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Abstract Adaptive sampling is important in robotic environmental monitoring,
allowing a robot to intelligently select sampling locations to build an informative
model of a phenomenon of interest. Most adaptive sampling techniques assume the
localization noise does not vary with location, or that this variation is negligible, and
thus do not model this behavior. In practice, the noise will vary greatly depending
on the robot’s trajectory and location. Additionally, prior surveys collected by other
means, e.g., satellite or drone imagery, may use different state estimators or param-
eters. If these are used to drive sampling, this dependence may be significant. We
provide a unified framework for adaptively collecting and modeling samples when
heteroskedastic noise is present. Our framework is agnostic to the distribution of the
noise. Our method outperforms others which do not take into account localization
noise, validated by simulated trials and noise from a real state estimator.

1 Introduction

Adaptive sampling is the process of using robots to intelligently gather information
about an environment. Typically the robot does this by creating an internal model
and selecting sampling positions that improve the environment model over time [1].

Using adaptive sampling, a robot can create a high quality survey of an area of in-
terest more efficiently (e.g. , in less time or by using less energy) than a pre-planned
coverage pattern when certain key properties of the environment, like smoothness or
isotropy, can be exploited. This has far reaching impacts in various fields such as the
study of algae blooms, oil spill cleanup and search and rescue where the survey area
may be expensive to survey or too large for a single vehicle to completely cover.
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Fig. 1: A proposed mission. (a) A UAV performs a lawnmower pilot survey. (b)
A base station compiles imagery and sends it to an AUV. (c) The AUV plans the
sampling mission from this prior data and newly collected data.

Adaptive sampling systems generally assume that the samples are taken at precise
locations. In practice, this assumption is violated because there is always some un-
certainty in the robot’s pose. This is especially true in the case of autonomous un-
derwater vehicles (AUVs) when the robot does not have GPS and relies integrating
inertial measurements. To model this uncertainty, a state estimator is used to de-
rive a belief distribution over the current pose of the robot. Here, we utilize this
distribution to more accurately model the phenomenon of interest instead of using
the expectation of the robot’s location as a point estimate. When the noise is het-
eroskedastic, the robot should pay more attention to areas of higher positional noise
since the model in these regions can be improved with additional noisy samples [2].
We are motivated by the design of aquatic sampling missions (Fig. 1) that exploit a
previously generated map of a phenomenon of interest from overhead imagery from
an unmanned aerial vehicle (UAV) as a prior for an autonomous underwater vehicle
(AUV). The adaptive sampling method must take into account both the uncertainty
on the prior data from the UAV as well as the uncertainty of the sampling robot
while it is progressing in the mission.

In this work we aim to extend prior methods for long horizon adaptive sampling
and adaptive sampling with uncertain inputs to produce a method which can per-
form long term planning with localization uncertainty that is agnostic to the belief
distribution about the robot state. Adaptive sampling with localization uncertainty
and a finite budget can be formulated as follows

P∗ = argmax
P∈Φ

E[F(P)]|c(P)≤ B (1)

Where Φ is the space of all robot trajectories, B is some budget, F is some objective
function and c is some cost function, P∗ is the optimal trajectory [3]. In this work
we maximize the expectation the agent has for the objective over the trajectory. This
differs from the statement in [3] which does not use the expected objective, but the
objective directly. Our work makes the same assumptions about the form of the cost
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function and objective function (i.e. the cost function is monotonically increasing
and the objective function is submodular) as those in [3].

