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Abstract

Digital imaging technologies are increas-
ingly used to study life in the ocean. To
deal with the large volume of image data
collected over space and time, scientists
employ various machine learning and deep
learning algorithms to perform automated
image classification. Training of classifiers
requires a large number of expertly curated
sets of images, a time-consuming process
that requires taxonomic knowledge and
understanding of the local ecosystem. The
creation of these labeled training sets is the
critical bottleneck for building skillful auto-
mated classifiers. Here, we discuss how we
overcame this barrier by leveraging taxo-
nomic knowledge from a group of special-
ists in a workshop setting and suggest best
practices for effectively organizing image
annotation efforts. In our experience, this
2 day workshop proved very insightful and
facilitated classification of over 4 years of
plankton images obtained at Scripps Pier
(La Jolla, CA), focusing on diatoms and
dinoflagellates. We highlight the impor-
tance of facilitating a dialog between taxono-
mists and engineers to better integrate
ecological goals with computational con-
straints, and encourage continuous involve-
ment of taxonomic experts for successful
implementation of automated classifiers.

What bottleneck?!

Imaging technologies are an increasingly
common tool used to observe marine organ-
isms (Sosik and Olson 2007; Lombard
et al. 2019; Kenitz et al. 2023). They enable
new sampling designs and strategies, and are
capable of observing organisms at high rates
in space and time (Irisson et al. 2022). Yet
high-frequency sampling brings with it the
new challenge of analyzing a large volume of
images. Over the past 10 yr, scientists have
begun to leverage advances in machine learn-
ing and pattern recognition to efficiently
classify and quantify image data (Sosik and
Olson 2007; Orenstein et al. 2020a). Most
researchers use some type of supervised
machine learning, in which a computer clas-
sifier is taught to recognize patterns in
images by tuning an algorithm with an
expertly curated set of images.

The collection of high-quality annotated
datasets for training is a major bottleneck for
projects seeking to use machine learning
tools (Schoening et al. 2016). While there
are many resources that guide beginners
through application of machine and deep
learning tools, there is less attention given to
curation of a suitable training dataset that
classification algorithms rely upon. Image
annotation requires careful inspection of
images and manual classification into

appropriate categories based upon domain
expertise (domain expertise could be, e.g., a
plankton taxonomist with knowledge of
communities in the California Current
region). This is challenging work, requiring
thoughtful dataset design and many hours of
effort by trained experts. Most research
efforts produce the labeled training set with
a single expert or a small cohort of experts
working together who, in many cases, may
have limited understanding of the deep
learning process. Some projects outsource
collection of training data, either “gamifying”
the procedure to attract volunteers, or pay-
ing private contractors. Each approach has
merits and drawbacks; doing everything
internally allows for greater consistency but
can be time-consuming, especially when no
funds are available to ensure a full-time com-
mitment. Crowdsourcing can produce a
training set quickly but is prone to error as
the human annotators may not be specifically
trained for the task (Irisson et al. 2022). Here
we discuss soliciting taxonomic knowledge
from a large group of specialists in a targeted,
short-duration workshop setting as an effec-
tive and speedy method for creating and
curating a large and complex training dataset.

In July 2019, we organized a focused, 2-d
taxonomy and machine learning workshop at
Scripps Institution of Oceanography, La
Jolla, CA (Fig. 1). Our goal was to bring
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together expert plankton taxonomists, ocean
engineers, and machine learning specialists
to facilitate the swift annotation of plankton
images for training of automated classifiers
and foster a community to assist with future
efforts in validating the classifier output.
The plankton images were collected by the
Scripps Plankton Camera (SPC), located on
Scripps Pier at a water depth of 3 m
(Orenstein et al. 2020b). The camera images
drifting particles in situ, capturing phyto-
plankton and zooplankton species, as well
as detritus, sand, and other particles. Over
the course of the workshop, 18,303 images
in 35 classes were annotated, with the goal
of training an automated classifier to track
the abundance of these plankton and parti-
cle groups through time. These time series
will have a broad range of applications,
ranging from understanding the factors
that influence harmful algal blooms
(HABs) on short time scales, to linking
anthropogenic changes in climate to eco-
systems dynamics.

