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A B S T R A C T

Monterey Bay, California experiences near-annual blooms of Pseudo-nitzschia that can affect marine animal
health and the economy, including impacts to tourism and commercial/recreational fisheries. One species in
particular, P. australis, has been implicated in the most toxic of events, however other species within the genus
can contribute to widespread variability in community structure and associated toxicity across years. Current
monitoring methods are limited in their spatial coverage as well as their ability to capture the full suite of species
present, thereby hindering understanding of HAB events and limiting predictive accuracy. An integrated de-
ployment of multiple in situ platforms, some with autonomous adaptive sampling capabilities, occurred during
two divergent bloom years in the bay, and uncovered detailed aspects of population and toxicity dynamics. A
bloom in 2013 was characterized by spatial differences in Pseudo-nitzschia populations, with the low-toxin
producer P. fraudulenta dominating the inshore community and toxic P. australis dominating the offshore
community. An exceptionally toxic bloom in 2015 developed as a diverse Pseudo-nitzschia community abruptly
transitioned into a bloom of highly toxic P. australis within the time frame of a week. Increases in cell density and
proliferation coincided with strong upwelling of nutrients. High toxicity was driven by silicate limitation of the
dense bloom. This temporal shift in species composition mirrored the shift observed further north in the
California Current System off Oregon and Washington. The broad scope of sampling and unique platform cap-
abilities employed during these studies revealed important patterns in bloom formation and persistence for
Pseudo-nitzschia. Results underscore the benefit of expanded biological observing capabilities and targeted
sampling methods to capture more comprehensive spatial and temporal scales for studying and predicting future
events.

1. Introduction

Members of the diatom genus Pseudo-nitzschia (Peragallo), com-
prising several species with known capacity to produce the excitatory
neurotoxin domoic acid (DA; reviewed in Trainer et al., 2012; Lelong
et al., 2012), are generally considered to have a cosmopolitan dis-
tribution (Hasle, 2002). Bloom initiation, persistence and decline are

associated with a variety of anthropogenic influences (e.g. eu-
trophication, global changes in water temperatures, shifts in pH) and
natural forcings (e.g. advection, upwelling, stratification, grazing,
parasitism; for reviews see Lelong et al., 2012; Trainer et al., 2012).
Given the transferability of DA throughout marine food webs (e.g.
Lefebvre et al., 2002; Kvitek et al., 2008; Trainer et al., 2012), toxic
blooms can threaten human (amnesic shellfish poisoning [ASP]; Perl
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et al., 1990; Todd, 1993; Bates et al., 1989, 1998) and marine mammal
and bird (domoic acid poisoning [DAP]; Work et al., 1993; Scholin
et al., 2000) health, and severely impact local economies through clo-
sures of recreational and commercial shellfish harvesting (e.g.
Gallacher et al., 2001; Bill et al., 2006; Smith et al., 2006; Trainer et al.,
2007; Brown, 2016). Routine monitoring and management efforts are
hampered by challenges associated with sampling patchy phyto-
plankton populations and limitations in morphological species identi-
fication based on light microscopy. The study described herein com-
bined high-resolution detection methodologies with a network of
platforms for targeted and adaptive sampling to assess Pseudo-nitzschia
community diversity and toxin dynamics throughout two different
bloom scenarios in Monterey Bay (California, USA).

Nearly every year, Monterey Bay experiences periods of Pseudo-
nitzschia bloom activity, although with varying degrees of toxin-asso-
ciated impacts. For example, during 2013, very high cell abundances
did not coincide with high DA concentrations, while in 2015 elevated
cell abundances were associated with high DA levels as well as a period
of marine animal strandings and mortalities. The 2015 event was part
of an unprecedented bloom of P. australis that stretched from Santa
Barbara, California to the Aleutian Islands, Alaska and coincided with a
regional physical anomaly, the northeast Pacific “warm blob” (McCabe
et al., 2016). Localized anomalous chemical conditions leading to sili-
cate depletion contributed to exceptionally high DA production in
Monterey Bay P. australis populations (Ryan et al., 2017), while blooms
north of California were associated with persistent anomalously warm
temperatures that expanded the geographic range of toxic P. australis
(McCabe et al., 2016). The California Dungeness crab fishery was closed
for months, and estimated losses were more than $48 million (Brown,
2016).

