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estimation via data augmentation. We investigate the asymptotic property of the esti-
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go to infinity, we show the consistency and the asymptotic normality of the estimated re-

gression coefficients and the estimated interactive fixed effects. An information criterion

based on the likelihood function is proposed to estimate the dimension of the interactive

fixed effects. It is shown that the criterion asymptotically selects the true dimension.
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1 Introduction

This paper studies panel logistic regression models with interactive fixed effects to analyze

choices made by individuals facing a set of alternatives. We consider the maximum likeli-

hood estimation with a new data augmentation algorithm. We also study the asymptotic

properties of the maximum likelihood estimator, establishing consistency and asymptotic

normality. The model allows for heterogeneous coefficients and multiple individual effects

via a factor error structure. We also propose a new information criterion to determine

the dimension of the interactive effects.

In the Bayesian statistics literature on cross-sectional logistic regression models (not

panel data), a data-augmentation strategy is often employed (e.g., Polson and Scott

(2013), Holmes and Held (2006)). This paper extends these studies to panel models with

endogeneity, where the regressors are correlated with the unobserved interactive effects.

Modeling this endogeneity is important to ensure asymptotically consistent estimation.

To our knowledge, this is the first study to investigate a data-augmentation approach to

the analysis of panel logistic regression models with interactive effects.

The analysis of consistency is nontrivial because the dimension of the parameter space

grows with the dimensions of the panel data. We first establish an average consistency

and then individual parameter consistency. Asymptotic normality is also obtained. Also

to the best of our knowledge, this is the first study that rigorously develops these results

for the panel logistic regression models with interactive fixed effects under increasing

dimensions of the panel.

Several related studies include Chen et al (2014), Fernández-Val and Weidner (2016),

Sun (2016), Moon et al. (2016), Charbonneau (2017) and Boneva and Linton (2017).

Fernández-Val and Weidner (2016) and Sun (2016) studied nonlinear panel data models

with individual and time effects. Charbonneau (2017) also studied nonlinear panel data

models with additive effects and homogeneous regression coefficients. These studies are

thus not about the nonlinear panel data models with the interactive fixed effects. Re-

cently, Chen et al. (2014) also consider inference in panel logistic regression models with

predetermined explanatory variables and interactive effects. They consider the interactive

fixed effects with a single factor and impose “homogeneous” regression coefficients. Our

paper allows multiple factors and heterogenous regression coefficients. Also, Chen et al.

(2014) assumes the number of factors is known and being one. We propose the model

selection criterion for determining the number of factors.

Boneva and Linton (2017) studied panel probit model with interactive effects. They

proposed an estimator belonging to the class of common correlated effects estimators
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(Pesaran (2006)). While their estimator is simple to compute, as Boneva and Linton

(2017) pointed out, their approach is valid only if the unobserved factors are contained

in the span of the observed factors and the cross-sectional averages of the regressors. In

contrast to their approach, we permit the unobserved factors are outside of the span of the

observed factors and the cross-sectional averages of the regressors. This is one desirable

property of our proposed method. Also, we further consider inference in multinomial panel

choice models, while Boneva and Linton (2017) studied a binary choice. Furthermore, we

show how our idea can be extended to a direct inference approach for the panel probit

model with interactive effects. This approach can be implemented without assuming

that the unobserved factors are contained in the span of the observed factors and the

cross-sectional averages of the regressors.

In summary, our contributions are as follows. First, we introduce heterogeneous panel

logistic model with interactive effects. Second, a new parameter estimation procedure and

model selection criterion are developed. Third, the consistency and the asymptotic dis-

tribution of our estimator are established. Fourth, the proposed model selection criterion

is shown to consistently detect the true dimension of interactive effects.

Discrete choice models are widely used in social science studies. The proposed model

will have wide range of potential applications, for example, the inference of market struc-

tures in marketing research (Elrod and Keane (1995)), the analysis of partisanship pat-

terns of roll-call votes from the United States Senate (Hahn et al. (2012)), the association

studies based on high-throughput single nucleotide polymorphism (SNP) data in genomic

DNA study (Lee et al. (2010)), the study of firms’ decisions to split their shares (Perez

et al. (2015)), and so forth.

The paper is organized as follows. Section 2 introduces the panel logistic regression

model with interactive fixed effects. In Section 3, we introduce the estimation and model

selection method. Section 4 investigates some asymptotic properties of the proposed

method. To save the space, all technical proofs are provided in the online supplementary

document. Section 5 contains Monte Carlo simulation results. In Section 6, the proposed

method is applied to taxi’s capacity utilization data. Section 7 discuss the extension of

our proposed procedures. Section 8 concludes.

2 Panel logistic regression model with interactive fixed

effects

Suppose that there are i = 1, ..., N individuals, facing binary choices. At time t, each

individual chooses one of the alternatives, labeled alternative 1 and alternative 0. We
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consider the random utility (the difference in utilities between alternative 1 and alternative

0) associated with the choice for individual i at time t:

uit = x′
itbi + ηit + εit, i = 1, . . . , N, t = 1, . . . , T, (1)

where xit is a pi-dimensional vector of observed attributes of the alternatives or the

observed individual characteristics; ηit denotes the unobserved structure of individual i’s

utility, which can vary across t; and εit denotes the non-modeled component of utility (or

shocks to preference). Alternative 1 is chosen if and only if uit > 0 (the corresponding

utility is higher).

As one of the novelties of this paper, we focus on the case in which the unobserved

structure ηit is modeled with a factor structure:

ηit =
r∑

ℓ=1

fℓtλiℓ = f ′
tλi, (2)

where f t is an r× 1 vector of unobservable factors and λi represents the factor loadings.

This is known as the interactive effect in the econometric literature (e.g., Bai, 2009).

Note that the interactive effects are more general than conventional additive effects. To

see this, suppose that there are two factors (r = 2), and consider the special factor

ft = (1, δt)
′ and the special loading λi = (αi, 1)

′. Then f ′
tλi = αi + δt, reducing to the

standard individual effect and time effect model (additive effects). In additive effects

models, the influence of individual effects (αi) is constant over time, and the influence of

time effects (δt) is identical across individuals. In contrast, the interactive effects allow

the unobserved individual characteristics (λi) to have time-varying effects (through ft).