Here, we discuss our method for creating
a comprehensive image dataset—in terms of
both the number of labeled images and the
structure of the dataset—elaborating on the
image classification workflow and issues that
inhibited efficient annotation. We provide

concrete recommendations on how to design
and build an image database for researchers
without considerable prior knowledge or
experience in building plankton image librar-
ies. We show that the workshop setting can
significantly accelerate designing and apply-
ing the image annotation workflow, and that
just 2 d of concentrated effort can provide
an insight into the outcome of automated
classification and indicate the direction for
further improvement. Although this project
is focused on classification of underwater
plankton images collected by the SPC, we
believe that the lessons are widely applicable,
regardless of the imaging system used or tar-
get organisms considered, and can be
adapted to a virtual setting in the case that
an in-person workshop is not possible. We
conclude that sustained and significant pro-
gress in automated monitoring of planktonic
communities in future efforts will be facili-
tated by implementing the lessons and the
workflow discussed here (Box 1), and high-
light the merits of a focused effort to dataset
design and annotation collection in a work-
shop setting. In addition to the methodologi-
cal suggestions, we highlight the need for
continuous involvement of taxonomic
experts to ensure successful implementation
of automated classifiers.

The approach: How and why?

Our goal was to design an annotation
workflow from scratch and build a large
image database for training of automated
classifiers. An important first step was to
consider the instrument used for collecting
underwater images, which in our case was
the SPC system. Then, we followed with a
series of scientific and engineering consider-
ations necessary for designing a classification
workflow and involving taxonomists in the
classification design and image annotation.

SPC system

The SPC is a digital, in situ, darkfield, imag-
ing system designed to sample organisms
and particles in their aquatic setting without
disturbing the ambient flow or interfering with
imaged particles (Orenstein et al. 2020b). The
system includes two microscope objectives
(�0.5 and �5) and captures images of par-
ticles that range between tens of microme-
ters to several centimeters in size. The
system is comprised of three distinct parts:
the in situ cameras, the database of images,
and a front-end web interface. The SPC is
a free-space system which means it uses no
nets, filters, or pumps, and only captures
images within ambient sea water. The under-
water unit consists of two housings for each
microscope, one with illumination optics and
the other with the imaging system, separated
by an uninterrupted volume (Fig. 2). After a
full-frame image is acquired by the SPC, the
image processing routine in the on-board
processing unit segments bright objects from
the dark background (Orenstein et al. 2020b).
The web interface (http://spc.ucsd.edu/) was
designed to allow registered users to browse
data by object size and time, and to annotate
imaged organisms with taxonomic or semantic
labels with the ability to define new classes as
needed. Since deployment in March 2015, the
SPC has collected over 25 terabytes of data
and over one billion images of individual
organisms and particles.

Designing classification categories

We describe here an iterative approach for
defining and refining classifier categories that
incorporates aspects of the imaging system
and the expertise of taxonomists about what
is practical and tractable. An important first

FIG. 1. Photos of some (unfortunately not all!) participants of the Taxonomy Workshop at Scripps Institution
of Oceanography, 9–10 July 2019.
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step when creating a classification scheme is
identifying the scientific goals and objectives
that the automated classifier will be used to
fulfill. Establishing the scientific purpose is
essential to defining the relevant classes for
the automated classifier and the necessary
level of taxonomic identification. A crucial
second step is to combine the scientific
requirements with technical capabilities of
the instrument collecting the data—sample

volume, image resolution, and so forth—to
inform what can be observed and quantified.

Scientific objectives. The primary purpose
of the SPC development and deployment is

to complement ecological and environmental
monitoring efforts conducted by the Southern
California Coastal Ocean Observing System
(SCCOOS) at Scripps Pier by providing
high-temporal resolution information on the

BOX 1. Objectives in designing an
automated classification workflow
1. Establish the scientific goals and

research questions that the ecological
data produced by the automated clas-
sifier will be used to answer. Is the
research focused on community or
species-specific variability? Is there a need
to include rare species?

2. Determine the level of taxonomic detail
required for image classification that
addresses the scientific objectives.
Which taxa can be grouped into broader
groups? Which taxa need to be consid-
ered at the species level?

3. Consider engineering limitations when
constructing a classification scheme.
Does the instrument have sufficient reso-
lution to capture necessary morphological
detail to enable clear distinction between
closely related organisms? Which taxa
are too challenging to be distinguished if
imaged in suboptimal quality?

4. In the case of a multi-class classification
(in contrast to binary classification),
carefully consider what constitute noise
classes.

