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Ecological network analyses are used to identify potential biotic interactions between microorganisms from species abundance
data. These analyses are often carried out using time-series data; however, time-series networks have unique statistical challenges.
Time-dependent species abundance data can lead to species co-occurrence patterns that are not a result of direct, biotic
associations and may therefore result in inaccurate network predictions. Here, we describe a generalize additive model (GAM)-
based data transformation that removes time-series signals from species abundance data prior to running network analyses.
Validation of the transformation was carried out by generating mock, time-series datasets, with an underlying covariance structure,
running network analyses on these datasets with and without our GAM transformation, and comparing the network outputs to the
known covariance structure of the simulated data. The results revealed that seasonal abundance patterns substantially decreased
the accuracy of the inferred networks. In addition, the GAM transformation increased the predictive power (F1 score) of inferred
ecological networks on average and improved the ability of network inference methods to capture important features of network
structure. This study underscores the importance of considering temporal features when carrying out network analyses and
describes a simple, effective tool that can be used to improve results.

ISME Communications; https://doi.org/10.1038/s43705-022-00106-7

INTRODUCTION
Communities of microorganisms exist in virtually all natural
environments on the planet and are shaped by complex
interactions. Species-species interactions are diverse and may
benefit both species involved (e.g., mutualism), only one (e.g.,
commensalism, parasitism, predation), or hurt both (e.g., competi-
tion) [1, 2]. Ecological network analyses are increasingly used by
microbial ecologists to identify potential biotic interactions
between organisms, and to form hypotheses regarding microbial
community structure and function [1, 3, 4]. Commonly employed
network-inference methods include pairwise correlation-based,
regression-based, and probabilistic graphical methods [5, 6]. All of
these methods leverage microbial abundance measurements to
identify co-occurrence patterns between organisms [1, 7, 8]. Biotic
interactions between organisms are then predicted based on the
species’ co-occurrence patterns, resulting in a list of nodes
(organisms) connected by edges (associations) [1, 7–9].
Abundance data that are used as input for ecological network

analyses are often obtained through monthly time-series sampling
efforts [10–15]. Time-series datasets are valuable because
documenting changes in microbial community structure over
long timeframes can provide information on the monthly, annual,
or interannual variability in species abundances [16, 17]. For
example, ~11 years of monthly sampling at the San Pedro Ocean
Time-Series site revealed that 23% of bacterial operational

taxonomic units demonstrated predictable, seasonal abundance
patterns in surface waters [13]. Another time-series study that took
place over ~6 years in the Western English Channel revealed that
the month of year could explain over half of the variability in
bacterial community composition [12]. Such studies highlight how
long-term time-series datasets may be used to identify predictable
changes in microbial community composition over time.
Time-series datasets can provide information on microbial

community composition and structure, but ecological networks
inferred from them should be built and interpreted with caution.
There are statistical challenges associated with time-series net-
work analyses because the samples are not independent over
time [12, 18, 19]. This inherent time-dependence may be
influenced in part by seasonally reoccurring patterns in the
abiotic environment (e.g., seasonal mixing or upwelling events) or
long-term changes in the environment over-time (e.g., rising
seawater temperature) [17, 20, 21]. As a result of this time-
dependence, species abundance patterns can lead to co-
occurrence patterns that yield spurious network predictions
[4, 22]. For instance, two species may both attain maximal
abundances during spring nutrient upwelling events, even if no
interactions occur between them. Their shared periodicity in this
case may manifest itself as a false “association”. Time-dependence
may also confound species co-occurrence patterns through the
effects of Simpson’s paradox [23, 24]. If a mutualistic relationship
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exists between two species, one might expect a positive
correlation between the abundances of the two species across
samples. However, if the species respond differently to a third
variable (e.g., month of year), then the positive association
between the two species may be offset or reversed as a result
of this time-dependence [24]. Such inaccurate associations
indicate that caution should be exercised when carrying out
network analyses on time-series datasets [7, 24].
Here, we propose and validate a generalized additive model