Another interpretation of the interactive effects is that they allow a vector of common

shocks or social trends (ft) to impact individuals in a heterogeneous way (through λi).

An important feature of the model is that correlations between the unobserved factor

structure ηit and the regressors xit (endogeneity) are allowed, while the standard logistic

regression model does not permit such a situation. This correlation arises because some

of the explanatory variables are themselves decision variables, which are correlated with

the unobserved individual effects. This endogeneity problem is common in economics and

other social sciences. Ignoring endogeneity, if it exists, will cause inconsistent estimation

of the traditional maximum likelihood estimator. Conventional panel data analysis often

assumes cross-sectional independence. Interactive effects models provide a way of mod-

eling cross-sectional dependence because individuals share the same common shocks ft.

These models are effective in modeling high-dimensional cross-sectional dependence.

Let yit ∈ {0, 1} denote the observed choice outcome, taking value 1 if alternative 1 is

chosen, 0 otherwise. Alternative 1 will be chosen if and only of uit > 0. For the logistic
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specification of the idiosyncratic shock εit, the conditional probability of such a choice is

given by

P (yit = 1|xit, bi,f t,λi) =
exp(x′

itbi + f ′
tλi)

1 + exp(x′
itbi + f ′

tλi)
. (3)

Assuming that the errors εit are independently and identically distributed, the joint prob-

ability of observing the choices Y ≡ {yit|i = 1, ..., N, t = 1, ..., T}, L(Y |X,B, F,Λ), is

L(Y |X,B, F,Λ) =
N∏
i=1

T∏
t=1

[
exp(x′

itbi + f ′
tλi)

1 + exp(x′
itbi + f ′

tλi)

]yit [ 1

1 + exp(x′
itbi + f ′

tλi)

]1−yit

, (4)

where X ≡ {xit|i = 1, ..., N, t = 1, ..., T}, Λ = (λ1, ...,λN)
′, B = (b1, ..., bN)

′ and F =

(f 1, ...,fT )
′.

Remark 1 Recently, there is an increasing literature on panel data models with unob-

served factor structures where the dimensions of both cross section and time series of

the panel are large (Ando and Bai (2015, 2016, 2017a), Bai (2009), Bai and Li (2014),

Chudik and Pesaran (2015), Kapetanios et al. (2011), Moon and Weidner (2015), Pesaran

(2006), Pesaran and Tosetti (2011), Song (2013) among others). Although a number of

studies exist on the linear panel data regression models with interactive effects, studies

on nonlinear panel models with unobserved factor structures are scant.

In Section 1, we discussed Chen et al (2014), Fernández-Val and Weidner (2016), Sun

(2016), Moon et al. (2016), Charbonneau (2017) and Boneva and Linton (2017). Some

other related studies are Li and Ansari (2014), Naik et al. (2010) and Ebbes et al. (2005).

Li and Ansari (2014) also considered latent factor structures for choice modeling. In (1),

we model the interactive effects ηit, which is unobservable, depends the individuals i and

time t. In contract, Li and Ansari (2014) modeled the unobserved structure that depends

on unobservable choice attributes and time t. Letting the interactive effects ηit in (1)

being common over i, our model then reduces to their unobserved structure. Naik et al.

(2010) considered the multi-index binary response (MBR) model. They pointed out that

their model is related to approximate factor models (e.g., Bai and Ng (2002)) based on the

fact that both involve linear combinations of the predictors. As well as their estimation

procedure, our model estimation procedure explicitly incorporates the information in a

choice data in the process of constructing common factors f t and loadings λi. In contrast

to the MBR model, however, our interactive effects ηit is not restricted only on the space of

linear combinations of the predictors. Thus, our model nests the model formulations of Li

and Ansari (2014) and Naik et al. (2010). In the context of the linear instrumental variable

regression where endogeneity is likely to be present, Ebbes et al. (2005) introduced the
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latent instrumental variables method. Similar to Ebbes et al. (2005), our method does not

rely on observable instruments. This can be achieved by taking account for dependencies

between the predictors xit and the interactive effects ηit.

In the next section, we introduce a new parameter estimation procedure. Then, we

introduce a new information criterion for determining the dimension of interactive effects.

3 Estimation and model selection

3.1 Data-augmentation approach for parameter inference

Inference on the panel logistic regression with interactive effects is a challenging problem

due to the analytically inconvenient form of the model structure. If the interactive effects

can be ignored, the regression coefficients can be obtained by maximizing

L(Y |X,B) =
N∏
i=1

T∏
t=1

[
exp(x′

itbi)

1 + exp(x′
itbi)

]yit [ 1

1 + exp(x′
itbi)

]1−yit

, (5)

However, this approach ignores the issue of “endogeneity”, and the estimated regression

coefficient is not consistent estimator.

Also, we need to impose the identification condition on the factors structure. Following

Bai and Ng (2013), we consider a restriction F ′F/T = Ir and Λ′ = (Λ′
1,Λ

′
2)

′, with Λ1 being

an invertible lower triangular matrix. We refer to Bai and Ng (2002, 2013) and Stock and

Watson (2002) for the identification of the principal component estimator for the mean

panel data model.

In this paper, we employ the Markov chain Monte Carlo approach and generate a set

of posterior samples. Our computation approach is very attractive because the common

factor structure can be easily investigated conditional on the individual effects and vice

versa. For the data-augmentation approach, we need to specify the prior distribution of

the parameters. For the ease of computation, we assume that the priors of the factors

and factor loadings are mutually independent, i.e., π(B,F,Λ) = π(B,Λ)π(F ). Then, the

posterior density will be

π(B,F,Λ|Y,X) ∝ L(Y |X,F,Λ, B)π(B,Λ)π(F ),

which does not provide analytical posterior density forms.

When we use the principal component framework (See, e.g., Bai (2009) and refer-

ences therein), we usually analyze the unobservable common factor and its factor load-

ings jointly. Thus, the prior specification will take the form π(B,F,Λ) = π(B)π(Λ, F ).

In this paper, in contrast, we analyze the regression coefficients and the factor loadings
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jointly. This treatment will provide a convenient data augmentation for inference on these

unknown parameters. Moreover, although one might conjecture that equation (1) allows

us to easily derive the conditional posterior distributions of the interactive fixed-effect

parameters (F,Λ), it does not lead to an easy method for sampling from their posterior

distribution because the error term εit is not normal.