5. Select an appropriate classification algo-
rithm and determine the number of
images per class required for classifier
training and successful implementa-
tion of the algorithm.

6. Ensure that images used for algorithm
training are collected over a wide tem-
poral range to facilitate collection of
comprehensive training data that cap-
tures a wide range of intra-species mor-
phologies and across instrument states.

7. Consider the resources when deciding
on the number of classes, including
time and expertise necessary for vali-
dation of the classifier output.

FIG. 2. On the left, (a) photo of the Scripps Plankton Camera System and (b) a schematic diagram of its
design. On the right, example images captured by the camera and these include (c) Akashiwo sanguinea, (d)
Lingulodinium polyedra, (e) Protoperidinium sp., (f) unidentified pennate and (g) centric diatoms, (h, i) Mar-
galefidinium sp., and (j–m) example images sorted into distinct noise classes.
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phytoplankton and zooplankton communi-
ties, focusing in particular on the HAB taxa.
Hence, the automated classifier focuses on
common genera (e.g., Tripos, Chaetoceros,
Protoperidinium, or Prorocentrum spp.) as well
as taxa that make irregular, yet ecologically sig-
nificant appearances, in particular, harmful algae
including Pseudo-nitzschia spp., Alexandrium
spp., Akashiwo sanguinea (Fig. 2a), Lingulodinium
polyedra (Fig. 2b), Dinophysis spp., and
Chattonella spp. Ideally, the classifier should
also enumerate the potential competitors (other
phytoplankton, for example) and predators
(microzooplankton, mesozooplankton) of the
HAB taxa.

Instrument design constraints for taxonomic
identification. The ability to observe these
taxa using visual information is constrained
by the ability to distinguish different species
that share somewhat similar morphological
features. For image data, the instrument’s
design constrains the detail that can be
observed. With the SPC (Fig. 2), the key
aspects are the pixel resolution, illumination
source, free-space design and the continuous
in situ deployment (Orenstein et al. 2020b).

For example, the SPC’s pixel size limits
the scale of structures that can be resolved,
such as spines on some organisms that can
be too thin to be captured by the imaging
system (Orenstein et al. 2020b). Darkfield
imaging enhances edge detection and pre-
serves pigmentation information for translu-
cent organisms, but may fail to capture
intricate structural details that enable
species-specific identification of some taxa.
The free-space imaging design captures
organisms in their natural state without dis-
ruption, however, this feature means that
organisms are randomly oriented relative to
the camera and can show up in or out of
focus. Finally, ambient environmental condi-
tions and biofouling during deployment can
deteriorate image quality and limits image
classification.

For the purpose of the workshop, we
compiled a list of tentative phytoplankton
and microzooplankton categories for auto-
mated classification with these constraints in
mind. The set was then further discussed
and refined based on the feedback from the
experts during the workshop. For example,
within the genus of Tripos (previously Cer-
atium), the species T. furca, T. fusus, and
T. falcatiformis are the most commonly

observed at Scripps Pier. T. furca composed
its own individual class. But, upon consider-
ation of the instrument limitations, T. fusus
and T. falcatiforme were grouped into a sin-
gle class because critical morphological fea-
tures would often be indistinguishable to a
human annotator when imaged at certain
angles or in poor resolution. The remaining,
less abundant Tripos species were grouped
together into a single class as “Tripos_other.”
Note that species or genus names are not ital-
icized here if used as a name of a classification
category.

Instrument design also inhibited species-
specific identification within the genus of
Chaetoceros, where the inability to capture
the intricate details of fine structures con-
necting cells in a chain made species-level
distinctions difficult. For cells of sizes
approaching the lower resolution limit of the
imaging system, or when image quality was
poor, class distinctions were made based on
broad morphological differentiation, for exam-
ple, “unknown pennate diatom” vs. “unknown
centric diatom” (Fig. 2d,e). Our classification
scheme also distinguished cells that could be
observed in a solitary form as well as in chains
(Fig. 2g). Therefore, where technical limita-
tions prevented taxonomy-based classifications,
semantic descriptors (e.g. “single cell,” “chain,”
“spines”) were used instead of the taxo-
nomic identifiers. Overall, our methodologi-
cal approach for developing classifier categories
was iterative; we entered the workshop with a
general concept of desired classifier categories,
but revised and refined this with the help of
taxonomic experts.