The great inter-annual variability in Pseudo-nitzschia ecology in
Monterey Bay has been revealed by long-term weekly monitoring from
wharf sampling in the northern and southern parts of the bay. This
effort has traditionally consisted of whole cell and sandwich hy-
bridization probes for P. australis and P. multiseries/P. pseudodelica-
tissima (Miller and Scholin, 1998, 2000), coupled with DA measure-
ments, on samples from the northern part of the bay (SCW) and light
microscopy counts of two Pseudo-nitzschia size classes (‘seriata’ sized
cells; valve width ≥3 μm and ‘delicatissima’ sized cells; valve
width<3 μm [Hasle, 1965; Hasle and Syvertsen, 1997]) from the south
part of the bay (MW). This sampling framework has uncovered long-
term seasonal patterns in Pseudo-nitzschia bloom activity related to
environmental factors (e.g. Lane et al., 2009); however, this approach
lacks sufficient taxonomic resolution to differentiate the full diversity of
toxic species occurring in the bay. Furthermore, the methodologies used
exclude species once considered non-toxic that have been shown to
produce DA and form blooms (e.g. Adams et al., 2000; Orsini et al.,
2002; Trainer et al., 2009; Trick et al., 2010), and other species de-
scribed more recently (e.g. Lundholm et al., 2012; Lim et al., 2013; Li
et al., 2017).

The primary focus for studying and monitoring Pseudo-nitzschia in
Monterey Bay has traditionally been on P. australis and P. multiseries,
stemming from the early identification of P. australis from toxic events
and the presence of P. multiseries in bloom assemblages (e.g. Work et al.,
1993; Horner et al., 1997; Scholin et al., 2000), and the implication of
the latter species in the first documented case of ASP, which occurred in
Prince Edward Island, Canada (Bates et al., 1989; Perl et al., 1990; Rao
et al., 1998). Early records indicate that Pseudo-nitzschia species, and
specifically P. australis, have been a part of the phytoplankton assem-
blage within the bay for at least several decades. Bolin and Abbott
(1963) reported that the genus ‘Nitzschia’ (originally included Pseudo-
nitzschia) was the fourth largest group counted over a six-year study
period. Scanning electron microscopy of siliceous frustule cell walls and
culture-based toxicity studies have been used to confirm the presence of
P. australis in numerous historical events in Monterey Bay (e.g. Hasle,
1972; Buck et al., 1992; Garrison et al., 1992; Villac et al., 1993). While

P. australis has been implicated as the main DA producer in the region,
other toxic and non-toxic Pseudo-nitzschia species have been identified
over the past several decades (e.g. Bigelow and Leslie, 1930; Cupp,
1943; Villac et al., 1993; Walz et al., 1994; Horner et al., 1997; Bates
et al., 1998; Lundholm et al., 2006; Lelong et al., 2012 [review]). It has
remained unclear how these other species fit into Pseudo-nitzschia as-
semblages within Monterey Bay. The ability to fully understand com-
munity structure and succession through bloom initiation, persistence
and decline is thereby severely restricted, which then affects down-
stream modeling and management efforts. It is highly plausible that
forecasting models (Anderson et al., 2009, 2011; Lane et al., 2009) have
been impacted by the current approach, leading to discrepancies such
as overestimation of DA levels in 2013 (C. Anderson, R. Kudela; pers.
comm.).

Advancing predictive skills for this important HAB-forming genus
requires a more complete description of community composition and
DA production, and better sampling of populations. Toward this goal,
this study applied mobile and stationary platforms coupled with high-
resolution methods for cell and toxin detection. Further, the mobile
platforms employed autonomously targeted sampling of bloom patches.
These capabilities allowed us to uncover Pseudo-nitzschia population
structures on a sizeable spatial and concentrated short-term
(∼1month) temporal scale during contrasting bloom years in Monterey
Bay. This approach yielded new insights into regional bloom dynamics,
which can be used to help further understanding of inter-annual var-
iation in Pseudo-nitzschia ecology and to advance prediction.