3.1.1 Prior specification and posterior analysis for B and Λ

Here, we specify the prior densities on B and Λ and derive their conditional posterior

distributions, given F and Ω. First, the likelihood contribution of observation yit can be

expressed as [
exp(x′

itbi + f ′
tλi)

1 + exp(x′
itbi + f ′

tλi)

]yit
×

[
1

1 + exp(x′
itbi + f ′

tλi)

]1−yit

=
exp{x′

itbi + f ′
tλi}yit

1 + exp{x′
itbi + f ′

tλi}

∝ exp{zit(x′
itbi + f ′

tλi)} ×
∫ ∞

0
exp{−ωit{x′

itbi + f ′
tλi}2/2}p(ωit)dωit

≡ exp{zitv′
itγi} ×

∫ ∞

0
exp{−ωit{v′

itγi}2/2}p(ωit)dωit,

where zit = yit − 1/2, and p(ωit) is the density of a Polya-Gamma random variable with

parameters (1, 0). In the cross-sectional context, this expression is obtained in Polson and

Scott (2013). For simplicity of notation, we used vit = (x′
it,f

′
t)

′, and γi = (b′i,λ
′
i)
′.

When we wish to obtain the maximum likelihood estimator, we simply use the diffuse

prior π(γi) ∝ Const.. Then, the conditional posterior density of γi = (b′i,λ
′
i)
′ is

π(γi|Y,X,B−i,Λ−i,Ω) ∝ exp{zitv′
itγi − ωit{v′

itγi}2/2}

∝ exp
{
−1

2
(zi −Wiγi)

′Ωi(zi −Wiγi)
}
,

which implies that the conditional posterior density of γi is the multivariate normal den-

sity with mean (W ′
iΩiWi)

−1W ′
izi and variance-covariance matrix (W ′

iΩiWi)
−1. Here Ω ≡

{ωit|i = 1, ..., N, t = 1, ..., T},Wi = (Xi, F ) is the design matrix, B−i = (b1, ..., bi−1, bi+1, ..., bN)
′

and Λ−i = (λ1, ...,λi−1,λi+1, ...,λN)
′. This implies that the conditional posterior density

of γi is the multivariate normal density with mean (W ′
iΩiWi+A−1

γi
)−1W ′

izi and variance-

covariance matrix (W ′
iΩiWi + A−1

γi
)−1.

3.1.2 Conditional posterior density of ωit

We can easily obtain the conditional posterior densities of ωit, that is,

π(ωit|Y,X,B,Λ,Ω−ωit
) ∝ exp{−ωit{x′

itbi + f ′
tλi}2/2}p(ωit),
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which is a Polya-Gamma distribution with parameter (1,x′
itbi + f ′

tλi). Again, we can

easily draw a posterior sample of ωit using the Gibbs sampler.

3.1.3 Prior specification and posterior analysis for F

Combining the terms from all observations yields the following expression for the condi-

tional posterior of F :

π(F |Y,X,B,Λ,Ω) ∝ π(F )
N∏
i=1

T∏
t=1

[
exp{zit{x′

itbi + f ′
tλi}} × exp{−ωi{x′

itbi + f ′
tλi}2/2}

]

∝ π(F )
N∏
i=1

T∏
t=1

exp
{
−ωit

2
{zit/ωit − x′

itbi − f ′
tλi}2

}

∝ π(F ) exp

{
−

N∑
i=1

(z∗
i − Fλi)

′Ωi(z
∗
i − Fλi)

}
, (6)

where Ωi = diag{ωi1, ..., ωiT}, z∗
i = (z∗i1, ..., z

∗
iT ) with z∗it = zit/ωit−x′

itbi = (yit−1/2)/ωit−
x′
itbi.

We further investigate the form of the conditional posterior of F : In this paper, the

common factor F is subject to the normalization condition F ′F/T = Ir for identification

purposes. From F ′F/T = Ir, F belongs to a hyperball in T dimensions, and its support

is restricted to be the Cartesian product of the T -dimensional hyperball. Furthermore,

because of the orthogonality requirement, its support is then reduced to a Stiefel manifold

ST ,r of radius
√
T (Khatri and Mardia (1977)). Therefore, the prior of F is a flat prior over

the Stiefel manifold corresponding to orthogonal transformations and, hence, is invariant

with respect to the orthogonal group. Specifically, the prior of F is

π(F ) =
1

C(T, r)
· 1(F ∈ ST,r), (7)

where 1(·) is the indicator function and

C(T, k) =
2kπkT/2T k(2T−k−1)/4

πk(k−1)/4
∏k

j=1 Γ{(T − j + 1)/2}

is the normalizing constant with Γ(·) being the Gamma function.

However, under the prior π(F ) in (7), the analysis of the conditional posterior of F in

(6) is still not straightforward. This is mainly because the diagonal matrix Ωi prevents the

derivation of an analytical conditional posterior of F . We therefore use the Metropolis-

Hastings algorithm to generate the posterior sample of F . Given the posterior density

π(F |Y,X,B,Λ,Ω), known up to a constant, and a proposal conditional density p(F ), we

can generate the posterior sample of F in the following way.
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To generate samples from π(F |Y,X,B,Λ), the Metropolis-Hastings algorithm requires

us to specify a proposal density p(F ). The algorithm then first draws a candidate pa-

rameter value F new from the proposal density p(F ). The generated parameter value F new

will be accepted or rejected based on the acceptance probability

α = min

{
1,

L(Y |X,F new,Λ, B)π(B,F new,Λ)/p(F new)

L(Y |X,F old,Λ, B)π(B,F old,Λ)/p(F old)

}
,

where F old is the current state of F .

In the practical implementation of the Metropolis-Hasting algorithm, we need to pre-

pare a proposal density. Here, the random-walk Metropolis-Hastings algorithm is used.

We draw a new candidate F new from a proposal density

p(F ) ∝ exp {−tr{(Z − FΛ)′(Z − FΛ)}} · 1(F ∈ ST,r).

where F is on the Stiefel manifold and Z = (z1, ..., zN). Simulation of the matrix

Bingham-von Mises-Fisher distribution can be found in Hoff (2009). In our simulation

study, this proposal density works well.