We focused on annotating and classifying
organisms and particles in the size range
30–1000 μm, though the SPC captures larger
and smaller organisms and particles. The
lower size range was restricted by the pixel
resolution of the camera that inhibits image
clarity, and thus reliable classification of par-
ticles smaller than 30 μm. The upper limit
was selected in consideration of the size of
organisms of interest and the likelihood of
collecting a sufficient number of large organ-
isms that are rare relative to the sample
volume.

Important considerations for the training
dataset. When building an image database
for automated classification it is important
to account for environmental variability that
not only affects the relative abundance but

also the appearance of organisms and parti-
cles, both directly and indirectly. The
appearance of target organisms may differ
due to cell growth phase (i.e., cell division),
feeding stage (of importance for mixotrophic
or heterotrophic eukaryotes that were
imaged after having engulfed their prey), and
cell orientation in the imaged volume. Bio-
fouling on the instrument may also impact
the image quality. Together, these factors
contribute to dataset shift, where the target
data are different from the training data
leading to lower-quality automated popula-
tion estimates (Gonz�alez et al. 2017;
Orenstein et al. 2020a). It is therefore
important for the training dataset to contain
images collected over a range of environmen-
tal and instrument maintenance scenarios to
ensure that all recognizable states of the
organisms are represented in the training set.

To incorporate temporal variability in the
training set, it is possible to randomly select
time periods for image annotation over the
period of instrument deployment. If avail-
able, one can also leverage scientific literature
or ecological data that captures local or
regional variability in the plankton
populations to inform the selection of spe-
cific time periods when target taxa were rela-
tively abundant to ensure efficient image
annotation. We used weekly monitoring
reports for Scripps Pier collected by
SCCOOS as part of the Harmful Algal
Bloom Monitoring and Alert Program
(HABMAP) (https://calhabmap.org) to
inform the selection of key taxa for classifica-
tion. We also used these data to identify
time periods of elevated abundance of
selected species, which we expected to coin-
cide with periods when the camera would
record increased occurrences of the
corresponding classified taxa. To ensure the
collection of sufficient training data, we
chose to semi-randomize the selection of
dates for image annotation by biasing toward
high abundance days according to the moni-
toring data at Scripps Pier, instead of uni-
formly sampling across the time period of
the instrument deployment. This approach
is particularly useful to ensure collection of
images of rare, but ecologically relevant,
organisms that form infrequent and often
short-lived blooms. This approach, however,
is biased toward capturing organism mor-
phologies during bloom conditions, which
may lead to poor classifier performance
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during the non-bloom periods if the organ-
ism’s morphology is significantly different.
On the other hand, if the goal of the project
is to identify blooms, poor classifier perfor-
mance during non-blooms conditions may
not be a critical flaw.

Image dataset builders must pay close
attention to images of organisms or particles
that are not of immediate interest to the pro-
ject, relegating them to “noise.” In our case,
“noise” categories incorporate any nonliving
or non-biological particles, such as sand,
marine snow, or gas bubbles (Fig. 2h–k).
These particles, while not of primary interest
to our study of plankton, are morphologi-
cally distinct and should be treated as sepa-
rate classes. Without accounting for noise
categories, the classifier will distribute the
images of such objects among taxonomic
classes, negatively impacting classifier perfor-
mance (Li and Vasconcelos 2020). The
more specific the noise categories are, the
better the classifier performance (Li and
Vasconcelos 2020; Orenstein et al. 2020a).

Resource requirements for a successful classi-
fier. It is important to consider the amount
of human effort necessary to build an image
dataset for training of the classifier, where
the required volume of image data is deter-
mined by the number of resolved classes and
the choice of the classification algorithm. In
addition, human effort may be necessary for
further validation of the classifier output,
where the required labor increases linearly
with the number of classes.

For automated image classification, we
focused our efforts on the increasingly com-
mon deep convolutional neural networks
(CNNs) that require expert annotated data
for training purposes. The architecture of
most CNNs calls for 1000s of example
images per class to appropriately tune the
algorithm (LeCun et al. 2015). In general, a
deeper CNN with more layers will have
greater representational power and greater
ability to learn more complex patterns.
Increasing the depth and thus the complex-
ity of the network comes at the cost of
requiring increasingly larger training
datasets. As a consequence, a deeper net-
work is not always the best choice due to
resource limitations. Rather, the optimal
architecture depends on the amount of data
available for training. Techniques such as
fine tuning (i.e., reusing lower-level feature

extraction layers of the neural network) and
data augmentation (i.e., creating new images
from random affine transformations of the
existing ones) can be effective when limited
training data are available. The selection of a
suitable classification architecture can be
made by comparison of classifier perfor-
mance across a range of different architec-
tures, paying careful attention not to
“overengineer” the network and risk over-
fitting. Since the selection of the optimal
architecture was not the objective of the
workshop, we have selected a classifier struc-
ture that was previously proven to work well
on image data collected by the SPC (Kenitz
et al. 2020; Orenstein et al. 2020a).

