes. In standard analysis of twin data, effects attributable to measurement error are included 

with E. Data from both complete and incomplete pairs can be included, with incomplete pairs 

contributing to estimation of means. 

The independent pathways model (Martin & Eaves, 1977) was used to estimate the extent 

of shared genetic and environmental variance among SH measures and physical health, 

depressive symptoms, and word recall, as shown in Figure 1. Variance shared among the 

variables is decomposed into three latent common factors: Ag, Cg, and Eg. The residual variance 

that is not shared among the 4 variables but specific to an individual variable is also decomposed 

into specific factors for each variable: As, Cs, and Es. Reduced versions of the model were tested 

to identify the most parsimonious model to fit the data and, especially, to examine whether 

genetic and environment variance specific to subjective health (gray circles in Figure 1) 

remained significant when physical health, depressive symptoms, and word recall were included 

in the model. All statistical models were tested using the structural equation-modeling package 

Open Mx 2.20.6 (Boker et al., 2021). Analyses were cross-sectional, using first wave at which 

study variables were collected for each study. Evaluation of relative fit of statistical models was 

performed using the likelihood-ratio-test (LRT). Given the number of models compared, 

significance level was set at p < .01. 

To examine possible sex differences in the genetic architecture of subjective health, 

equality of model parameters across sex was tested by setting parameters equal across sexes and 

using LRT to examine reduction in model fit. The models were corrected for age and country. 

The same method was used to examine possible age differences in the genetic architecture of 
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subjective health, with the sample divided at the median age of 66 to create middle-aged and 

older groups. The models were corrected for age (within groups), sex, and country. 

RESULTS 

Descriptive Statistics 

Mean and standard deviations for all measures within each of the 10 studies are reported 

in Supplemental Table 1. Overall, the sample reported illnesses in 1.77 domains on average (SD 

= 1.63) and the mean ranged from 0.86 in MIDUS (the youngest sample) to 3.34 in OATS (one 

of the oldest samples). Overall mean on depressive symptoms was 20.60 (SD = 4.24), with study 

means ranging from 19.26 (MADT) to 23.74 (SATSA). Mean word recall was lowest in LSADT, 

the oldest sample, and highest in MIDT, one of the youngest samples. Means of the three 

subjective health variables did not vary greatly across studies. 

Phenotypic correlations between the three subjective health variables and the covariates 

(physical health, depressive symptoms, and word recall) in the total sample and separately for 

men and women, middle-aged and older are reported in Supplemental Table 2. All correlations 

were significant at p < .01; however, correlations with SRH and ACT tended to be higher than 

correlations with COMP. Correlations between the three subjective health variables and word 

recall (ranging from .06 to .13) were lower than between the subjective health variables and 

physical health or depressive symptoms (ranging from .21 to .42). The correlations between the 

three subjective health and depressive symptoms were weaker for middle-aged participants 

(ranging from .21 to .34) than for older participants (ranging from .29 to .42). 

Components of Variance 

 Independent pathways models support two approaches to understanding the genetic 

architecture of subjective health: components of variance and bivariate relationships. Examining 
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components of variance provides a test of the presence of any variance unique to subjective 

health (Ass, Css, and Ess) in the context of variance associated with all three covariates combined 

(Ag, Cg, and Eg; see bold paths in Figure 1). Supplemental Table 3 provides the model fit 

statistics for the full and reduced models, indicating which parameters were dropped without 

significantly reducing model fit. The full list of parameter estimates (and standard errors) from 

best-fitting models is provided in Supplemental Tables 4 - 6. These parameter estimates were 

used to calculate the A, C, and E variance for each subjective health variable shared with 

depressive symptoms, physical health, and memory (general variance) and specific to the 

subjective health variable (specific variance) reported in Table 2. Heritability estimates for the 

three subjective health measures were 38% (SRH), 33% (ACT), and 24% (COMP). Little or no 

C variance was identified in the models. However, for all three subjective health variables, all or 

nearly all the genetic variance (A) was shared with the covariates and there was little or no 

genetic variance specific to a subjective health variable. The only real source of variance specific 

to subjective health was nonshared environmental variance (E): estimates were .07 (SRH), .11 

(ACT), and .25 (COMP). Overall, 92% of total variance in SRH was shared with depressive 

symptoms, physical health, and memory, 84% of ACT, and 62% of COMP. 