3.1.4 Posterior sampling algorithm and the estimator

As discussed above, we can analytically obtain the conditional posterior distributions of

B, Λ and Ω. Therefore, we easily draw the posterior samples by implementing the Gibbs

sampling algorithm. To draw F , we can use the Metropolis-Hastings algorithm. Given

value of the number of common factors r, our estimation algorithm is summarized as

follows.

Posterior sampling algorithm:

Step 1. Initialize the parameters.

Step 2. Sample F from π(F |Y,X,B,Λ,Ω).

Step 3. Sample γi from π(γi|Y,X,B−i,Λ−i,Ω).

Step 4. Sample ωit from π(ωit|Y,X,B,Λ,Ω−ωit
).

Step 5. Repeat Step 2 to Step 4 for a sufficiently large number of iterations.

In Step 1 we need to initialize the parameters. The details of our efficient initialization

algorithm is given in online supplementary document. The outcomes of the above algo-

rithm can be regarded as a random sample from the joint posterior density function after a

burn-in period. We then obtain a set of H posterior samples {B(k), F (k),Λ(k); k = 1, ..., H}
for inference. Then, our estimator, {B̂, F̂ , Λ̂}, is given as

{B̂, F̂ , Λ̂} = argmax{B(k),F (k),Λ(k)};k=1,...,HL(Y |X,B(k), F (k),Λ(k)), (8)

where the likelihood function is given in (4).
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3.2 Model selection

In practice, we have to determine the dimension of the interactive effects, or equivalently,

Because the presence of iterative effects, cross-validation can not be applied easily (Ando

and Bai (2018)). Although Ando and Bai (2017a), Bai and Ng (2002), Hallin and Liška

(2007) proposed some model selection criteria, these are applicable only for the linear

panel data models, and thus can not be applied to panel choice models. In this paper, we

propose a new information criterion. The dimension of the interactive effects is selected

by minimizing the following information criterion

IC(r) = logL(Y |X, B̂(r), F̂ (r), Λ̂(r)) + r × q(N, T ) (9)

where B̂(r), F̂ (r) and Λ̂(r) are the estimated model parameters under the dimension of

the interactive effects being r. The function q(N, T ) is a penalty on the dimension of

interactive effects. In numerical study, we specify the function as

q(N, T ) = log
(

NT

N + T

)(
N + T

NT

)
. (10)

The asymptotic performance of IC(r) in (9) is investigated in the next section. As shown

in Bai and Ng (2002), the penalty function (10) satisfies the conditions in Theorem 3,

which is given in the next section. One can also consider alternative penalty function.

However, this is out of scope of this paper.

4 Asymptotic results

There is a rich opportunity to apply the proposed method, but theoretical results are

lacking in the literature. As a theoretical justification of the proposed method, this

section provides the theoretical results.

4.1 Assumptions

We first state the assumptions needed for the asymptotic analysis. Because the dimensions

of B, Λ and F are diverging, we cannot assume the standard regularity conditions for

likelihood functions. The set of regularity conditions that are imposed on the proposed

model are as follows:

We first define some notations. Let ∥A∥ = [tr(A′A)]1/2 be the usual norm of the matrix

A, where “tr” denotes the trace of a square matrix. The equation an = O(bn) states that

the deterministic sequence an is at most of order bn; cn = Op(dn) states that the random

variable cn is at most of order dn in terms of probability, and cn = op(dn) is of a smaller
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order in terms of probability. The set of regularity conditions that are imposed on the

proposed model are as follows:

Assumption A: Common factors

Let F be compact subset of Rr. The common factors f t ∈ F satisfy T−1 ∑T
t=1 f tf t

′ → ΣF

as T → ∞, where ΣF is an r × r positive definite matrix.

Assumption B: Factor loadings and regression coefficients

Let B and L be compact subsets Rp and Rr. The regression coefficient bi and the factor-

loading for the common factors satisfy bi ∈ B and λi ∈ L. Also, the factor-loading matrix

Λ = [λ1, . . . ,λN ]
′ satisfies N−1Λ′Λ being r × r positive definite matrix.

Assumption C: Idiosyncratic error terms

Idiosyncratic error term uit is i.i.d. over i and t, and is independent of xks, λℓ, fm for all

k, s, ℓ,m.

Assumption D: Predictors and design matrix

(D1): For a positive constant C, predictors satisfy supit ∥xit∥ < C < ∞.

(D2): Under the normalization for F such that F ′F/T = I, for each i and all T , there

exist positive constants C1 and C2 such that

0 < C1 < λmin(T
−1(Xi, F )′(Xi, F )) < λmax(T

−1(Xi, F )′(Xi, F )) < C2 < ∞,

where λmin(A) and λmax(A) denote the smallest eigenvalue and largest eigenvalue of

a matrix A, respectively.

(D3): Define Ai =
1
T
X ′

iMFXi, Bi = (λiλ
′
i)⊗IT , C

′
i =

1√
T
λ′

i⊗(X ′
iMF ), η = 1√

T
vec(MFF ),

MF = I − F (F ′F )−1F ′. Let F be the collection of F such that F = {F : F ′F/T =

I}. We assume

infF∈F

[
1

N

N∑
i=1

Ei(F )

]
is positive definite, (11)

where Ei(F ) = Bi − C ′
iA

−1
i Ci.

Remark 2 The full rank assumption of ΣF and ΣΛ in Assumptions A and B is necessary

for the number of common factors to be r. Also, the assumption on compact subset is

not restrictive when F and Λ are both treated as fixed parameters. Assumption C may
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be relaxed to allows cross-sectional and serial correlations and heteroskedasticities in the

idiosyncratic errors εit. However, exploring the weaker condition is beyond the scope of

this paper. Assumptions D is necessary to obtain the asymptotic distributions on the

regression coefficients and the structure of interactive effects.

4.2 Theoretical results

First of all, all proofs are given in online supplementary document. Because the dimensions

of the panel size N and T are diverging, a novel proof is developed. Now, we denote

B = (b1,0, ..., bN,0)
′, Λ = (λ1,0, ...,λN,0)

′, and F = (f 1,0, ...,fT,0)
′ as the true parameter

values. The following proposition provides the average consistency of γ̂i ≡ (b̂
′
i, λ̂

′
i)
′. Note

that the estimated common factor F̂ is consistent in a certain norm, which implies that the

space spanned by F0 and the space spanned by the estimated factors F̂ are asymptotically

the same.