Recent studies highlight the need for
human validation of the classifier output to
ensure high-quality ecological data (Axler
et al. 2020; Kenitz et al. 2020). Automated
classifiers often assume that the properties
captured in the training dataset reflect those
observed in situ. The phenomenon of
dataset shift, in which the data used for
training do not reflect the day-to-day vari-
ability observed in situ, is pervasive in natu-
ral environments because the relative
abundances and appearances of organisms
are rarely static. Dataset shift degrades the
performance of automated classifiers, but
can be mitigated with a variety of auto-
mated or semi-supervised quantification
methods (Gonz�alez et al. 2017; Orenstein
et al. 2020a). Validation of the classifier
output may require more resources and
effort than collection of training images,
and should be accounted for when design-
ing a classification scheme.

Involving the experts: Workshop design

We invited taxonomists who specialize in
ecosystem and HAB monitoring efforts on
the U.S. West Coast, the majority coming
from the state of California. A total of 17 sci-
entists with taxonomic expertise assisted
with annotation of plankton images collected
by the SPC. The focused, 2-d workshop was
designed to: (1) create opportunities for net-
working, sharing, and discussing new scien-
tific ideas through inviting participants to
present their research and participate in
casual networking events; (2) familiarize taxo-
nomic experts with the machine learning tools
and their applications; (3) educate engineers
about the desired scientific outcomes by

facilitating discussions with taxonomists and
showcasing their research interests; and
(4) emphasize the importance of including
taxonomic expertise in the pipeline as auto-
mated technologies increasingly come online.

To ensure collection of high-quality
labeled data, it is important that the annota-
tors understand key principles and limita-
tions of the machine learning tools, and how
the selection of images used for training
affects the performance of machine classi-
fiers. Prior to image annotation sessions, we
offered a brief “crash course” on machine
learning and computer vision aimed at famil-
iarizing all annotators with machine learning
concepts and highlighting important consid-
erations when building an image dataset.
We emphasized the need to include:
(1) blurry or poor-resolution images, as long
as the organism is still clearly identifiable
and (2) images of organisms captured at sub-
optimal orientations or angles, as long as
structural details are captured sufficiently to
enable taxonomic identification. We thus
encouraged annotators to label images when
they were at least 75% confident in their tax-
onomic identification to ensure that the clas-
sifier had training data that encoded
imperfect examples. With enough training
data, the CNN should be able to learn the
differences between each class in the context
of such variability (LeCun et al. 2015).
Otherwise, the algorithm will only learn to
recognize appropriately oriented, in-focus
images of a particular organism.

Prior to image annotation sessions, we
held a discussion of the provisional list of
classes for automated classification that was
prepared prior to the workshop, and exam-
ined example images for each class. The dis-
cussion focused on the feasibility and
limitations of species identification, especially
when imaged at suboptimal angels, and the
final list of annotation classes was formed
based upon the group consensus and the
available taxonomic expertise. This discussion
was particularly important for establishing the
classification scheme for chain-forming dia-
toms as the camera was often unable to cap-
ture the characteristic morphological features
allowing for differentiation between chain-
forming diatom taxa, enforcing the implemen-
tation of semantic class descriptors.

The team of experts was divided so that
two experts shared the annotation workload
of each assigned class. Each image was
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assigned a label by one annotator only. Due
to time limitation, we were unable to test for
consistency between annotators by allowing
multiple annotators to label the same subset
of images, although that would be a useful
additional step should resources allow. The
workshop included thirty minute to one
hour discussion sessions at the start and the
end of each day and was structured so that
one-hour annotating sessions were preceded
by thirty minute scientific presentations by
selected workshop participants. This format
is not prescriptive, but was successful in
keeping the community engaged in our case.

How well did we do?