(GAM)-based data transformation that corrects for potentially
confounding time-series signals that are prevalent in microbial
relative abundance data. The GAM transformation was conducted
prior to carrying out ecological network analyses, in order to
remove seasonal, long-term, and autocorrelative trends, thereby
allowing researchers to focus on the residual statistical variability
of the microbial abundance data. We contend that the residual
variability is likely more indicative of true biotic associations than
are untransformed data. We used GAMs in this data transforma-
tion method, as they are versatile, and commonly used to capture
non-linear trends typical of time-series data [25]. Generalized
additive models have been used to model both seasonal patterns
and long-term trends in time-series data [25–27] and have also
been used to capture autocorrelative signals [17, 28]. The GAM-
based data transformation presented here has the potential to
capture seasonal, long-term, and autocorrelative trends in time-
series datasets, thus minimizing the influence that temporal
signals have on inferred microbial co-occurrence patterns and
increasing the F1 score of commonly employed networking
methods.

MATERIALS AND METHODS
Our general strategy was to compare the performance of four approaches
for inferring microbial associations from abundance data with overlying
time-series signals. The approaches were (1) pairwise spearman correlation
analysis (SCC) [1, 29], (2) Graphical lasso analysis (Glasso) [30, 31], (3)
pairwise SCC analysis with a pre-processing step where seasonal and long-
term splines were fit to and subtracted from each variable using a GAM
(GAM-SCC), and (4) Glasso with the same GAM subtraction approach
(GAM-Glasso). Our validation strategy for the GAM transformation
consisted of generating mock datasets with underlying associations,
masking those associations by adding seasonal and long-term signals to
the abundance data, and comparing the predicted associations obtained
from each network inference method to the true species-species
associations.

Data simulation: generating mock abundance data with time-
series properties
We generated mock abundance datasets that had a predetermined,
underlying network structure and contained long-term and seasonal
species abundance patterns. First, a covariance matrix was generated to
describe the relationships between species in a mock dataset (Fig. S1,
Panel 1). The covariance matrices were constructed with underlying
network structures that followed either a scale-free Barabási-Albert model,
a random Erdős-Rényi model, or a model of network topology based on a
real microbial dataset (American Gut dataset; Fig. S1) [32, 33]. The Erdős-
Rényi and Barabási-Albert model datasets were generated so that each
dataset contained 400 species and 200 samples, and the American Gut
datasets were created so that each dataset contained 127 species and
200 samples. A random Bernoulli distribution was used to simulate the
covariance matrix for the Erdős-Rényi networks. We set the probability of
interactions occurring between species in a given Erdős-Rényi network to
1%. The Barabási-Albert networks were generated using the “sample_pa”
function in the igraph package [34]. The “graph2prec” function in the
SpiecEasi package was used to predict the covariance matrix of the
American Gut dataset [33]. The covariance between species in a dataset
was considered “high” or “low” when the true associations in the
covariance matrix were set to 100 or 10 respectively (Fig. S1, Panel 1).
These covariance matrices describe the “real”, underlying species
interactions in our mock datasets.

After generating a covariance matrix, the mean abundance for each
species was generated from a normal distribution with a mean of 10 and a
variance of 1. These mean abundance values and the covariance matrix
were used to parameterize a multivariate normal distribution from which
species abundance values for all 200 samples in a dataset were drawn
(Fig. S1, Panel 2). The values generated from this multivariate normal
distribution were the species abundance values without time-series
features confounding the relationship between two associated species
(Fig. S1, Panel 2).
“Gradual” or “abrupt” seasonal trends were added to 0%, 25%, 50% or

100% of the species in each mock dataset. The gradual seasonal trend
increased over 5 months, peaked at a specific month, and decreased over
5 months. Conversely, the abrupt seasonal signal increased over 2 months,
peaked at a specific month, and decreased over 2 months (Fig. S1, Panel 3).
These seasonal signals were generated by plugging a vector of
consecutive integers of length 200 (Nt) into the gradual (Eq. (1)) or abrupt
(Eq. (2)) seasonal equations (Fig. S1, Panel 3)…