Proposition 1 Under Assumptions A–D and log log(N)/T → 0, the following claims

hold:

N−1
N∑
i=1

∥γ̂i − γi,0∥2 = op(1),

T−1∥F̂ − F0∥2 = op(1).

Next, we prove that the estimated regression coefficients b̂i and the estimated factor

loading λ̂i converge in probability to bi,0, λi,0 and uniformly over 1 ≤ i ≤ N . We also show

that the estimated factor f̂ t converges in probability to f t,0 uniformly over 1 ≤ t ≤ T .

Theorem 1 Under Assumption A – Assumption D, log(N)/T → 0 and log(T )/N → 0,

b̂i and λ̂i are consistent

max
1≤i≤N

∥b̂i − bi,0∥ = op(1),

max
1≤i≤N

∥λ̂i − λi,0∥ = op(1).

Moreover, the estimated common factor is consistent

max
1≤t≤T

∥f̂ t − f t,0∥ = op(1).

Next, Theorem 2 shows that the asymptotic distribution of the estimated parameters,

γ̂i, is multivariate normal. Similarly, the asymptotic distribution of the estimated common

factor f̂ t is also multivariate normal distribution.
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Theorem 2 Under Assumption A – D, log(N)N1/2/T 1−α → 0 and log(T )T 1/2/N1−α → 0

with a small α (0 < α < 1/2), the asymptotic distribution of T 1/2(γ̂i − γi,0) is the

multivariate normal with mean 0 and covariance matrix

Σi = lim
T→∞

T−1
T∑
t=1

πit,0(1− πit,0)zit,0z
′
it,0,

with zit,0 = (x′
it,f

′
t,0)

′ and πit,0 is the true choice probability. Moreover, the asymptotic

distribution of N1/2(f̂ t − f t,0) is the multivariate normal with mean 0 and covariance

matrix

Θt ≡ lim
N→∞

N−1
N∑
i=1

πit,0(1− πit,0)λi,0λ
′
i,0.

Next, we provide a new solution to this issue and provide a theoretical justification

for our proposed model selection criterion.

Theorem 3 Suppose that the set of regularity conditions of Theorem 2 hold. Then, under

the model selection criterion IC(r) with penalty q(N, T ) that satisfies

q(N, T ) → 0 and C−1
NT × q(N, T ) → ∞,

where CNT = min{N, T}, the true number of common factors r0 will be selected asymp-

totically.

5 Simulation results

To demonstrate the usefulness of the proposed method, we use simulated data, for which

the data generating process and the model parameters are known so that evaluation can

be performed.

5.1 Performance of the estimation procedure

For the true data-generating process, we use

uit = x′
itbi + f ′

tλi + εit, i = 1, . . . , N, t = 1, . . . , T,

where the r = 3-dimensional factors f t and the factor-loading vector λi are vector of

N(0, 1) variables,

We investigate the performance of the proposed procedure when the regressors and

the unobservable factor structures exhibit dependency. The method also worked well

13



in various settings. Here, we report the results for the challenging case in which the

explanatory variables xit are correlated with the unobservable factor structures. Setting

pi = 10, we generate the set of regressors as follows:

xit,1 = sit,1 + 0.05f1t, xit,3 = sit,3 − 0.05f2t

xit,5 = sit,5 + 0.05f3t, xit,k = sit,k (k ̸= 1, 3, 5),

where uit,k is generated from the uniform distribution over [−1, 1]. The method also

worked well in various settings. Setting pi = 10, the true parameter values of βi are

set to be βi,0 = (−1, 1,−1, 1,−1, 1, 0.5vi6, 0.5vi7, 0.5vi8, 0.5vi9, 0.5vi,10)
′, where vij is from

uniform [−1, 1]. We simulate a large panel with N individuals and T time periods. We

base our estimate with the true number of factors and assess the robustness of the proposed

strategy to endogeneity.

For the error ε, we consider the followings:

DGP1: the idiosyncratic error term εit follows the standard logistic distribution.

DGP2: the idiosyncratic error term εit is generated from multivariate normal with mean

0 and covariance matrix σij = 0.5−|i−j|.

DGP3: the idiosyncratic error term εit exhibits a serial correlation such that εit =

0.3εi,t−1 + eit with eit is from the standard normal distribution N(0, 1).

We compare the proposed inference procedure with the maximum likelihood estima-

tor ignoring the factor structure (MLE without factor structure f ′
tλi). The maximum

likelihood estimator ignoring the factor structure is found as the maximizer of the stan-

dard likelihood function (5). Thus, the factor structure is ignored, which implies that the

ignorance of endogeneity.

Estimation results are averaged over 100 simulated data sets and are reported in

Table 1 ∼ Table 3. To save the space, Table 1 ∼ Table 3 are given in Appendix G (See

the online supplementary document). The total number of Markov chain Monte Carlo

iterations is 2,000, of which the first iterations are usually discarded as burn-in. Because

our estimator {B̂, F̂ , Λ̂} is the maximizer of (8), we picked up the k-th iteration that

maximizes the L(Y |X,B(k), F (k),Λ(k)) under k = 1, ..., 2000. Tables show the following

mean squared errors (MSE)

MSE1 =
1

NT

N∑
i=1

T∑
t=1

{Xibi,0 + Fλi,0 −Xib̂i − F̂ λ̂it}2,

MSE2 =
1

NT

N∑
i=1

∥Xibi,0 −Xib̂i∥2,
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MSE3 =
1

N

N∑
i=1

∥bi,0 − b̂i∥2.

These measures are also computed for the maximum likelihood estimators (without the

factor structure). The MLE without factor structure ignores the endogeneity, and the true

structure µ0
i = Xiβ

0
i + F0λ

0
i is estimated by Xiβ̂i, where β̂i is the parameter estimates.

As shown in Table 1 ∼ Table 3, the proposed method is capable of capturing the true

structures. In contrast, the standard argument of consistency of the MLE without factor

structure no longer holds. Their MSE measures do not decrease even T and(or)N increase.