2. Materials and methods

2.1. Sample collection

2.1.1. Wharf sampling
As part of an ongoing long-term monitoring program, samples were

collected weekly on the same day from the Santa Cruz (SCW; 36° 57.48′
N, 122° 1.02′ W) and Monterey Municipal Wharves (MW; 36° 36.22′ N,
121° 53.36′ W) prior to and throughout the study period (Fig. 1). Whole

Fig. 1. Sampling sites within Monterey Bay, California (USA) during the two
sampling years (2013 and 2015). Integrated whole water samples (to a depth of
5m) were obtained from Santa Cruz and Monterey Municipal Wharves. Quasi-
daily samples were collected and analyzed onboard two moored Environmental
Sample Processors: ESP North and ESP South (deployed at same location both
years). Cross-bay transects were performed by a Dorado-class AUV with on-
board, adaptive sample collection capabilities (the two chosen for further
analyses are depicted). Additional samples were collected via boat casts tar-
geting the chlorophyll maximum layer throughout the bay during both sam-
pling years (locations not shown).
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water samples from SCW were collected by integration of water samples
collected from 3 discrete depths (0, 1.5, and 3m) with a FieldMaster
1.75 l basic water bottle (Wildco, Yulee, Florida, USA). Integrated
whole water samples (5, 4, 3, 2, and 1m) from MWwere collected using
a 2.2 l Van Dorn water sampler (Wildco, Yulee, Florida, USA). Net tows
from both locations were obtained using a 20 cm diameter, 20 μm mesh
net to concentrate surface waters to a depth of 5m. Leading up to the
start of the 2015 study, surface samples were collected with increased
frequency at both wharves. All samples were maintained at ambient
temperature and processed within two hours of arriving at the labora-
tory.

2.1.2. Ship sampling
Monterey Bay was sampled during two different time periods

(September 10th to October 7th, 2013 and May 11th to June 5th, 2015)
on multiple days via the R/V Rachel Carson and the R/V John Martin as
part of a five-year Ecology and Oceanography of Harmful Algal Blooms
(ECOHAB) study. Chlorophyll fluorescence was measured with CTD
profilers (SeaBird Electronics, Bellevue, Washington, USA) to identify
and sample from within and outside chlorophyll maximums using
Niskin bottles (10 l – R/V Rachel Carson, 5 l – R/V John Martin)
mounted on a rosette. Samples were processed onboard as outlined
below, with the exception of water used for SHA and ARISA, which was
stored protected from direct light and processed at the end of the day
back in the laboratory.

2.1.3. Dorado AUV sampling
A Dorado-class AUV (Bellingham et al., 2000) was deployed from

the R/V Rachel Carson to perform targeted sampling within chlorophyll
maximums based on measurements obtained by an onboard fluo-
rometer and autonomous peak-capture algorithm (Zhang et al., 2010,
2012). A sawtooth profiling trajectory mapped vertical water column
structure and a water sampling system collected ten 1.8 l ‘gulper’
samples per mission (described in Ryan et al., 2010). During the 2013
deployment, there were only nine samples obtained due to malfunction
in one sampler. Samples were processed onboard the ship as outlined
below, with the exception of water used for ARISA, which was pro-
cessed in the laboratory at the end of the day.

2.1.4. ESP sampling
Details of the Environmental Sample Processor (ESP) can be found

in Roman et al. (2007) and Scholin et al. (2009). The moored instru-
ments were equipped with DNA and protein arrays for near real-time
detection of target organisms and associated toxins. For this study, one
ESP was deployed in the north part of the bay (36.905°N, 121.936°W) at
7m depth, and one was deployed in the south part of the bay
(36.639°N, 121.879°W) at 5m depth, from September 10th through
October 21st, 2013 and May 10th through June 5th, 2015 (Fig. 1). Both
instruments were programmed to collect daily samples, unless a de-
crease in water temperature (a proxy for upwelling conditions) was
detected. Detection of upwelling conditions triggered an unscheduled
sampling event, either autonomously by the ESP or through operator
intervention. All analyses were performed in situ, as described below.

2.2. Sample processing

2.2.1. FISH
Fluorescence In Situ Hybridization (FISH) was performed on depth-

integrated water samples from SCW. The detailed procedure for P.
australis (auD1), P. multiseries (muD1), and P. multiseries/P. pseudodeli-
catissima (muD2) probes is outlined in Scholin et al. (1996). Cells were
viewed using a Zeiss AxioImager A1microscope fitted with a fluor-
escein bandpass filter set (excitation 460–500 nm; emission
510–560 nm) and a 120W light source (EXFO X-Cite 120). Images were
acquired with a Zeiss AxioCam HRc camera.