 Models were then tested for sex and age differences; Supplemental Table 3 provides the 

model fit statistics for the full and reduced models, indicating which parameters were dropped 

and which parameters were equated across groups without significantly reducing model fit. The 

full list of parameter estimates (and standard errors) from best-fitting models are provided in 

Supplemental Tables 4 - 6. These parameter estimates were used to calculate the general and 

specific A, C, and E reported in Table 3, separately for men and women and middle-aged and 

older adults. Variances specific to COMP were either dropped (Ass and Css) or identical across 
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both sex and age groups (Ess) in best-fitting models; therefore, the results for COMP are not 

included in Table 3. Again, no genetic variance specific to SRH and ACT was indicated, and 

little or no shared environmental variance. Total variances in SRH and ACT was greater for older 

than middle-aged adults, but the impact on heritability estimates was modest. 

 Two primary sex differences were identified in variance components. For SRH, higher 

total variance in men was explained by greater nonshared environment specific to SRH in men 

than women (.14 vs .03). As a result, both heritability (43% vs 37%) and proportion of total 

variance in SRH shared with the covariates (95% vs 84%) was higher for women than men. For 

ACT, the genetic variance was greater in women than men, again resulting in higher heritability 

for women than men (46% vs 37%) and greater proportion of total variance in ACT shared with 

the covariates for women than men (84% vs 80%). 

Bivariate Relationships 

 The second approach to understanding genetic architecture supported by the independent 

pathways model focuses on the nature of the bivariate relationships between subjective health 

and each covariate, individually. Using the Ag, Cg, and Eg pathways in the model, it is possible 

the calculate the A, C, and E contributions to the phenotypic correlations between measures of 

subjective health and the three covariates (see Figure 2). Physical health has the highest 

correlation with SRH and similar correlations with ACT and COMP. Contributions to all 3 

correlations were equally divided between A and E. Correlations with depressive symptoms were 

similar for both SRH and ACT and lower for COMP, and correlations were equally divided 

between A and E. Although correlations with word list were modest and similar across measures 

of subjective health, in this case they arose primarily or entirely from shared genetic variance. 
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 Comparisons of correlations across age and sex are also presented in Figure 2.  With one 

exception (COMP x CIRS) correlations are stronger in older adults than middle-aged adults. For 

SRH and ACT, the age differences in correlations are primarily driven by higher E contributions. 

For ACT x CIRS, all 3 components of the correlation are higher in older adults. The 

decomposition of the correlation with subjective health measures is markedly different for word 

list. In this case, the correlation is primarily or entirely driven by shared genetic variance in older 

adults, while in middle aged adults the correlation is divided between genetic variance and 

shared and/or nonshared environmental variance. Sex differences in correlations are more mixed. 

In three instances, the total correlation and the genetic and environmental contributions to the 

correlations are identical for men and women (SRH x DEPR, COMP x DEPR, and COMP x 

WORD). In three instances (SRH x CIRS, COMP x CIRS, ACT x WORD) the total correlation is 

the same for men and women, but the A contribution is greater in men than women. In two 

instances, a greater correlation in women arises from more nonshared environmental variance 

common to the two variables (ACT x CIRS and ACT x DEPR). Finally, the A contribution for 

SRH x WORD is the same for men and women, but a contribution of C in men results in a higher 

total correlation in men than women. 

Additional Analyses 

 Combining across three U.S. studies (CAATSA, VETSA, and MIDUS) resulted in a 

sample of 612 Black twins from 89 complete MZ pairs, 141 complete DZ, and individuals from 

incomplete pairs. Analyses were repeated in this sample to examine possible racial/ethnic 

differences in the genetic architecture of SRH and COMP (CAATSA did not include ACT). 