Gradual : St ¼
cos Nt � 2 � π

12

� �

2

� �
þ 0:5 (1)

Abrupt : St ¼
cos Nt � 2 � π

12

� �

2

� �
þ 0:5

� �10

(2)

where N is the random vector of consecutive integers, S is the output
seasonal vector, and t is the index of vectors N and S. The starting value of
vector Nt was drawn at random for each species to allow the seasonal
peaks to be centered at different months. Each element in the seasonal
vector (St) was then multiplied by the corresponding element in the
abundance vector (Xt) of a specific species to obtain mock species
abundance values with a gradual or abrupt seasonal trend (Fig. S1,
Panel 3).
A long-term time-series trend was added to the abundance values of 0%

or 50% of the species in the mock datasets (Fig. S1, Panel 4). When a long-
term signal was applied to 50% of the species in a dataset, half of the
species were randomly selected to have this long-term trend. Then, a
vector of linear values was generated following Eq. (3) such that…

Long� term trend : Lt ¼ ±m Lt�1ð Þ þ 0:01 (3)

where Lt is the point in the line at the next time point and m is the slope of
the line. The slope parameter (m) was generated from a random normal
distribution with a mean of 0.01 and a variance of 0.01. The slope
parameter (m) was also multiplied by −1 half of the time to ensure that
half of the long-term trends increased over time and half decreased over
time (Fig. S1, Panel 4). After generating the vector of linear values (Lt), each
element of this vector was added to each element of the abundance
vector (Xt) of a specific species to simulate long-term time-series trends
(Fig. S1, Panel 4).
Time-series predictor columns were added to each dataset after

applying monthly and long-term abundance trends to a portion of the
species in the mock datasets. The predictors that were used in the
downstream GAM-based data transformation were the month of the year
(i.e., 1–12) and the day of the time-series (i.e., 1–200). In total, we generated
100 mock datasets for every combination of conditions (84 combinations
total; Table S1), resulting in 8400 mock time-series datasets that were used
in the downstream count data transformation, GAM subtraction, and
network analysis procedures.

Data simulation: Simulating count data from abundance
values
The 8400 time-series datasets that were generated using the methods
described above were transformed to make the abundance values
resemble high-throughput sequencing data because microbial time-
series sampling efforts are often processed using such molecular methods
(e.g., tag-sequencing, meta-omics). Analysis of high-throughput sequen-
cing data is complicated by the compositional (i.e., relative) nature of the
data and by the high number of zeros that may be prevalent in a dataset
(i.e., zero-inflation; see Supplementary Information) [35, 36]. Relative
abundances of different species in natural communities are also highly
skewed, so that relatively few species constitute most of the organisms in a
sample although many rare species are also present [37, 38]. Therefore,
species abundances were first exponentiated to increase the prevalence of
abundant species and to decrease the prevalence of rare species (Fig. S1,
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Panel 5). The exponentiated species abundance values were then
converted to relative abundance values by dividing each species count
by the sum of all species counts in a sample (Fig. S1, Panel 6). The resulting
relative abundance values and time-series predictor variables were used in
data normalization and GAM-transformation steps prior to carrying out the
network analyses.

Network inference: Count data normalization and GAM
transformation
Several steps were taken to back out the species-species relationships in
the mock datasets. We advocate these steps to infer network structure
from a real time-series dataset. A centered log-ratio (CLR) transformation
was first applied to the species relative abundance values to normalize the
mock species abundance data across samples using the “clr” function in
the compositions package in R (Fig. 1) [39]. This transformation step is
important to avoid spurious inferences induced by the inherent
compositionality of relative abundance data [31, 33, 36]. In addition to
the CLR transformation used in our main network iterations, we carried out
additional network iterations using the modified CLR [40], cumulative sum
scaling [41], and total sum scaling [42] transformations (see Supplementary
Information). In all cases, the normalized dataset was copied, with one
copy subjected to a subsequent GAM transformation, and the other one
not GAM-transformed.
The GAM transformation was carried out by fitting GAMs to each