2 Related Work

The adaptive sampling survey [1] notes the usage of filters to remove sensor and
localization noise, but does not cover methods explicitly incorporating this noise.
Prior work [4] using UAV data to determine sampling locations, does not explic-
itly incorporate either the UAV or ground robot’s localization noise. A framework
for Bayesian optimization when a robot’s pose is uncertain is found in [5]. The
authors probabilistically bound the regret and show applications to robots, using a
greedy method for objective maximization. A framework for multiple step predic-
tion with uncertainty in input location with a Monte Carlo approximation is given
in [6]. An approach [3] incorporating Rapidly Exploring Random Trees (RRT) into
the adaptive sampling setting shows that a modified RRT algorithm (RIG-Tree) can
maximize submodular functions. This assumes that there is certainty in the pose of
the robot and that the pose can be fully specified. In [2] the effectiveness of informa-
tive path planning with uncertainty on the input is shown, with the key insight that
modeling localization uncertainty can improve the overall mapping quality. This
is achieved by augmenting the acquisition function with an explicit term for uncer-
tainty. The modeling assumption in [2] assumes that the mean position is a good de-
scription of the state when the sample is taken, which may not be true in multimodal
localization scenarios or when localization is particularly bad in some areas. Previ-
ous works have investigated using noisy samples from the environment to decrease
the uncertainty in the robot pose using techniques similar to adaptive sampling [7].
Unlike our work, [7] does not try to use the characteristics of these noisy samples to
approximate the underlying concentration. Our work extends the framework [2, 5]
by utilizing the RIG-Tree algorithm to perform longer term planning, using a differ-
ent modeling technique to incorporate noise, and allowing non-Gaussian sampling
distributions.

3 Technical Approach

Gaussian processes are widely used modeling tools for adaptive sampling because
they provide a non-parametric, continuous representation with uncertainty quantifi-
cation. Gaussian processes approximate an unknown function from its known out-
puts by utilizing the similarity between points from a kernel function (k(·, ·)) [8].
Function values y∗ at any input location x∗ are approximated by a Gaussian distri-
bution:

y∗|y∼N
(
K∗K−1y, K∗∗−K∗K−1KT

∗
)

(2)



4 C. E. Denniston et al.

where y is training output, y∗ is test output, x is training input, and x∗ is test input.
K is k(x,x), K∗ is k(x,x∗), K∗∗ is k(x∗,x∗),
Gaussian Processes With Input Uncertainty: To incorporate localization uncer-
tainty into the environmental model, we extend the framework in [8] for querying a
Gaussian process with uncertainty on the input points. The Gaussian process poste-
rior with uncertain inputs [6] is calculated as p(y|D) =

∫
p(y|x)p(x)dx where y∗ is

the estimated sample value, x is a sampling location drawn from D (the belief distri-
bution over states at that time from the state estimator). When it is possible to sam-
ple from D, Monte Carlo sampling can be used, resulting in p(y|D)' 1

N Σ N
n=1 p(y|xn)

where xn are independent samples from p(D). Approximating p(y|D) as normal by
taking the mean and variance of the resulting samples yields µ̄(D) and σ̄(D).

µ̄(D) = Ex[µ(x)] σ̄2(D) = Ex[σ
2(x)]+ varx(µ(x)) (3)

We extend this formulation in two ways. We calculate the likelihood of the sam-
ples according to the Gaussian Process distribution and draw the sampled points
from their distribution at every step. Critically, our formulation only depends on the
ability to sample the robot localizer’s belief state at past and future locations and
is agnostic to the parameterization of the belief state, which allows this method to
support localizers such as pose graphs, Kalman filters and particle filters.

Algorithm 1 Gaussian Process With Sample Uncertainty
1: procedure MONTE CARLO QUERY UNCERTAIN GP(θ ,Dq)
2: for i ∈ iterations do
3: xi

t ← sample(Dt)
4: li← P(yt |GP(xi

t ,yt ,θ))P(xi
t |Dt)

5: xi
q← sample(Dq)

6: µ i
q,σ

i
q = GP(xi

t ,yt ,θ).query(xi
q)

7: µ ← Eq[µq]
8: σ2← Eq[σ

2
q ]+ varq(µq)

Dq is the belief distribution over the query points, Dt is the belief distribution over
the previously collected points, li is the ith likelihood which is used for weighting
and sub-sampling and θ are pretrained hyper-parameters.
Path Planning for Adaptive Sampling with Input Uncertainty: RIG-Tree [3] is
an algorithm for long-horizon adaptive sampling planning. Each node in the tree
keeps track of the total objective and cost along a path to that node. The objective
functions for adaptive sampling generally use µ and σ from the Gaussian process
model which can be extended to the stochastic case using Algorithm 1. The objective
used for adaptive sampling is conditional entropy (which has also been used in prior
work as the objective for sensor placement [9]).

f (x) =
1
2

log(2πeσ̄
2(D)) (4)

Given the ability to calculate the stochastic objective function, we present Un-
certain Input RIG-Tree, an extension of RIG-Tree to the stochastic case using Algo-
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rithm 1 to compute the expected information. Uncertain Input RIG-Tree must also
extend the formulation of RIG nodes to keep track of the state of the filter at each
proposed location along a trajectory. This is done in order to calculate the objective
at proposed sampling location.