Power to detect small effects was reduced in the smaller sample; however, the best-fitting models 

for SRH and COMP in the full sample also resulted in sufficient fit to the data in the Black twin 
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sample. Comparison of results between the full sample and the Black sample (Supplemental 

figures S1 and S2) indicated modest differences in parameter estimates but no differences in 

overall pattern of results. 

DISCUSSION 

 The current analyses represent the largest twin sample, by far, used to investigate the 

genetic architecture of different subjective health measures and possible age, sex, and measure 

differences in that architecture. Generally, results indicated that most or all of the genetic 

influences on measures of subjective health were mediated through genetic influences on 

physical health, depressive symptoms, and episodic memory, leaving little or no genetic variance 

unaccounted for, or specific to subjective health.  Overall, 92% of total variance in SRH was 

shared with depressive symptoms, physical health, and memory, 84% of ACT, and 62% of 

COMP. That associations among physical health, depressive symptoms, and subjective health 

measures are explained by genetic influences in common makes intuitive sense since these 

measures all involve observations and experiences of one’s physical and mental health as well as 

similar methodology (self-report). The primarily genetic nature of the relationship between 

episodic memory and, in particular SRH and ACT also suggests a set of genes influencing both 

cognitive processing of information about one’s own health and perceptions of health (Bailis, 

Segall, & Chipperfield, 2003; Benyamini, 2011; Jylhä, 2009). This is of particular interest since 

the episodic memory measure is not self-report unlike the depressive symptoms and physical 

health measures. It is also possible that subtle changes in episodic memory are detected by aging 

adults and incorporated into perceptions of health (Svedberg et al., 2009). Measures of subjective 

health are very commonly used in large epidemiological surveys, clinical trials, and in clinical 

practice, yet few studies examine multiple measures of subjective health, in particular their 
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genetic architecture and/or relationship with other outcomes. In addition, most twin studies have 

been underpowered to examine the influence of sex and wide age ranges. Finally, little attention 

is paid to sources of differences in associations with outcomes, for instance due to different 

forms of the subjective health questions or the effects of age and sex.   

Correlations between the subjective health measures and the covariates were fairly 

equally divided between genetic and unique environmental sources, with the exception of 

episodic memory where the correlations between subjective health measures and word list were 

primarily mediated genetically. Previous investigations of genetic architecture of subjective 

health measures have reported similar findings for individual covariates of subjective health (J. 

R. Harris, Pedersen, Stacey, et al., 1992; Leinonen et al., 2005; Mosing, Pedersen, et al., 2010; 

Svedberg et al., 2006; Svedberg et al., 2009). Moreover, GWAS analyses have identified a 

variety of SNPs that may contribute to subjective health, including SNPs associated with various 

health conditions, major depression, and measures of intelligence (S. E. Harris et al., 2017; 

Mosing, Verweij, et al., 2010). Although modest (r’s ~ .10), correlations between subjective 

health and memory were consistent with the literature (e.g., (Svedberg et al., 2009) and mediated 

primarily by genetic factors, particularly in late adulthood. Several studies indicate that 

subjective health can predict subsequent cognitive decline (Bendayan, Piccinin, Hofer, & Muniz, 

2017; Bond et al., 2006; Carmelli, Swan, LaRue, & Eslinger, 1997; Sargent-Cox, Cherbuin, 

Sachdev, & Anstey, 2011), suggesting the possibility that genetic variance contributes to 

important facets of cognition that underly perceptions of (physical and cognitive) health and are 

vulnerable to changes with age.    

The variance component specific to subjective health measures identified in these 

analyses was unique environmental variance. Unique environmental variance specific to 
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subjective health could arise from measurement error, which is included in the estimate of E. 

Although studies suggest high reliability for the most common measure of subjective health 

(SRH) (Lundberg & Manderbacka, 1996), ACT and COMP are less frequently measured, and 

reliability data are not as available. These measures may be more subject to measurement error, 

or they may be more sensitive than SRH to true environmental differences within families.  