individual species in the dataset to remove monthly signals, long-term
trends, and autocorrelation from the species abundance data. These GAMs
were fit using the “gamm” function in the mgcv package in R [43, 44]. The
GAMs that were used included the “month of year” parameter as a cyclical
spline predictor and the “day of time-series” parameter as a penalized thin-
plate spline predictor (“ts” in the mgcv package; Fig. 1), which given our
one-dimensional data is analogous to a natural cubic spline. In addition,
the first GAM included a continuous AR1 (“corCAR1” in the mgcv package)
correlation structure term in the model. This corCAR1 model was revised
for specific species when the GAM could not be resolved or when
significant autocorrelation was detected in the GAM residuals (Fig. 1). The
GAM revision step fit 4 new GAMs with different correlation structure
terms (i.e., “AR1”, “CompSymm”, “Exp”, and “Gaus”) to the species that
could not be fit using the corCAR1 model or that contained significant
autocorrelation in the corCAR1 GAM residuals. Then, the correlation
structure term that addressed these issues for the largest number of
individuals was used as the GAM model for this group of species. After
fitting a GAM to all of the species in the input dataset, the residuals of each
GAM were extracted and were used as the new, GAM-transformed
abundance values (Fig. 1). These GAM residuals represent species
abundance values with a reduced influence of time (Fig. 2) and were
used as input in the downstream GAM-SCC and GAM-Glasso network
analyses.

Network inference: Network runs and statistical analyses
The pre-processed species abundance data with and without the GAM-
removal of time-series signals were used in SCC and Glasso networks in
order to compare the outputs of the SCC, GAM-SCC, Glasso, and GAM-
Glasso network inference approaches (Fig. 1). Additional network iterations
were also carried out using the CCLasso [45] and SPRING [40] network
inference approaches (see Supplementary Information). For the SCC and
Glasso network iterations, a nonparanormal transformation was applied to
the species abundance datasets with and without the GAM transformation
using the “huge.npn” function in the huge package in R [46]. Spearman
correlation networks were then constructed by calculating the correlation
between every pair of species in the mock abundance datasets. A
Bonferroni-corrected p value of 0.01 was used as a cutoff to identify edges
in these SCC networks. The Glasso networks were constructed by testing
30 regularization parameter values (i.e., lambdas) in each network using
the “batch.pulsar” (criterion= “stars”; rep.num= 50) function in the pulsar
package in R [47]. The lambda that resulted in the most stable network
output was selected using the StARS method [48]. Finally, the graph that
resulted from the StARS output was used to obtain a species adjacency
matrix for the Glasso networks.
The species-species associations predicted by the SCC, GAM-SCC, Glasso,

and GAM-Glasso networks were compared to the true species-species
associations and the F1 scores of the network predictions were calculated.
The F1 score is a measure of classification performance (presence or
absence of an edge) that accounts for uneven classes, which is essential
when dealing with sparse networks. The F1 scores of the GAM-transformed

networks were compared to the networks that did not undergo GAM
transformation using paired Wilcoxon tests with Bonferroni correction. An
adjusted p value of 0.01 was used as a cutoff to identify under what
circumstances the GAM significantly improved the F1 score of a Glasso or
SCC network.

Network inference: Comparison of predicted network
structures
Additional networks were generated using the methods described above
to compare the predicted network structures obtained from the GAM-
Glasso, Glasso, GAM-SCC, and SCC approaches to the real network
structures. These additional networks were constructed using smaller mock
datasets to allow for better visualization of the network outputs and
contained species with a gradual seasonal signal and high species-species
covariance (see Supplementary Information). The average clustering
coefficient and the degree distribution of these additional network
outputs were calculated and used for the network structure comparisons.
The average clustering coefficient of a network describes the likelihood
that two species that are both associated with a third species are also
associated with each other [49], and in a sense describes the “clumpiness”
of a network. The network degree distributions describe the probability
distribution of the number of interactions per node in a network [50].