Successes and limitations of workshop
design

The workshop setting allowed us to design a
rigorous set of taxonomic and semantic clas-
ses, collect plankton images for training and
build a first-cut classifier in a matter of days.
Focused discussions among the experts pro-
vided valuable insight into what organisms
can be confidently identified from the images
collected by the SPC. In addition to image
annotation sessions, the workshop facilitated
scientific exchange and introduction to
machine learning, resulting in seven hours
allocated for image annotation alone. Expert
annotators classified a total of 18,303 images
into 32 taxonomic and three noise categories
(listed in Fig. 3a).

Annotation of 18,303 images by 17 par-
ticipants over the course of the workshop
may not seem like a lot, in comparison to
the rate of image acquisition reported else-
where (Lombard et al. 2019). In our annota-
tion approach, once the database was
populated with the satisfactory number of
example images for a particular classification
category (here the goal was 500 images per
class), the expert would then proceed to
annotate images for another category to
ensure that sufficient number of images is
collected for each class. Annotation of
images for highly abundant organisms or
particles was conducted very swiftly, how-
ever, the annotation rate dropped signifi-
cantly when looking for images of rare
organisms. The merit of our approach is that
it ensures less abundant organisms are
equally well represented in the image
database.

During the workshop, we encountered a
few issues to consider in future annotation
efforts: (1) differences in the sampling tech-
niques between the SPC and the weekly pier
monitoring data; (2) annotator recency bias;
and (3) the annotators’ ability to set search
parameters to obtain unlabeled images and
create new class labels in the data browser.

Selection of dates for image annotation of
each target taxon was to a large extent
informed by the ecological data provided by
HABMAP. Selected dates were biased
toward periods of elevated abundance of a
particular taxon as reported by HABMAP.
During the proceedings, it became apparent
that, for some organisms, high abundances
indicated in the weekly HABMAP samples
were not reflected in the image data collected
by the SPC (and vice versa). These discrep-
ancies may have been due to different sam-
pling designs, namely, the depths of water
collection (HABMAP samples are collected
from the surface, whereas SPC is deployed
at about 3 m). The discrepancies were most
pronounced for rare organisms, making it
challenging to collect enough training images
for less abundant taxa. Thus, for the limited
number of taxa for which our image collec-
tion procedures did not yield a sufficient
number of images, we decided to focus our
efforts on the limited periods when the SPC
captured many images of a particular taxon,
hence sacrificing the temporal distribution of
training images to guarantee a sufficient
number of training examples. Collection of
images of rare species remained a challenge,
with a handful of taxonomic classes having
to be excluded from automated classification
due to an insufficient number of training
images.

Another pervasive issue to consider is
recency bias: annotators would subcon-
sciously assume a higher likelihood of a new
image belonging to a taxonomic class that
had a high relative abundance in a discrete
time period (Culverhouse et al. 2014).
Annotators assigned images to a specific class
even when there was an insufficient level of
structural detail to enable confident taxo-
nomic identification. Inspection of training
images collected during the workshop rev-
ealed a substantial number of images whose
assignment to a particular taxonomic class
was questionable.

Finally, annotators had full access to sea-
rch parameters in the web interface and the

flexibility to create new labels. Even though
the classification categories were preset, the
ability to create new labels aimed to high-
light new or interesting organisms that were
not accounted for in our annotation scheme,
and somehow resulted in multiple labels for
predetermined classification categories. This
source of confusion could have easily been
avoided, either by limiting user privileges or
fixing the search parameters on the user
interface. Ideally, the interface should be
designed so that annotators can focus purely
on image classification and avoid distractions
associated with interface setup.

The image dataset annotated during the
workshop was manually quality controlled
afterwards by a single person with taxo-
nomic, database, and machine learning
expertise. The postprocessing included:
(1) clearing out inconsistencies in label
assignments; (2) removal of misclassified
images; (3) further differentiation of taxo-
nomic classes that combined multiple taxa;
(4) introduction of semantic descriptors to
further separate highly morphologically
diverse classes (e.g., T. furca was often imaged
either in a form of a single cell or as a pair of
cells and so the class was further subdivided
using semantic descriptors “single” and “pair”
to distinguish the two morphologies); and
(5) merging classes of organisms that were
very similar morphologically, and therefore
not distinguishable if imaged at suboptimal
orientation (e.g., Rhizosolenia and Proboscia
spp. that are morphologically similar solitary
diatoms). The image database and the classi-
fier continued to be developed after the work-
shop to improve the classifier performance,
where the latest version will be made available
at https://doi.org/10.6075/J00865GT.