Different subjective health items tap different frames of reference for “good health,” 

which can change the weighting of the factors that constitute self-perception of health (Franz et 

al., 2017; Sargent-Cox, Anstey, & Luszcz, 2008, 2010). Changing the frame of reference of a 

subjective health item from self (SRH) to activities (ACT) or “others” (COMP) appears to affect 

the genetic architecture of subjective health, such that more unique environmental variance 

specific to the measure are tapped by ACT and COMP than by SRH. Unique environmental 

sources of variance could include changes in physical health not captured by CIRS (e.g., changes 

in walking pace, balance, or sleep) or changes in the environment including loss of friends, 

widowhood, reduced social activity, lifestyle changes, living situations, or changes in health or 

abilities of members of one’s social circle (J. R. Harris, Pedersen, Stacey, et al., 1992; Svedberg 

et al., 2009). The change in frame of reference could even tap different individual conceptions of 

the meaning of “good health” for self vs. peers vs. abilities (Jylhä, 2009). Studies that rely on a 

single subjective health item (e.g., SRH) may obscure interesting distinctions in the etiology and 

implications of diverse subjective health measures. 

Age Differences 

In addition to differences between subjective health measures, age differences in genetic 

architecture of subjective health were also identified for SRH and ACT, but not for COMP, with 

greater total variance for older than for middle-aged. Other analyses have also found that results 
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for SRH and ACT tend to be more similar than results for COMP (Finkel et al., 2022; Franz et 

al., 2017). Increasing total variance for SRH and ACT is not surprising. People age at different 

rates, so individual differences in physical health increase with age, as well as individual 

differences in perceptions of health (Finkel et al., 2014; J. R. Harris, Pedersen, McClearn, 

Nesselroade, & Plomin, 1992). The genetic architecture underlying these increases in variance 

indicated increases in unique environmental variance for both SRH and ACT and increases in 

genetic variance for ACT. Correlations between all three measures of subjective health and the 

three covariates were higher in older than in middle-aged adults, especially correlations with 

word list. Previous studies have reported similar age differences (J. R. Harris, Pedersen, Stacey, 

et al., 1992). 

These differences in genetic architecture suggest that subjective health measures may not 

be equivalent for middle-aged and older adults and may reflect different subjective conceptions 

of health. In particular, the role of memory in shaping subjective health is greater in older than in 

middle-aged adults. Evidence suggests that the discordance between objective health measures 

and subjective health increases in late adulthood (French, Sargent-Cox, & Luszcz, 2012; Zikic et 

al., 2009), possibly as a result of greater emphasis on psychological components of subjective 

health assessments by older adults (Araújo, Teixeira, Ribeiro, & Paúl, 2018; Pinquart, 2001). 

Older adults may normalize their current health status by shifting their expectations of health 

(Puvill et al., 2016). Increased attention with age to perceived memory difficulties, in particular, 

may play a larger role in judgments of one’s own health in later adulthood (Svedberg et al., 

2009). In fact, awareness of cognitive change is associated with measures of subjective health 

(Sabatini et al., 2021). The higher genetic contributions to associations between subjective health 

and its components found in older adults in the current analyses may reflect an increasingly 
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holistic self-assessment of health across domains in later ages that relies on a common set of 

genes associated with self-evaluation of functioning. Healthy aging is typically easier with 

sufficient resources, so the increasing genetic covariance may also arise from an underlying 

ability to amass and leverage resources in support of health (Mirowsky & Ross, 2003; Ross & 

Wu, 1996).   

Sex Differences 

Current analyses generally supported the sex differences in subjective health reported by 

previous studies (Mosing, Pedersen, et al., 2010; Mosing et al., 2009). Heritability of both SRH 

and ACT was higher for women than men, although the underlying genetic architecture differed. 

Sex differences in the etiology of the correlations between subjective health and the covariates 

differed across measures of subjective health. Sex differences in genetic influences on measures 

physical health tend to be mixed (Finkel et al., 2014), although any sex differences in 

heritabilities may reflect the higher prevalence of genetically influenced chronic disabling 

diseases in women compared to men’s more compressed history of disability prior to death 

(Sainio et al., 2006). In the current analyses, overlapping genetic factors contributed more to the 

associations between physical health and SRH and COMP in men, but to the associations 

between physical health and ACT in women, where in women ACT seems to be a key 

component of subjective health. It is possible, then, that higher rates of chronic disabling 

conditions in women are captured more by the perceived impact of health on one’s activities than 

by general ratings of health and comparison to peers. 