RESULTS
Seasonal abundance patterns decreased the performance of
network inference methods
The F1 scores of the reconstructed network outputs generally
decreased as the proportion of species in the mock dataset with a
seasonal abundance pattern increased. The decreases in network
F1 scores with increases in the percent of species with a seasonal
abundance pattern were always prevalent in the Glasso and SCC
networks when the GAM transformation was not applied and
when some percentage of species (>0%) in the mock datasets had
a seasonal abundance pattern (Fig. 3; Tables S2–S4). In general,
the highest F1 scores were associated with networks that did not
contain any species with an underlying seasonal signal (0%), while
the lowest F1 scores were typically associated with networks in
which all of the species had a seasonal abundance pattern (100%;
Fig. 3; Tables S2–S4).
The general decline in network F1 score with a greater

percentage of species exhibiting seasonality was often less
pronounced when the mock datasets were GAM-transformed
prior to carrying out the network analyses. For example, when
species-species covariance was high, the GAM-SCC method
tended to perform similarly regardless of whether 25%, 50%, or
100% of the species in a Barabási-Albert or American Gut dataset
network had a gradual seasonal abundance pattern (Figs. S5 and
S7, Panels B and F). The decline in network F1 score with increases
in the percentage of species exhibiting seasonality was also less
pronounced in GAM-Glasso networks when there was high
covariance between species and when some of the species in
the input dataset had a gradual, seasonal abundance pattern
(Figs. S2–S4, Panels B and F).

GAM transformation improved network inference on average
The GAM transformation increased the F1 score of the Glasso
networks in 82.3% of all network runs (Fig. 3, Panels A–C; most
points fall below the 1:1 line). Specifically, the GAM transformation
significantly increased the mean F1 score of the Glasso networks
when a gradual seasonal signal (Fig. S1, Panel 3) was applied to
some fraction of the species in the input dataset (Figs. S2–S4,
Panels B, D, F, and H; Tables S2–S4). The GAM-Glasso networks also
had significantly higher F1 scores when 50% of species in the
input dataset had an abrupt, seasonal abundance pattern (Figs.
S2–S4, Panels A, C, E, and G; Tables S2–S4). For the Barabási-Albert
models, the F1 scores of the GAM-Glasso networks were
significantly greater than those of the Glasso networks when
50% of the species in the input dataset had a long-term trend with
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no (0%) seasonality (Fig. S2, Panels E–H; Table S2). Similar
increases in F1 score were noted in the Erdős-Rényi and American
Gut dataset, GAM-Glasso networks when the covariance between
species was low and when 50% of the species in the dataset had
long-term changes in abundance with no (0%) seasonality
(Figs. S3–S4, Panels G and H; Tables S3–S4).

The GAM transformation also led to substantial increases in the
F1 score of the SCC networks. Overall, the GAM transformation
increased the F1 score of SCC networks in 78.2% of all network
runs (Fig. 3, Panels D–F; most points fall below the 1:1 line). The
average F1 scores of the networks were significantly greater when
the data were GAM-transformed prior to carrying out a SCC

Fig. 1 Steps used to carry out the GAM-based transformation of time-series species abundance data prior to carrying out pairwise
spearman correlation (SCC) and graphical lasso (Glasso) ecological network analyses. The raw, species abundance data were first CLR-
transformed (1). Generalized additive models (GAMs) were then fit to each species in the dataset (2) and the residuals of each GAM were
checked for significant autocorrelation (3). The residuals of each GAM were extracted (4) and were used as input in the SCC and Glasso
network analysis methods (5). Finally, the GAM-transformed network outputs were obtained (6; see text for additional details).