2.2.2. Phytoplankton counts
Cell counts for Pseudo-nitzschia were performed on net tow samples

collected from MW. After transport to the laboratory, 0.1 ml of 50% w/
v gluteraldehyde was added to 10ml of net tow material. A
Nannoplankton Counting Chamber (PhycoTech, St. Joseph, Michigan,
USA) was used to count cells from a 66 μl sample aliquot on an Alexis
Scientific microscope through a 10X objective. Pseudo-nitzschia cells
were classified into two size categories (Hasle, 1965; Hasle and
Syvertsen, 1997): the larger ‘seriata’ sized cells (valve width> 3 μm)
and the smaller ‘delicatissima’ sized cells (valve width<3 μm). Total
phytoplankton community counting, including the two Pseudo-nitzschia
size classes, was carried out on gulper samples obtained by the Dorado
AUV. Samples were preserved in 1% acidic Lugol’s upon retrieval of the
Dorado after a transect mission (approximately 2–4 h). Samples were
stored in amber polypropylene bottles (Thermo Scientific, Wilmington,
DE, USA) at 4 °C until analysis. A volume of 25ml was concentrated
down to 2.5 ml via gentle centrifugation (1700 g, 15min), and a volume
of 1ml of material was counted on a Sedgewick Rafter cell as described
above.

2.2.3. Particulate domoic acid
Particulate matter from 50 to 250mL of whole water was con-

centrated onto a GF/F filter (Whatman, GE Healthcare BioSciences,
Pittsburgh, PA, USA). Filters were placed into cryovials and stored at
−80 °C until analysis, while shipboard samples were first placed in li-
quid nitrogen, then subsequently stored at −80 °C. Filters were ex-
tracted in 3ml of 10% methanol (prepared in ultrapure water) for
particulate DA analysis. All extracts were sonicated for 30 s at a level of
approximately 10W (RMS), 0.2 μm filtered (Millex, Millipore, Billerica,
MA, USA), and cleaned following a solid phase extraction procedure
(Wang et al., 2007). Cleaned extracts were stored at 4 °C until analysis.
Domoic acid analysis was conducted on an Agilent 6130 LC–MS system
(Agilent Technologies, Santa Clara, CA, USA) with an Agilent Zorbax
Rapid Resolution column. The toxin was identified by the presence of a
312 amu peak in positive Scanning Ion Mode (SIM) with concentration
determined by signal integration of the peak area and an 8-point
standard curve using a certified DA standard (NRC CRM DA-f).

2.2.4. ARISA
Automated Ribosomal Intergenic Spacer Analysis, a method to de-

termine relative abundances based on a ribosomal target, was per-
formed on samples collected from Dorado gulpers and ship casts.
200–500ml were low-vacuum (5mmHg) filtered onto 25mm diameter,
0.65 μm pore size Durapore® membrane filters (Millipore, Cork,
Ireland). Filters were transferred to 2ml polypropylene cryovials
(Nalgene Nunc International, Rochester, NY, USA) with sample side
facing inward, snap frozen, and archived in liquid nitrogen or at
−80 °C. Environmental DNA samples were prepared for ARISA as
outlined in Hubbard et al. (2014). Briefly, genomic DNA was extracted
using the DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA, USA) and
amplified and prepared for ARISA using the Pseudo-nitzschia-specific
ITS1 primer set PnallF (5′-TCT TCA TTG TGA ATC TGA-3′) and Pnall R
(5′-CTT TAG GTC ATT TGG TT-3′) (Hubbard et al., 2008). Purification
of PCR products for ARISA was conducted using MultiScreen- PCR96

filter plates (EDM Millipore, Darmstadt, Germany), and 1 ng of product
was analyzed on an ABI 3730 XL using a LIZ600 size standard. Elec-
tropherogram analysis with DAx software (Van Mierlo Software Con-
sultancy, Eindhoven, Netherlands) used published peak calling criteria
and US West Coast species assignments for peaks based on amplicon
length (Hubbard et al., 2008, 2014; Smith et al., 2018).