4 Experiments

4.1 Simulation Experiments
To test the performance of Algorithm 1 when applied to adaptive sampling, we test
both the ability of the Monte-Carlo approximation to approximate the underlying
distribution and the ability to approximate the objective function. Testing was done
in environments designed to test interpolation methods (Eqs. (5) and (6)). x, y and z
are the robot’s global coordinates.

f (x,y,z) = 4(x−2+8y−8z2)2 +(3−4y)2 +16
√

z+1(2z−1)2 (5)

f (x,y,z) = 100(e−2/x1.75
+ e−2/y1.5

e−2/z1.25
)2 (6)

Comparison of Monte-Carlo Methods In order to test the predictive power of
Algorithm 1, we sample the environment at 1000 evenly spaced samples and add
Gaussian noise. Permuted subsets of the samples are used as training data for the
different methods to be tested. This training data are used to predict the ground truth
and compare the error between the two. The data span a 3D cube with all dimensions
in [0,1]. The noisy data were generated by adding Gaussian noise with σ = 0.01.
The following are tested: A noiseless GP representing the ground truth, a traditional
GP representing a model on noisy data without any corrections, subsampling the
data based on likelihood, and weighing the data based on likelihood. Fig. 2 shows
the outcome of this experiment, illustrating that likelihood weighting and keeping
all samples produces the best estimate. When subsampling, All keeps all iterations,
100 keeps only the 100 most likely iterations and Single keeps only the most likely
iteration.
Noisy Observations We compare our approach with RIG-Tree without doing noise
modeling. Both methods use Eq. (4) as the objective, but the baseline does not use
Algorithm 1 for computing the objective. The environments are the same as Fig. 2.
The robot runs for a fixed time budget of 3000m in a 30x30x30m cube taking sam-
ples every meter. The internal model is compared to a ground truth model over 303

evenly spaced points. Prior data are given to the robot in the form of 10 by 10 sam-
ples (modeled after pictures from a UAV) taken as noisy samples from the function,
with σ = 5. For the noise characteristics, we use a simplified noise model. The noise
characteristics for the underwater vehicle are varied linearly from σ = 1 at minimum
depth to σ = 3 at maximum depth in all spatial directions. Fig. 3 illustrates the re-
sults of this experiment. Using Monte Carlo sampling reduces the variance between
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Fig. 2: Error when predicting from noisy data using Algorithm 1. Environment 1
is sampling Eq. (5), Environment 2 is Eq. (6). All MC methods were run for 1000
iterations. Six seeds each.

seeds and, in the first environment, lowers the average error. In environment two,
the average error is comparable, but the variance between runs is smaller.
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Fig. 3: Error when predicting from noisy data using Algorithm 1. Environment 1
is sampling Eq. (5), Environment 2 is Eq. (6). The robot is simulated for a fixed
budget and compared against a noiseless evenly spaced ground truth. Each method
runs with three seeds.

4.2 Experiments with Data Collected from Real Environment
In order to evaluate the usability of our algorithm on real world data we evaluate the
error of a robot taking samples from orthomosaics created by flying a drone over
water. These orthomosaics were created from data taken in Clear lake, California
and created using structure from motion software. The UAV used to collect these
images carries a hyperspectral imaging camera with a 710nm band. We use the
reflectivity of this band as the desired concentration to be modeled.
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Fig. 4: Environments created from data gathered in Clear lake, California from data
collected by a UAV with a hyperspectral camera (Fig. 4d). Fig. 4e shows an algal
mass in true color while Fig. 4f shows the hyperspectral reflectivity at the target
band.