Fig. 2 A conceptual figure that demonstrates how the GAM transformation can remove seasonal signals while preserving ecologically
relevant species co-occurrence patterns. In this example, the co-occurrence pattern between Species A and Species B persists even after the
seasonal signals are removed by the GAM transformation.
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network analysis when a gradual seasonal signal (Fig. S1, Panel 3)
was applied to some fraction of the species in the input dataset
(Figs. S5–S7, Panels B, D, F, and H; Tables S2–S4). The mean
F1 scores of all GAM-SCC networks were also significantly greater
than those of the SCC networks when there was high covariance
between species and when an abrupt seasonal signal (Fig. S1,
Panel 3) was applied to 25% or 50% of the species in the input
dataset (Figs. S5–S7, Panels A and E; Tables S2–S4).

GAM transformation improved the ability of Glasso and SCC
networks to capture real network structure
The GAM-transformation improved the ability of the Glasso and
SCC methods to capture the underlying structure of the Barabási-
Albert and Erdős-Rényi networks (Figs. 4–5). The real network
degree distributions were more similar to the GAM-SCC and GAM-
Glasso degree distributions than they were to the degree
distributions of the SCC and Glasso networks without GAM
transformation (Figs. 4–5). The GAM-SCC approach was the most
successful in capturing the real, scale-free Barabási-Albert network
degree distribution and had the highest average precision, recall,
and F1 score of the four methods tested (Fig. 4; Panel C).
Conversely, the GAM-Glasso approach did the best job of capturing
the real, Erdős-Rényi network structure, as the SCC and GAM-SCC
approaches predicted a number of high-degree nodes that were
not present in the true network structures (Fig. 5; long right tail in
Panels C and D). Some high-degree nodes were also predicted in
the Glasso and GAM-Glasso, Erdős-Rényi networks (Fig. 5; long
right tail in Panels A and B) but in general were less pronounced
than those noted in the SCC and GAM-SCC degree distributions.
The average clustering coefficients of the GAM-Glasso networks

were the most similar to the average clustering coefficients of the
real networks, while the average clustering coefficients of the
GAM-SCC networks were the least similar to those of the real
networks (Figs. 4–5). The exaggerated average clustering coeffi-
cients of the SCC and GAM-SCC networks were to be expected,
given the transitive nature of correlative relationships between

variables. In general, the average clustering coefficient values that
were obtained from the four network prediction approaches were
substantially higher than the average clustering coefficient values
of the real networks. These high, average clustering coefficient
values implied that the outputs obtained from the network
inference approaches resulted in networks that were “clumpier”
than the real networks.

Effectiveness of the GAM transformation decreased when
seasonal abundance patterns were abrupt
The GAM transformation slightly decreased the predictive power
of a small subset of the Glasso networks when abrupt seasonal
abundance patterns (Fig. S1, Panel 3) were prevalent in the input
dataset (Figs. S2–S4, Panels A, C, E, and G; Tables S2–S4).
Specifically, when the covariance between species was high and
all of the species (100%) in the input dataset had an abrupt
seasonal abundance pattern, the F1 scores of the Glasso networks
were significantly greater than those of the GAM-Glasso networks,
though the magnitude of the differences in performance were
minor (Figs. S2–S4, Panel A; Tables S2–S4). The GAM transforma-
tion also decreased or did not alter the F1 score for a small
number of the SCC networks when abrupt seasonal abundance
patterns were noted in the input dataset. There were some
statistically significant, but very small, decreases in the GAM-SCC
F1 scores relative to the SCC F1 scores when 50% of the species in
the input dataset had long-term increases or decreases in
abundance without having seasonal abundance patterns (0%;
Figs. S5 and S7, Panels E–F).
In sum, there was never a substantial decrease, and there was

often a substantial increase, in network F1 score when applying
the GAM transformation to the data before network inference.