2.2.5. ESP DNA and DA arrays
The preparation of DNA and DA arrays, and protocols conducted

onboard the ESP, are outlined in detail elsewhere (Doucette et al., 2009;
Greenfield et al., 2006, 2008). For the 2013 deployment, probes for P.
australis (auD1), P. multiseries (muD1), and P. multiseries/P.
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pseudodelicatissima (muD2) were included on DNA arrays (Scholin et al.,
1999). For the 2015 deployment, additional probes were added to the
arrays (Bowers et al., 2017): P. arenysensis (ary1), P. fraudulenta (frD2),
P. pungens (pung1) and an alternative probe for P. multiseries (muD3).
Details for preparation of standard curves for determining cell abun-
dances are outlined in Greenfield et al. (2008) and Bowers et al. (2017).

2.2.6. Cultures
Multiple ‘seriata’ and ‘delicatissima’ size Pseudo-nitzschia chains

were isolated from ship casts, gulper samples, and net tows using se-
parate, sterile disposable pipet tips under a dissecting microscope
(SZH10, Olympus, Japan) at 10x magnification. Chains were washed
two to three times with medium (0.2 μm-filtered f/2 medium [Guillard
and Ryther, 1962; Guillard, 1975] made with Monterey Bay water
amended with 106 μM NaSiO3) and transferred into individual wells of
a 12-well plate (Costar) containing approximately 0.5 ml of sterilized
medium. The plates were incubated at 15 °C under a 13:11 h light:dark
photoperiod. Successfully isolated cultures were transferred to 25ml
borosilicate glass culture tubes containing fresh medium. When cells
reached a dense mid-exponential phase, DNA was extracted from a cell
pellet and the large ribosomal subunit was sequenced as described by
Bowers et al. (2016). In order to determine cellular particulate DA
(pDA), representative species in mid-exponential phase were inoculated
into fresh medium in triplicate in a step-wise manner to achieve a final
volume of 1 l. Before harvest, cultures were inspected for clumping and

health of cells. Two 50ml aliquots of each culture replicate were low-
vacuum (5mm Hg) filtered onto 25mm diameter, 0.65 μm pore size
Durapore® membrane filters (Millipore). Filters were transferred to 2ml
polypropylene cryovials (Nalgene Nunc International, Rochester, NY,
USA), snap frozen in liquid nitrogen and archived at−80 °C. An aliquot
from each flask was preserved with 1% acidic Lugol’s in scintillation
vials and stored protected from light until cell counts were performed.
For DA analysis, manufacturer’s protocol supplied with the Domoic
Acid Test Kit (Mercury Science, Raleigh, NC, USA) was followed.
Samples were prepared by adding 1ml of DI water to cryovials con-
taining filters and sonicating 3×10 s at 30% power on ice (Heat Sys-
tems, Farmingdale, NY, USA). Cell counts on replicates were performed
using a 1ml Sedgwick Rafter counting chamber (Pyser SGI Ltd., Kent,
UK), with a minimum of three rows and 250 total cells counted.

2.2.7. Benchtop sandwich hybridization assays
Sandwich hybridization was performed on samples collected from

boat casts and the wharf sites. From whole water, multiple 500ml vo-
lumes were low-vacuum (5mm Hg) filtered onto 25mm diameter,
0.65 μm pore size Durapore® membrane filters (Millipore). Filters were
transferred to a 2ml polypropylene cryovial (Nalgene Nunc
International, Rochester, NY, USA) with sample side facing inward,
snap frozen and archived in liquid nitrogen for downstream sandwich
hybridization assays. Details for preparing and running SHA plates are
outlined in Harvey et al. (2014) and elsewhere (Scholin et al., 1999;