What would we change now?

We learned several key lessons during our
workshop that should improve annotation
efficiency in future efforts.

It is important that the principal and only
responsibility of taxonomy experts is image
annotation. Programmatic creation of new
labels and setting of search parameters
(e.g., date, time, size range, etc.) should be
limited to the annotation software adminis-
trator to ensure consistency. This can be
done by compiling all images within the
preselected time intervals and size range
prior to the annotation sessions, equally
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dividing the images among annotators and
providing each expert with their set of
images for annotation. Preselecting images
and limiting the annotator’s interaction with
the software would be more time efficient.

Preselecting data would also allow orga-
nizers to mix images from different dates,
helping to address recency bias and

increasing the temporal distribution of the
training set. Rather than focusing on one class
at a time, annotators would then be identifying
a multitude of taxa from a greater variety of
time intervals, forcing them to pay attention to
important morphological features. Moreover,
this approach would ensure an equal distribu-
tion of labor among annotators and limit

fatigue related to hunting for images of rare
species.

Previous research has demonstrated that
human annotators suffer from biases and are
often not consistent with their own previous
effort (Culverhouse et al. 2014), highlighting
the need for some sort of quality control of
the image database. We attempted to
account for annotator biases by having a sin-
gle expert taxonomist quality control all
annotations. Ideally, to evaluate these biases,
the level of agreement between annotators
should be assessed by selecting a subset of
images that will be examined by all experts
individually (Schoening et al. 2016). Com-
paring the outcome of such simultaneous
annotations would provide confidence in the
consistency of the labeled image data set and
highlight any problematic taxa if there was
high discrepancy among the experts with
varying levels of experience.

There are numerous options for image
annotation software and services available
for data of all kinds (Gomes-Pereira
et al. 2016; Irisson et al. 2022). Some are
freely available on GitHub. Others, like
MATLAB’s Image Labeler GUI or
LabelBox, are professionally supported by
large, for-profit companies. There are several
ocean-specific annotation tools like Ecotaxa
(https://ecotaxa.obs-vlfr.fr/), BIIGLE (https://
biigle.de/), VARS (https://www.mbari.org/
technology/video-annotation-and-reference-
system-vars/), or IFCB Annotate (https://ifcb-
annotate.whoi.edu/), to name just a few. All of
the above software are powerful tools for data
annotation; however, selection of a suitable
software should be made based on the annota-
tion design to best fit the project’s needs.
Among other considerations, users should pay
attention to, for example, the output format of
the labels, whether the package is actively
supported, and options for integrated data
management.

Collection of images of rare species
remains a challenge. One method to address
this issue might be to monitor the image
database until a sufficient number of images
for training is collected. Alternatively, applica-
tion of unsupervised clustering algorithms,
such as Morphocluster (Schröder et al. 2020),
can be incredibly helpful for limiting the num-
ber of images for inspection. One could
also use the classifier as a prefilter, follow-
ing the principles of active learning
(Settles 2009): iteratively running a trained

FIG. 3. (a) The number of images collected per each category for training of the automated classifier.
Taxonomy-based categories are in light gray, and non-biological (i.e., “noise”) categories are in dark gray. The
black, dashed line marks the goal for image annotation. The red line marks the minimum of images required for
a category to be included in the automated classification. Note that for categories “Sand” and “Bubble,” addi-
tional images were collected prior to the workshop, indicated by white bars, that were used for training of the
classifier. (b) The output of the classifier applied to image data collected every Monday, from March 2015 to
July 2019, illustrating the proportion of all images classified cumulatively into diatom, dinoflagellate, ciliate,
other and noise categories. Category “Other” here includes “Chattonella,” “Nauplii,” and “Acantharea”
categories.
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classifier, inspecting the output in search of cor-
rectly identified images of rare taxa, and
retraining the classifier with a larger training
set. However, it is important to note that this
approach may ultimately reinforce what the
classifier has already learned about a given class.
Care must be taken to ensure the computer
learns what it is getting wrong by properly
sorting false positives: images that were incor-
rectly classifier should be manually reclassified
and included in the training of the next classi-
fier iteration.

But the outcomes!