Research suggests that mean levels of depressive symptoms tend to be higher in women 

than men, as does heritability for depression (Petkus et al., 2017). Investigation of the genetic 

architecture of depressive symptoms indicated that the association between depressive symptoms 
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and physical health resulted more from common genetic factors in men than in women (Petkus et 

al., 2017). In contrast, little or no sex differences in the genetic architecture of the association 

between subjective health and depression were identified in the current analyses, again 

highlighting the differences between physical health and subjective health. 

Limitations 

 Pooling data across samples provided the sample size and thus statistical power to detect 

subtle age, sex, and measure differences in the genetic architecture of subjective health. 

However, pooling relies on harmonization of measures across multiple studies, which can be a 

source of measurement error. The measures of subjective health and depressive symptoms used 

in the current analyses were included in crosswalk samples to identify the optimal methods for 

harmonization (Gatz, Reynolds, et al., 2015). Harmonization of the measures of physical health 

and episodic memory were the result of extensive work by members of the IGEMS team (Gatz, 

Petkus, et al., 2015; Luczak et al., 2023). Pooling variables across countries could introduce error 

if there are significant country effects on measurement or recruiting procedures. For example, 

culturally-influenced concepts of health may differ across countries (Jylhä, 2009). To address this 

possibility, the models were corrected for country effects. Finally, while the sample drawn from 

twin studies in four countries (Australia, Denmark, Sweden, and USA) was large and diverse in 

the variables of interest for this analysis, ethnic and racial compositions of the IGEMS samples 

were fairly homogenous.   

Conclusions  

 In the largest investigation of the genetic architecture of subjective health to date, results 

indicate that, although these subjective measures all showed significant genetic influences, there 

was little or no genetic variance specific to measures of subjective health. Instead, genes 
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contributing to perceptions of health are completely explained by genes associated with physical 

health, depressive symptoms, and episodic memory combined. All three covariates were 

necessary to explain the genetic variance in subjective health. The etiology of the relationship 

between subjective health and episodic memory was largely genetic while both genetic and 

environmental factors contributed to the associations between physical health and depressive 

symptoms and subjective health. The genetic architecture of subjective health differed across 

measures of subjective health (self-rated, compared to others, impact on activities) and between 

age group and sexes.  

The predictive value of subjective health has been amply demonstrated; the current 

analyses identified significant nuances in the etiology of subjective health that contribute to 

understanding the value of subjective health for maintaining and improving quality of life of 

older adults. The higher genetic contributions to associations between SH and the three 

covariates (depressive symptoms, illnesses, memory) in older adults reported here support the 

conceptualization that, with increasing age, perceptions of health constitute intuitive summations 

of one’s vital reserve in multiple domains (Jylhä, 2009). GWAS analyses of subjective health (S. 

E. Harris et al., 2017; Mosing, Verweij, et al., 2010)  also support a multidimensional approach. 

Like any analysis, however, GWAS may be susceptible to age specific effects, either through 

changes in relative weight of the multi-dimensional components of subjective health or changes 

in probability of “risk” alleles through population mortality (Escott‐Price & Schmidt, 2023). For 

optimal utility, investigations of subjective health should take into account age, sex, and the 

multidimensionality of the construct of subjective health. 
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Table 1. Sample description.  
Study N 

individuals 

MZ/DZ 

pairs 

% 

Female 

Age 

Range 

Mean Age 

(SD) 