Therefore, it is important to have the factor structure if it indeed exists.

5.2 Performance of model selection criterion

We investigate the performance of the proposed model-selection criterion, IC(r), to select

the dimension of the interactive effects. We set the possible dimension of the interactive

effects (i.e., the numbers of common factors) r to range from 1 to 8. We use the same

data-generating process described in the previous section. We generated the dataset

under the various combinations of N and T . Table 4 ∼ Table 6 (See Appendix G in

online supplementary document) report the percentages for the selected dimension of

interactive effects r based on the proposed criterion. The results are obtained based on

100 repetitions. As shown in the tables, the proposed criterion is capable of selecting

the true dimension of common factors. When the size of panel N and T increases, the

procedure achieves the better performance in terms of identifying true of dimension of

common factors.

6 Application

The concept of operational efficiency has been playing an important role in service man-

agement. One of the key managerial aspects that determines operational efficiency is to

match demand and service capacity. Examples include hair salon, relaxation massage,

restaurant, and taxi service. This matching process forces a manager to consider, among

other factors, what predefined level of capacity/staffing will be needed in a given time

period. It is obvious that for the decision, the service capacity/staffing levels should be

reasonable such that the managers can meet the actual demand, which cannot be ob-

served in advance. To track the performance from this aspect, it is beneficial to have an

efficiency measure of capacity utilization. This key performance indicator will provide

useful information for the managers. This section studies the efficient capacity utilization
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of taxi industry. From regulatory perspective, the improvement of efficiency measures is

important. This is because an inefficient taxi service management will lead to more the

idle time and passengers will face longer waiting time.

6.1 Background information and data

We analyze the data collected by the New York City Taxi and Limousine Commission

(TLC). The data contains Yellow medallion taxi ID, driver initial, shift number, pick-

up time, drop-off time, and geographical location for trip origin and destination, travel

distance and fare etc.

The New York City taxi market is highly regulated both from pricing and entry as-

pects. First, the medallion taxis use the same pricing scheme. Second, the number of

medallions (legally permitted to operate taxi) is capped. Third, Yellow medallion taxis

are not authorized to conduct pre-arranged pick-ups. Passengers pick up Yellow medal-

lion taxis from the street. In other words, taxis and passengers need to find one another.

From management and regulatory perspectives, it is thus important to understand the

efficient capacity utilization of each Yellow medallion taxi.

Let yit be the efficiency measure whether the taxi medallion i achieves the pre-specified

level of capacity utilization rate (Achieve; Yes=1 or No=0) at time t. More specifically,

we set the pre-specified level of capacity utilization every hour. If the medallion taxi i

drives with passengers longer than 20 minutes during time period t (In this study every

hour. For example, 10:00AM–11:00AM), then the pre-specified capacity utilization rate

is successfully achieved. We note that an alternative pre-specified rate can be considered

depending upon the management. By sampling 3000 medallion taxi in March 1 2013 –

March 21 2013, we create a panel with size (T,N) = (744, 3000). Here T = 744 implies

that the data period spans 31 days (24 hours/per day × 31 days) and there are N = 3000

individual taxi medallions. Therefore, we analyze more than 2 million trip records.

Figure 1 provides examples of the measured performance from 3 medallion taxis. The

horizontal axis is the dates and the vertical axis represents the hours. Colored cell indicates

that the individual medallion taxi achieved the pre-specified capacity utilization rate. A

fair amount heterogeneity can be observed in Figure 1.

Through our empirical analysis, we explore the following questions: Are there any

performance variations over the medallion taxis? Is a particular medallion taxi doing

better than the others? If not, how to improve the capacity utilization rate? Also,

we address the question: how many common factors is under a specified explanatory

variables? If the common factors exist, the standard MLE without factor structures
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would lead to the inconsistent regression coefficients (See also Section 5.1). Thus, dealing

with this issue is important to make sure that the performance measure (see below) is

unbiased.

6.2 Model specification and estimation results

In our analysis, we use the following explanatory variables for xit: Time frame (Ev-

ery hours; MIDNIGHT–1AM, 1AM–2AM,...,10PM–11PM, 11PM–MIDNIGHT), Week-

day (Monday, Tuesday,..., Friday) and Weekend (Saturday, Sunday, Holiday). We use the

indicator variables for these predictors.

To understand the data-generating structure, we obtained the estimator with the in-

teractive effects. We generate 2,000 iterations using the proposed posterior sampling

algorithms. In practice, we have to select the number of unobservable factors (the dimen-

sion of F ) to adequately describe the information contained in the observed panel data.

Here, we use the proposed model selection criterion IC(r) in (9). For both panels, we

select the best number of common factors as the minimizer of the IC(r) score in (9). The

best number of common factors is 2.

By setting the selected number of common factors, we compute the proposed esti-

mators of bi and factor loadings λi for each of the individual customers. Because our

purpose is to compare the relative performance of 3000 medallion taxis, the estimated

coefficients on standardized to have mean zero. Let b̂i be the coefficient vector on the

meal times for the i-th customer. Then, it is standardized by subtracting the mean over

i; b̄i ≡ b̂i −
∑N

i=1 b̂i/N .

Figure 2 shows the estimated regression coefficients and the factor loadings. Each

column in Figure 2 corresponds to the individual taxi’s performance contributed by the

predictors and to the common factors. On the top of the figure, trees based on the

hierarchical clustering are presented. We can see that the individual taxi’s performances

are categorized into several segments.

6.3 Evaluation of efficient capacity utilization

By using the estimated model, we can evaluate the performance of 3000 medallion taxis.

First, we evaluate the overall evaluation of 3000 medallion taxis by comparing their in-

dividual regression coefficients. Let B̄ = (b̄1, b̄2, ..., b̄3000)
′ be the matrix of standardized

regression coefficients, where b̄i is defined in the previous section. Then, an overall per-

formance can be measured by

poverall ≡ B̄1,
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where 1 is a vector of ones. The i-th element of the vector poverall corresponds to the overall

performance of i-th medallion taxi. Large positive value of pi,overall implies that the i-th

medallion taxi has been achieving a superior performance compared to the others, and

vice-versa. After we sort the element of poverall in decreasing order, we made a barplot

given in Figure 3. We can see that there is a huge performance variation among the

medallion taxis.