DISCUSSION
Ecological co-occurrence networks can be useful for capturing
complex, biotic interactions when applied to high-throughput

Fig. 3 F1 scores of the networks constructed without GAM transformation (y-axis) plotted against the F1 scores of the GAM-transformed
networks (x-axis) for all of the mock time-series datasets that were simulated. A–C Show the comparison between the Glasso and the GAM-
Glasso networks, while (D–F) show the comparison between the SCC and the GAM-SCC networks. The dashed, black lines show the 1:1
relationship. Data points below the 1:1 line depict network outputs that had a higher F1 score after applying the GAM-based data
transformation, while data points that fall above the 1:1 line depict network runs that had a higher F1 score without applying the GAM-based
data transformation prior to network construction.
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sequencing datasets of microbial communities. However, net-
works can yield inaccurate associations if time-series properties
are prevalent in the dataset [4, 22]. The performance of the SCC
and Glasso methods used in this study tended to decrease as the
number of species with a seasonal abundance pattern in a dataset
increased (Fig. 3; Tables S2–S4). This finding indicates that time-
series networks can result in a higher number of false positive and
false negative associations than networks that are constructed
with datasets that lack time-series features. It is likely that the false
positive associations that were detected in our time-series
network outputs were indirect associations that resulted from
the shared periodicity of two or more species over time. In
addition, true species-species associations may have been missed
by our network runs (false negatives) if seasonal and long-term
signals overpowered the influence that other organisms had on
species abundance patterns.
The GAM transformation carried out prior to network construc-

tion in this study improved network inference on average for all of
the networking methods tested (Fig. 3; Fig. S10). The generally
higher F1 scores that were noted following GAM transformation
suggest that the GAM model was able to successfully capture and
remove many of the seasonal and long-term signals that were
prevalent in the mock communities. Previous efforts have been
made to account for indirect or time-dependent associations in
network analyses. For example, the EnDED program (environmen-
tally driven edge detection) uses environmental variables (e.g.,
temperature, salinity, etc.) to predict and remove indirect,
environmentally driven associations in an ecological network after
network inference has already been performed, provided that
environmental metadata are available [51]. Time-ordered net-
works have also been used by researchers to account for time
when conducting network analyses [22, 52]. In time-ordered

networks, a node is created for each species at each time point in
a dataset, thus allowing those networks to capture associations
between species at specific points in time [52]. However, this
approach makes no correction for seasonal or long-term trends.
The GAM-based data transformation proposed here provides an
effective tool that can be used to account for multiple time-series
features prior to carrying out ecological network analyses, can be
tailored to a wide variety of time-series datasets, and can be used
in conjunction with any downstream networking method.
The SCC and Glasso network comparisons carried out in this

study demonstrated that both of these methods have unique
strengths and weaknesses and that method selection may depend
on the research question(s) being asked. With Barabási-Albert
networks, the GAM transformation improved the F1 score and the
degree distribution of the SCC networks more than those of the
Glasso networks (Fig. 4). It is known that correlation-based
networks tend to capture both direct and indirect associations
in an input dataset [4, 9, 17], while Glasso networks can avoid
capturing indirect associations [31]. The notably higher F1 scores
and improvements in the degree distribution plots that were
observed in the GAM-SCC networks relative to the SCC networks
are presumably due to ability of the GAM to remove many of the
indirect associations that would otherwise be detected in the SCC
network analyses. While the GAM-SCC approach captured the real,
Barabási-Albert degree distribution better than the GAM-Glasso
approach, the GAM-Glasso approach was better able to capture
the real, Erdős-Rényi degree distribution (Fig. 5). In addition, the
average clustering coefficients of the GAM-Glasso networks were
the most similar to the real, Barabási-Albert and Erdős-Rényi
networks (Figs. 4–5), suggesting that the GAM-Glasso networks
were more similar to the real networks than the SCC networks in
terms of network “clumpiness”.