Plankton time series

Annotation of plankton images during the
workshop enabled training and application
of the first-cut classifier to the remaining
images collected by the SPC. During the
workshop, only images collected on
Mondays were classified in order to decrease
the computational time while the classifier
continues to be further developed for
improved performance. Here, we illustrate
the data product that resulted from the
efforts invested by the scientists during the
workshop: the classifier output (Fig. 3), where
the taxonomic categories were grouped into
functional groups (diatoms and dinoflagel-
lates) as the output requires further, class-
specific validation. The image dataset and
the classifier underwent substantial devel-
opment after the workshop and some of the
final ecological time series have been vali-
dated and published (Kenitz et al. 2023).

It was worth it!

Novel aquatic imaging technologies have
enormous promise for speeding the acquisi-
tion of data on plankton community compo-
sition and dynamics, potentially allowing
scientists to monitor ecosystems at high spa-
tial and temporal resolution and ask exciting
new scientific questions (Irisson et al. 2022).
Converting the overwhelming amounts of
image data into ecologically meaningful
information requires machine learning and
computer vision algorithms. Collecting the
large volume of image data required for
training of these algorithms is time consum-
ing, challenging, and expensive for complex
planktonic communities, where intra-species
morphological diversity and multiple life

cycle stages may be present. The morpholog-
ical differences between species or classes can
be small and only distinguishable by experts.

A workshop setting has proven to be a
productive and efficient approach for
soliciting scientific expertise and speeding
collection of high-quality, labeled data
required for training of automated classifiers.
Focused discussions facilitated quick deci-
sions and consensus on which organisms are
most relevant for regional monitoring efforts
and the feasibility of their taxonomic identi-
fication from images. This pivotal part of
automated classification workflow is often
the most challenging and time-consuming,
irrespective of the imaging technology and
image annotating software used.

Planktonic communities are exceptionally
dynamic. Community structure and even cell
morphology can vary considerably in both
time and space. Automated classifiers often
assume static relationships between data
used for their training and the variability
observed in situ, which can introduce signifi-
cant errors to the final data output. It is
important to carefully monitor the perfor-
mance of automated classifiers, highlighting
the value of expert involvement in the contin-
uous validation of the classifier output. We
believe the most effective way of ensuring con-
sistent, high-accuracy output is maintaining
human expert participation in all stages of
the automated classification process.

Acknowledgments

Sustained phytoplankton monitoring efforts
at Scripps Pier are conducted by the South-
ern California Coastal Ocean Observing Sys-
tem (Award # NA16NOS0120022) as a
part of the California Harmful Algal Bloom
Monitoring and Alert Program (HABMAP),
monitoring water quality along the central
and southern California coast. The workshop
was funded by the National Science Founda-
tion BIGDATA Initiative award (NSF IIS
15-46351) to JSJ and PJSF. KMK and ADB
were supported by the Simons Foundation. We
thank the participants of the taxonomy work-
shop for their participation and engagement.
The Olympic Region Harmful Algal Bloom
(ORHAB) partnership has been funded since
2006 by a surcharge to Washington State shell-
fish and seaweed licenses as authorized by
RCW 77.21.555. We thank ORHAB for pro-
viding support for Anthony Odell.

Author contributions

KMK and ECO organized the Taxonomy
Workshop at Scripps Institution of
Oceanography. KMK, ECO and ADB pre-
pared the manuscript. All authors partici-
pated in the workshop and made
significant contributions to the content of
this manuscript.

This is an open access article under the
terms of the Creative Commons Attribution
License, which permits use, distribution and
reproduction in any medium, provided the
original work is properly cited.

References
Axler, K. E., S. Sponaugle, C. Briseño-Avena,

F. Hernandez, S. J. Warner, B.
Dzwonkowski, S. L. Dykstra, and R. K.
Cowen. 2020. Fine-scale larval fish distribu-
tions and predator�prey dynamics in a
coastal river-dominated ecosystem. Mar.
Ecol. Prog. Ser. 650: 37–61. doi:
10.3354/meps13397.

Culverhouse, P. F., N. Macleod, R. Williams,
M. C. Benfield, R. M. Lopes, and M. Picheral.
2014. An empirical assessment of the consis-
tency of taxonomic identifications. Mar. Biol.
Res. 10: 73–84. doi:10.1080/17451000.
2013.810762.

Gomes-Pereira, J. N., and others. 2016. Current
and future trends in marine image annotation
software. Prog. Oceanogr. 149: 106–120. doi:
10.1016/j.pocean.2016.07.005.
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