Can the inferior segment improve their performance? To identify a reason of inferior

performance, we analyze the bottom 10% medallion taxis. We again apply the hierar-

chical clustering to b̄i with respect to the top 10% and the bottom 10% medallion taxis.

Figure 4 (a) and (b) shows the clustering results for the top 10% and the bottom 10%

medallion taxis, respectively. We can make the following observations. First, we can see

the homogeneity of the top 10% medallion taxis from Figure 4 (a). This implies that there

seems to be a good tactics to achieve the better performance. Second, there are roughly

two segments among the bottom 10% medallion taxis in Figure 4 (b). With respect to

the daytime performance, one segment (middle segment of Figure) is performing not well.

This indicates that the taxi drivers need to improve their skills to be hailed by passengers

as quickly as possible when they are vacant. The performance of the other segment (left

side segment of Figure) for the daytime is comparable to the top 10% medallion taxis.

However, for some reasons, their performance during the evening, before midnight, and

after midnight is inferior to those of top 10% medallion taxis. In general, taxi drivers

operate in one of two separate shifts (12 hours each including a time for meal and pass

the taxi to the following driver). If a manager wants to improve the capacity utilization

rate, it is recommended to make sure that both shifts are operated properly.

To further explore the performance after 5:00PM till 8:00AM next morning, the pickup

locations are explored. Figure 5 and Figure 6 compare the density of pick up locations

recorded by the top 10% and the bottom 10% medallion taxis. Darker points correspond

to points of higher density. We can see that the bottom 10% medallion taxis tend to be

hailed by passengers around Midtown Manhattan. Typically, they tended to be hailed

around Times Square. In contrast, the top 10% medallion taxis were hailed in Lower

Manhattan in addition to Midtown Manhattan. Also, the density around Times Square

is lower than that of the bottom 10% medallion taxis. Similar patterns are observed for

the day time (between 8:00AM and 5:00PM) in Figure 7 and Figure 8. To improve the

performance, the bottom 10% medallion taxi drivers may explore a matching opportunity

around Lower Manhattan.
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7 Further extensions of the inference procedure

7.1 Probit model specification

Finally, we note that our idea can be extended to the direct estimation of the probit model.

Assuming the normal idiosyncratic shock εit in (1), we obtain the probit specification of

the conditional choice probability,

P (yit = 1|xit, bi,f t,λi) = Φ (x′
itbi + f ′

tλi) ,

where Φ(·) is the distribution function of the standard normal. Putting this the conditional

choice probability function into (4), we obtain the likelihood function. Assuming that

the unobserved factors are contained in the span of the observed factors and the cross-

sectional averages of the regressors, Boneva and Linton (2017) proposed the estimator

belongs to the class of common correlated effects estimators. However, this is restrictive

assumption in some cases. Here, we show that the direct inference can be implemented

without imposing such assumptions. To save the space, the details are provided in online

supplementary document (Appendix E). Because all conditional posterior densities are

obtained analytically, one can simply use Gibbs sampling algorithm (See also Albert and

Chib (1993) who developed the data augmentation procedure for the standard probit

regression model in the cross sectional context).

We finally note that the two specifications (logistic versus probit) can be compared

by using the IC(r) score (9). More specifically, for each of the specifications, we can

find the optimal number of common factors r based on the minimizer of IC(r). Then,

the achieved minimum scores under these two specifications are compared. However, the

comparison of logistic versus probit formulation is out of the scope of this paper.

7.2 Multiple alternatives model

In this section, we discuss an extension of our proposed data-augmentation strategy. In

general, the number of alternatives will exceed 2. Each individual makes a single choice

among many alternatives, such as transportation modes and occupational fields, selecting

one candidate out of many. We extend our data-augmentation strategy to this setting.

Suppose that there are i = 1, ..., N individuals and J+1 alternatives labeled {0, 1, ..., J}.
At time period t, each individual chooses one of the alternatives. Consider the random

utility for the j-th alternative

uijt = x′
itbij + ηijt + εijt, i = 1, . . . , N ; t = 1, . . . , T ; j = 0, 1, 2, ..., J (12)
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where ηijt denotes the unobserved structure of individual i’s choice j, which can vary across

time t, and εijt follows a type I Extreme Value distribution. Alternative j (j = 0, 1, 2, ..., J)

will be chosen if and only of uijt > uikt (k ̸= j). Thus, at time t, an individual i chooses

alternative j if it offers the highest utility among all alternatives. Similar to the arguments

in Section 3, we assume that these unobserved structures vary across time and individuals

according to a factor structure:

ηijt =
r∑

ℓ=1

fjtℓλijℓ = f ′
jtλij (13)

and f jt is an rj × 1 vector of unobservable factors and λij represents the factor loadings.

Let yijt ∈ {0, 1} denote the observed choice outcome, taking value 1 if the correspond-

ing alternative j is chosen and 0 otherwise. Let bi = (b′i1, ..., b
′
iJ)

′, f t = (f ′
1t, ...,f

′
Jt)

′, and

λi = (λ′
i1, ...,λ

′
iJ)

′. After normalizing the coefficients (b′i0,λ
′
i0)

′ for alternative 0 to zero,

we obtain the multinomial logit specification (See McFadden (1973)) with the following

choice probabilities

P (yijt = 1|xit, bi,f t,λi) =
exp(x′

itbij + f ′
jtλij)

1 +
∑J

k=1 exp(x
′
itbik + f ′

ktλik)
, j = 1, ..., J,

(14)

P (yi0t = 1|xit, bi,f t,λi) =
1

1 +
∑J

k=1 exp(x
′
itbik + f ′

ktλik)
.

Assuming that the errors εijt are independently and identically distributed, the joint

probability of observing the complete set of choices Y ≡ {yijt|i = 1, ..., N, t = 1, ..., T, j =

1, ..., J} is

L(Y |X,B, F,Λ)

=
N∏
i=1

T∏
t=1

J∏
j=1

[
exp(x′

itbij + f ′
jtλij)

1 +
∑J

k=1 exp(x
′
itbik + f ′

ktλik)

]yijt [
1

1 +
∑J

k=1 exp(x
′
itbik + f ′

ktλik)

]1−∑J

k′=1
yik′t

,

where X ≡ {xit|i = 1, ..., N, t = 1, ..., T}, Λ = (Λ1, ...,ΛJ) with Λj = (λj1, ...,λjN)
′,

B = (B1, ..., BJ) with Bj = (bj1, ..., bjN)
′ and F = (F1, ..., FJ) with Fj = (f j1, ...,f jT )

′ is

the common factor.