Subjective health 

variables 

Australia       

OATS 496 119/96 65.72 65 - 90 71.18 (5.40) SRH, ACT, COMP 

Denmark       

LSADT 4091 410/604 57.88 70 - 90 76.35 (4.90) SRH, ACT, COMP 

MADT 4256 666/1195 48.87 45 - 68 56.38 (6.34) SRH, ACT, COMP 

MIDT 9924 704/2143 53.12 40 - 80 56.59 (9.40) SRH, ACT, COMP 

Sweden       

GENDER 425 0/211 48.47 69 - 79 72.89 (2.58) SRH, ACT, COMP 

SATSA 314 38/72 61.46 48 - 86 65.78 (8.27) SRH, ACT, COMP 

USA       

CAATSA 404 57/63 59.41 40 - 89 55.79 (11.18) SRH, COMP 

MIDUS 188 48/20 59.57 40 - 72 51.98 (8.84) SRH, ACT, COMP 

NAS/NRC 2850 742/629 0.00 70 - 82 74.12 (2.76) SRH, ACT 

VETSA 1225 340/260 0.00 51 - 61 55.89 (2.48) SRH, ACT, COMP 

Total 24,173 3124/5293 44.67 40 - 90 62.58 (11.37)  

Note: MZ = Monozygotic twins, DZ = Dizygotic twins 
Studies: OATS = Older Australian Twin Study, LSADT = Longitudinal Study of Aging Danish 
Twins, MADT = Middle-Aged Danish Twins, MIDT = Mid-aged Danish Twins, GENDER = 
Ageing in Men and Women, SATSA = Swedish Adoption/Twin Study of Aging, CAATSA = 
Carolina African- American Twin Study of Aging, MIDUS = Midlife in the United States, 
NAS/NRC = National Academy of Sciences-National Research Council, VETSA = Vietnam Era 
Twin Study of Aging 
Variables: SRH = self-rated health, ACT = health impacts activities, COMP = health compared to 
others
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Table 2. Variance components for three measures of subjective health 
 
Component SRH ACT COMP 

A variance    

  General  .30 .23 .16 

  Specific  .00 .00 .01 

  Total .30 .23 .17 

C variance    

  General  .00 .00 .00 

  Specific  .00 .01 .00 

  Total .00 .01 .00 

E variance    

  General .42 .35 .27 

  Specific  .07 .11 .25 

  Total .49 .46 .52 

Total variance    

  General .72 .58 .43 

  Specific  .07 .12 .26 

  Total .79 .70 .69 

Variables: SRH = self-rated health, ACT = health impacts activities, COMP = health compared to 
others, A = additive genetic effects, C = shared environment, E = unique environment 
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Table 3. Age and sex differences in variance components for SRH and ACT. 
 
Variance 

component 

SRH SRH ACT ACT 

MA Older Men Women MA Older Men Women 

A variance         

  General .27 .27 .32 .32 .21 .34 .28 .40 

  Specific  .00 .00 .00 .00 .00 .00 .01 .00 

  Total .27 .27 .32 .32 .21 .34 .29 .40 

C variance         

  General .03 .00 .01 .00 .03 .03 .00 .00 

  Specific  .00 .00 .00 .00 .00 .00 .00 .00 

  Total .03 .00 .01 .00 .03 .03 .00 .00 

E variance         

  General .40 .48 .40 .40 .19 .45 .33 .33 

  Specific  .06 .06 .14 .03 .10 .14 .14 .14 

  Total .46 .54 .54 .43 .29 .59 .47 .47 

Total variance         

  General .70 .75 .73 .73 .42 .83 .61 .73 

  Specific  .06 .06 .14 .03 .10 .14 .15 .14 

  Total .76 .81 .87 .76 .52 .97 .76 .87 

Variables: SRH = self-rated health, ACT = health impacts activities, MA = middle-aged, A = 
additive genetic effects, C = shared environment, E = unique environment 
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Figure Captions 
 

Figure 1: Independent pathways model. Ag, Cg, and Eg indicate additive genetic, shared 

environmental, and unique environmental variance common to the 4 variables. As, Cs, and Es 

indicate additive genetic, shared environmental, and unique environmental variance specific to 

the individual variables. Subscripts indicate individual variables (c = physical health, d = 

depressive symptoms, w = word list, s = subjective health). 

 

Figure 2:  Decomposition of bivariate correlations between subjective health measures and 

covariates. A, C, and E indicate additive genetic, shared environmental, and unique 

environmental components of the correlations. SRH = self-rated health, ACT = health impact 

activities, COMP = health compared to others, CIRS = physical health, DEPR = depressive 

symptoms, WORD = word list. 
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