Fig. 2. Weekly time series for Pseudo-nitzschia detection at Monterey (MW, south bay) and Santa Cruz (SCW, north bay) Wharves in 2013 and 2015. Cell con-
centrations at MW (2a, 2b) are based on light microscopy counts of ‘seriata’ and ‘delicatissima’ size classes, while cell abundances at SCW (2c, 2d) are combined
results for P. australis and P. multiseries whole cell hybridization probes (the latter species was detected only on the following dates in 2015: April 8 [2.55× 104 cells
l−1], April 15 [2.73× 104 cells l−1], April 22 [1.03× 105 cells l−1], April 29 [4.85×103 cells l−1] and May 6 [1.65×103 cells l−1]). Absence of a black dot
indicates a negative pDA result for that week. Dashed lines indicate time period for ESP deployments, solid line indicates bloom threshold used for monitoring
(Andersen, 1996).
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Goffredi et al., 2006; Haywood et al., 2007; Marin and Scholin, 2010).
Preparation of standard curves for estimating cell abundances is also
described elsewhere (Greenfield et al., 2008; Bowers et al., 2017).
Sandwich hybridization plates for 2013 samples were prepared with a
combination of the following probes: P. australis (auD1), P. fraudulenta
(frD2), P. multiseries/P. pseudodelicatissima (muD2) and P. pungens
(pung1) (Scholin et al., 1999; Bowers et al., 2017). Sandwich hy-
bridization plates for 2015 samples were prepared with a combination
of the following probes: P. arenysensis (ary1), P. australis (auD1), P.
fraudulenta (frD2), P. multiseries (muD1), P. multiseries/P. pseudodelica-
tissima (muD2, muD3), and P. pungens (pung1) (Scholin et al., 1999;
Bowers et al., 2017).

3. Results

3.1. Shore station monitoring

Weekly same-day samples from the wharves revealed differences in
Pseudo-nitzschia abundances and species composition between 2013
and 2015. A key abundance metric is the Pseudo-nitzschia bloom
threshold used in monitoring programs, 5× 104 cells l−1 (Andersen,
1996). Enumeration of Pseudo-nitzschia via microscopy for MW samples
(southern bay, Fig. 1) divided populations into the ‘seriata’ and the
‘delicatissima’ size classes, ‘seriata’ being the larger size class con-
taining species with the highest cellular toxin quotas, including P.
australis and P. multiseries. ‘Seriata’ size class counts in 2013 were above
the bloom threshold for 23 weeks and ‘delicatissima’ size class counts
were above this threshold for 11 weeks (Fig. 2a). In contrast, 2015
‘seriata’ size class counts exceeded the bloom threshold for 12 weeks,
while ‘delicatissima’ size class counts remained one to two orders of
magnitude below the threshold throughout the year (Fig. 2b). Overall,
combined counts were 4.6 times higher in 2013 than 2015.

Although Pseudo-nitzschia abundances were greater overall in 2013,
indicating greater potential for a HAB, a toxic bloom in Monterey Bay
instead occurred in 2015. Species composition was different between
the two years, with whole cell hybridization results from SCW (northern

bay, Fig. 1) exhibiting a combined average abundance of 3.30× 104

cells l−1 for P. australis, P. multiseries and P. pseudodelicatissima in 2015,
which was more than two orders of magnitude higher than the average
of 1.90×102 cells l−1 in 2013 (Fig. 2c, d). Note, although combined
whole cell hybridization data for all species are shown in Fig. 2c and d,
values from the muD2 probe (P. multiseries, P. pseudodelicatissima) were
negligible and contributed to 2015 data only on the following dates:
April 8 [2.55× 104 cells l−1], April 15 [2.73×104 cells l−1], April 22
[1.03× 105 cells l−1], April 29 [4.85×103 cells l−1] and May 6
[1.65× 103 cells l−1].

Consistent with greater abundance of toxigenic species in 2015,
pDA was detected more frequently (23 weeks in 2015; 2 weeks in 2013)
and showed higher concentrations (10 to 6630 ng l−1 in 2015;< 20 ng
l−1 in 2013). The two highest pDA measurements in 2015 coincided
with the two highest cell abundances (Fig. 2d). While the probe results
represented combined signal from different species, P. multiseries was
only detected in negligible concentrations as outlined above. This in-
dicated dominance of P. australis in this bloom, as supported by ob-
servations from moored ESPs and AUV targeted sampling described
below.