We first consider the posterior sampling procedure of B and Λ because these parts are

nearly identical to those presented in the previous section. Similar to the idea of Holmes

and Held (2006) and Polson and Scott (2013), we rewrite each probability (14) as

P ∗(yijt = 1|xit, bi,f t,λi) =
exp(v′

ijtγij − log{1 +∑
k ̸=j exp(v

′
iktγik)})

1 + exp(v′
ijtγij − log{1 +∑

k ̸=j exp(v
′
iktγik)})

,

for j = 1, ..., J . Here, vijt = (x′
it,f

′
jt)

′, γij = (b′ij,λ
′
ij)

′, and P (yi0t = 1|xit, bij,f jt,λij) =

1−∑J
j=1 P

∗(yijt = 1|xit, bi,f t,λi). Note that this transformation makes use of the normal-

ization on alternative 0 (usually referred to as the outside option), while the normalization
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is not used in the multinomial choice probability in Holmes and Held (2006) or Polson and

Scott (2013). Normalization is useful for parameter identification for choice-dependent

coefficients; see Greene (2000, page 860). Appendix F in the supplementary document

provides a posterior sampling procedure for this multiple choice model with interactive

effects.

7.3 High-dimensional predictors

When the dimension of xit is large, some shrinkage methods are useful. The use of a

shrinkage prior on γi allows us to address high-dimensional predictors. In the context of

Bayesian (cross-sectional) linear regression, Park and Casella (2008) study the Bayesian

lasso to exploit model inference via posterior distributions. To extend the proposed al-

gorithm by incorporating the shrinkage approach, we can employ the Bayesian adaptive

lasso prior (Leng et al. (2014)). It is ideal to place a larger penalty on the coefficients of

unimportant predictors. The Bayesian adaptive lasso prior allows for variable selection

with more flexible penalties than the Bayesian lasso. The Bayesian adaptive lasso prior

on γi is π(γi) =
∏pi+r

k=1
κik

2
exp[−κik|γik|], where κik corresponds to the adaptive weights

in the adaptive lasso framework (Zou (2006)). Intuitively, a small penalty will be applied

to the set of regressors that are relevant to the choices and a large penalty will be applied

to those that are irrelevant.

Appendix F in the supplementary document summarizes the posterior sampling pro-

cedure based on the adaptive lasso prior. This extended algorithm can be applied to the

panel logit model with high-dimensional predictors in the presence of endogeneity.

8 Conclusion

In this paper we introduced a new panel logistic regression models with interactive fixed

effects. The estimation of the interactive effects is challenging because the likelihood

function has an inconvenient form in terms of model parameters. We proposed a simple

parameter estimation procedure as well as a new information criterion for determining the

dimension of interactive effects. Numerical results showed that the proposed procedure

perform well.

This paper has made several theoretical contributions. First, we proved the consistency

of the estimated model parameters under double asymptotics where the dimensions of both

cross section and time series of the panel go to infinity. This part gives am important

contribution to the literature because the dimension of the parameter space grows with

the panel size. We also studied the asymptotic distribution of the estimated parameters.
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Moreover, the model selection consistency is established for the proposed information

criterion.
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Figure 1: Examples of performance achievements from 3 medallion taxis in March 2013.
Horizontal axis; date, Vertical axis; hours. Colored cell indicates that the medallion taxi
achieved the pre-specified level of performance.

25



WEEKDAY 0−1
WEEKDAY 1−2
WEEKDAY 2−3
WEEKDAY 3−4
WEEKDAY 4−5
WEEKDAY 5−6
WEEKDAY 6−7
WEEKDAY 7−8
WEEKDAY 8−9
WEEKDAY 9−10
WEEKDAY 10−11
WEEKDAY 11−12
WEEKDAY 12−13
WEEKDAY 13−14
WEEKDAY 14−15
WEEKDAY 15−16
WEEKDAY 16−17
WEEKDAY 17−18
WEEKDAY 18−19
WEEKDAY 19−20
WEEKDAY 20−21
WEEKDAY 21−22
WEEKDAY 22−23
WEEKEND 0−1
WEEKEND 1−2
WEEKEND 2−3
WEEKEND 3−4
WEEKEND 4−5
WEEKEND 5−6
WEEKEND 6−7
WEEKEND 7−8
WEEKEND 8−9
WEEKEND 9−10
WEEKEND 10−11
WEEKEND 11−12
WEEKEND 12−13
WEEKEND 13−14
WEEKEND 14−15
WEEKEND 15−16
WEEKEND 16−17
WEEKEND 17−18
WEEKEND 18−19
WEEKEND 19−20
WEEKEND 20−21
WEEKEND 21−22
WEEKEND 22−23
WEEKEND 23−24
FACTOR 1
FACTOR 2

−20

−10

0

10

20

Figure 2: Hierarchical clustering results. Each column corresponds to the standardized
individual’s sensitivity to the predictors and to the common factors, B̄. Trees on the top
are from the hierarchical clustering.
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Figure 3: Overall performance of each taxi based on poverall.
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(b) Bottom 10%

Figure 4: Hierarchical clustering results of b̄i for the top 10% and the bottom 10% taxis.
Each column corresponds to the standardized individual’s sensitivity to the predictors
and to the common factors. Trees on the top are from the hierarchical clustering.
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Figure 5: Density of pickup location of the top 10% taxis after 5:00PM till 8:00AM next
morning. Darker points correspond to points of higher density.

29



Figure 6: Density of pickup location of the bottom 10% taxis after 5:00PM till 8:00AM
next morning. Darker points correspond to points of higher density.
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Figure 7: Density of pickup location of the top 10% taxis between 8:00AM and 5:00PM.
Darker points correspond to points of higher density.
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Figure 8: Density of pickup location of the bottom 10% taxis between 8:00AM and
5:00PM. Darker points correspond to points of higher density.
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