Pose Graph-Based Localization To model the covariance of the agent at different
locations, we take the GPS/IMU readings from the UAV and construct and solve
a pose graph using GTSAM [10]. This is to model the error the robot would have
if it were to plan using the raw imagery provided by the UAV, in a system like
the one described in Fig. 1. The robot is run for 2000m, re-planning every 20m.
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We compare with a baseline method which simply integrates the noisy samples and
attempts to predict from those. This uses the RIG-Tree planner method similar to the
last experiment. This is compared against two other methods. The first method does
not use Algorithm 1 in calculating the variation for the objective equation, Eq. (4),
but does use Monte Carlo estimation for computing the underlying concentration to
compare for computing the error. The final method uses Algorithm 1 for calculating
both the objective function and the estimate of the underlying concentration. The
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Fig. 5: Error between noisy samples and ground truth on four environments repre-
sented in Section 4.2. Noise is generated from a pose-graph based localization using
the UAV’s GPS/IMU. 10 seeds used.

results of the experiment are seen in Fig. 5. The full method outperforms both the
baseline method and the method which does not plan with the added variance from
the uncertainty in the robots pose. Both improvements work together to provide a
boost in accuracy from both a better estimate of the underlying value and better
planning to take more samples from higher noise areas. In environment two the
baseline method on average performs better but has a very high variance in the final
error, while the Monte Carlo methods tend to have a low variance in the end error.
In environment four the robot cannot make a better model by taking noisy samples
because there is too much noise on the samples to accurately reconstruct without
doing a Monte Carlo estimation.
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Particle Filter-Based Localization To test the ability of the proposed method to
work with non-parameteric posterior distributions from state estimators, we simu-
late a surface vehicle which takes noisy ranges measurements from 10 landmarks
and localizes itself using a particle filter. The robot is run for 2000m, re-planning
every 20m. To update the localizer, the robot receives noisy measurements to 10
randomly placed landmarks with σ = 3. The filter is initialized with 100 particles
normally distributed around the robot’s true starting location. The baseline method
uses the weighted mean of the particle filter as the sampling location while the
Monte-Carlo methods sample the distribution of particles according to their weight
to sample from D. To simulate the filter when planning, the particles and weights
are added to each node. When extending samples, the particle filter is simulated for-
ward with the parent’s particles and weights in order to calculate the objective for
the sampling location. As seen in Fig. 6 the Monte-Carlo based methods outperform
the baseline method with a non-Gaussian posterior.
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Fig. 6: Error between noisy samples and ground truth on four environments col-
lected from the environments represented in Section 4.2. A particle filter with noisy
measurement to 10 landmarks is used. 3 seeds run.

In environment four, the Monte Carlo run is outperformed by the baseline
method. This environment has the lowest data range of all the environments and
may not benefit from using a Monte Carlo estimation as much. Both Monte Carlo
methods do suffer from high variance which could potentially be reduced with more
iterations of the model estimator.
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5 Conclusion
We propose a novel way to incorporate localization noise into adaptive sampling.
When there is sufficient and varying noise on the state observations the robot’s state
estimator will not be accurate. This is common in field scenarios where the pose
observations contain noise. We find that frameworks which use the state estimator’s
maximum likelihood estimate of the robot’s pose may fail to properly model the
true underlying field being sampled. By doing Monte-Carlo estimation from the
belief distribution over robot states generated by the localizer, we are able to better
estimate the concentration of an external field from sparse samples compared to
previous methods. We show that the field estimation may be poor if the uncertainty
in the robot’s state estimator is not taken into account. Our framework is a novel
approach for adaptive sampling under different types of robot pose uncertainty, such
as those generated by a state of the art pose estimation framework. We show that
doing a Monte-Carlo estimate of both the objective function during planning and
the field estimation improves the planning and model used in adaptive sampling.
This modification of an existing adaptive sampling algorithm improves performance
when modeling from noisy pose observations and reduces the variance in the error
between the robot’s model and ground truth. We validate our findings on synthetic
functions showing that the plan and model can be improved by our method. We also
validate our findings on four real world data-sets from aerial imagery over a lake
using complex state estimators from real world dynamics.
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