Fig. 4 The GAM-SCC networks did the best job of capturing the real, Barabási-Albert network degree distribution. The degree
distributions and network outputs of 100 GAM-Glasso (A), Glasso (B), GAM-SCC (C), and SCC (D) time-series networks that contained
100 species. The networks depicted were constructed with mock species abundance data that had an underlying Barabási-Albert network
structure and that contained 50 species with a gradual, seasonal abundance pattern. The fine green lines on the log-log plots show the real
degree distributions and the fine black lines show the network-predicted degree distributions. The bolded lines show the degree distributions
of the representative networks that are depicted. On the representative network images, the red edges show those edges that are true
positive associations, the blue edges show those edges that are false negative associations, and the gray edges show those edges that are
false positive associations. The black nodes in the network images represent the species that have a seasonal abundance pattern, while the
gray nodes represent those species that do not have a seasonal abundance pattern.
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The GAM transformation did not substantively improve network
inference under certain zero-inflation scenarios (Fig. S8) and when
total sum scaling and cumulative sum scaling normalization
methods were used as opposed to a CLR transformation (Fig. S9).
The GAM transformation also led to decreases in F1 score at times
when abrupt seasonal abundance patterns were prevalent
(Figs. S2–-S7). It is possible that the smoothing functions used in
the GAMs were unable to capture the some of the periodic spikes in
species abundance that were noted in the abrupt, seasonal
abundance patterns and therefore did not fully remove these
abrupt signals. It is also possible that the GAM transformation
inadvertently removed the influence that other species in the
dataset had on the abundance pattern of a specific species and
therefore decreased the number of true positive associations
detected in the networks created using the GAM-transformed data.
These scenarios highlight some potential issues that may arise if the
GAM model used in the transformation overfits the data or does not
accurately capture the seasonal and long-term signals that may be
prevalent in the abundance data of a specific organism. If the GAM
model overfits the data, then meaningful co-occurrence patterns
between organisms may be lost in the GAM residuals. Conversely, if
the GAM model fails to capture the time-series signals that may be
influencing species abundance patterns, then the network predic-
tions will still be influenced by temporal trends as opposed to true
species-species associations. The observation that the GAM method
did not always improve model performance when seasonal
abundance patterns were abrupt suggests an opportunity for future
improvement. Generalized additive models are good at fitting
smooth trends in the data, but other methods might be better at
removing abrupt seasonal signals. In any event, decreases in the
F1 scores under these specific conditions (Figs. S2–S7) were
marginal relative to the benefits obtained using the GAM
transformation, suggesting that the GAM models used in our
analyses were generally effective at removing time-series signals.

It may be beneficial to explore whether our GAM transformation
improves the performance of other network analysis tools. Extended
local Similarity Analysis (eLSA) which identifies time-lagged associa-
tions [53] and Liquid Analysis (LA) which explores interactions
between trios of variables [54, 55] would likely be improved by
removing seasonal signals. Future efforts may also be aimed at
incorporating batch effects into our GAM framework to account for
some of the additional non-biological factors that influence species
abundance patterns over time. Generating a method that can
identify sparse networks, time-lagged associations and three-way
interactions, while removing seasonal signals and other sources of
non-biological variability would be a clear future direction for a
robust and flexible analysis of high-throughput data.

CONCLUSION
The results of this study highlight the importance of considering
temporal features when carrying out ecological network analyses
with time-series data, given that time-dependent species abundance
patterns may confound network predictions. The GAM-based data
transformation presented here (NetGAM) provides a simple, yet
effective tool that can be used to reduce the influence that time-
series properties have on microbial abundance data prior to network
construction. We published our method in a publicly available R
package (https://github.com/sgleich/NetGAM) so that this data
transformation can be used by other researchers in future time-
series network analysis efforts. Accounting for seasonal abundance
patterns, long-term trends, and autocorrelation in time-series
datasets using our GAM method may substantially improve network
inference. We recommend that future networking studies account
for time-dependent species abundance patterns that may be
prevalent in an input dataset in order to reduce the number of
false positive and false negative associations that are detected
through time-series network analyses.

Fig. 5 The GAM-Glasso networks did the best job of capturing the real, Erdős-Rényi network topology. The degree distributions and
network outputs of 100 GAM-Glasso (A), Glasso (B), GAM-SCC (C), and SCC (D) time-series networks that contained 100 species. The networks
depicted were constructed with mock species abundance data that had an underlying Erdős-Rényi network structure and that contained
50 species with a gradual, seasonal abundance pattern. Panels and color coding are the same as described for Fig. 4.
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