3.2. Targeted and adaptive sampling – pDA and Pseudo-nitzschia species
throughout the bay

Broader spatial resolution of sampling during the approximate one-
month deployment windows reflected the low (2013) and high (2015)
pDA values at SCW. In 2013, shipboard bottle casts (surface and DCM
[deep chlorophyll maximum]; n=104), Dorado AUV gulper samples
(12 transects; n= 85) and in situ measurements onboard two ESPs
(n= 29) revealed zero to trace amounts of pDA within the bay, but
identified a toxic (up to 103 ng l−1) population concentrated offshore
(Fig. 3a). Culturing efforts (n=∼500 isolates) and SHA performed on a
subset of bottle cast samples (n=11; temporal [seven dates] and
spatial [four sites]) confirmed that P. fraudulenta was the dominant
species within the bay, as it was detected in ten of eleven samples
(2.06×104 to 9.15×105 cells l−1), while the remaining probes (P.

Fig. 3. Particulate DA values for ESP, ship and AUV sampling during the 2013 and 2015 deployment periods. Note scale for 2015 is an order of magnitude greater
than for 2013.
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australis, P. multiseries/P. pseudodelicatissima and P. pungens) were ne-
gative or less than 5000 cells l−1 (Table 1). Probe results for P. australis,
P. multiseries and P. multiseries/P. pseudodelicatissima on both ESPs were
all negative. Cell abundances of the Pseudo-nitzschia ‘seriata’ size class
(which includes P. fraudulenta) based on microscopy counts at MW
during this same time frame ranged from 1.51×104 to 4.50×105 cells
l−1 (Fig. 2c).

In stark contrast, samples acquired in 2015 via shipboard bottle
casts (surface and DCM; n= 151), Dorado AUV gulper samples (2
transects; n= 29), and in situ measurements onboard two ESPs
(n=42) demonstrated that pDA within the bay ranged from 102 to 104

ng l−1 and was consistently higher in the southern sampling locations

(Figs. 3 and 4a). The time series provided by the two ESPs documented
an average pDA concentration three times higher at ESP south, while
the average chlorophyll concentration was fifty percent higher at ESP
north (Table 2). Culturing efforts (n=∼300 isolates) confirmed that P.
australis was the dominant species present. Probe results from both ESPs
supported this finding and also revealed a background population of P.
fraudulenta (Fig. 4a). The average P. australis cell abundance was higher
at ESP south compared to ESP north (Table 2; 6.30× 105 cells l−1

versus 3.90×105 cells l−1), while the average P. fraudulenta cell
concentration was approximately the same at both ESP locations
(Table 2; Fig. 4a). All other species (P. arenysensis, P. multiseries, P.
multiseries/P. pseudodelicatissima and P. pungens) were at or below the

Table 1
Benchtop SHA was performed on several ship cast samples (chlorophyll maximum) spanning the deployment period to confirm that P. fraudulenta was the dominant
species throughout the bay. Cell abundances were determined based on species-specific standard curves.

Sample information benchtop SHA probes (cells l−1)

Location Date Depth P. australis
(auD1a)

P. fraudulenta
(frD2b)

P. multiseries/P. pseudodelicatissima
(muD2a)

P. pungens
(pung1b)

ESP North September 10, 2013 15m – 3.29× 105 – –
September 16, 2013 10 m – – – –
September 23, 2013 5m – 7.40× 104 – –

ESP South September 10, 2013 10 m – 6.47× 105 – <5000
September 17, 2013 7m – 2.73× 105 – –
September 23, 2013 7m – 9.11× 104 – –

Monterey Wharf September 11, 2013 7.5 m – 8.30× 105 – ∼5000
September 30, 2013 5m – 2.06× 104 – –

South entry to Bay September 11, 2013 14 m <5000 9.15× 105 – –
September 17, 2013 12 m – 3.29× 105 – –
September 19, 2013 12 m – 4.41× 105 – –

a Scholin et al. (1999).
b Bowers et al. (2017).

Fig. 4. Results from ESP time-series in northern and southern Monterey Bay. (a) Abundance estimates from the two detectable Pseudo-nitzschia probes overlayed with
pDA. Time points where HAB arrays were saturated with P. australis cells are represented with triangles; those cell abundances are considered as minimum values.
Wire walkers deployed at each ESP location captured vertical chlorophyll (b) and temperature (c) profiles. White circles in (b) and (c) indicate depth and time of ESP
samples.
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limit of detection of the arrays (Greenfield et al., 2008; Bowers et al.,
2017). Light transmission, temperature, and salinity were comparable
at the two ESP locations (Table 2). Moored WireWalker profilers de-
ployed at the two locations revealed that deployment of the ESPs oc-
curred during a strong upwelling event, when HAB populations were
most abundant in the mixed layer (Fig. 4b). With subsequent relaxation
of upwelling, populations descended into a concentrated subsurface
layer in the thermocline/nutricline (Fig. 4b, c). A primary distinction
between the two sites was that the mixed layer remained warmer and
deeper at ESP south, and sampling was generally occurring above the
pronounced DCM (Fig. 4c).

3.3. AUV mapping and sampling of pDA and Pseudo-nitzschia

On September 16, 2013, the Dorado AUV was deployed to map

environmental conditions and phytoplankton distributions, and to au-
tonomously target sampling within chlorophyll maximums along a
section extending from outside Monterey Bay onto the northern shelf in
the bay, ending at the northern ESP (Fig. 5). This survey transected a
cold water filament resulting from upwelling (Fig. 5a). Onboard mea-
surements of water column structure coupled with downstream ana-
lyses revealed two distinct populations. The offshore phytoplankton
community was dominated by Pseudo-nitzschia, which consisted pri-
marily of ‘seriata’ size class cells (Fig. 5b) and was marked by higher
chlorophyll fluorescence and pDA (Fig. 5c). Higher optical backscatter
(Fig. 5d) and lower Pseudo-nitzschia abundances were observed in the
inshore population (Fig. 5b). ARISA results indicated a shift in dom-
inance from P. australis/P. seriata (150 base pair [bp] peak) offshore to
P. fraudulenta (203 bp) inshore (Fig. 5e), the latter result supporting
observations from SHA and culturing as outlined above. Other species

Table 2
Comparison of average measurements by the two ESPs deployed in 2015. 1Averages include unknown error due to saturation of some assay results (as outlined in
Fig. 4a).

Cell Abundance
(105 cells l−1)

pDA
(ug l−1)

chl a
(ug l−1)

Water Clarity
(% Trans.)

Temp.
(oC)

Salinity
(°/00)

P. australis1 P. fraudulenta

ESP North 3.90 0.48 7.0 11.5 74 13.0 33.6
ESP South 6.30 0.49 21.2 5.8 84 13.8 33.6

Fig. 5. (a) Dorado AUV transect crossed a cold upwelling filament on September 16, 2013 as depicted by the white line in the sea surface temperature (SST) map. The
black contour line is the 14.65 °C isotherm. (b) Concentrations of total phytoplankton, total Pseudo-nitzschia, and ‘seriata’ size class Pseudo-nitzschia for each AUV
sample based on light microscopy. (c) Chlorophyll distribution within the water column; the grey line is the 13.5 °C isotherm, illustrating the upwelling filament
location where the isotherm outcrops to the surface; solid white circles indicate the locations of AUV water sampling; open white circles represent the concentration
of particulate domoic acid (pDA) in each sample. Note: the sixth sample depicted outside the chlorophyll maximum was a targeted control sample. (d) Backscatter
properties of the inshore and offshore phytoplankton populations. (e) Species composition based on DNA fingerprinting analysis (ARISA relative fluorescence).
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detected (in both populations) were P. cuspidata (233 bp), P. heimii (195
bp), P. sabit (138 bp) and an unknown Pseudo-nitzschia sp. (152 bp).

On May 28, 2015, the Dorado AUV was deployed along a zigzag
transect across the southern shelf in Monterey Bay (Fig. 6a) in response
to the higher pDA and P. australis concentrations that were being re-
ported in real-time by the southern ESP. The phytoplankton community
was comprised predominately of Pseudo-nitzschia, which in turn was
dominated across all samples by ‘seriata’ size class cells (Fig. 6b). High
pDA persisted in a deep subsurface chlorophyll layer (Fig. 6c) and
ranged over an order of magnitude independent of Pseudo-nitzschia
abundance (2.63×102–2.10×103 pDA cell−1). Backscatter was uni-
form throughout this layer (Fig. 6d), consistent with homogeneity of the
populations in the layer. ARISA results demonstrated that the Pseudo-
nitzschia community was dominated by P. australis/P. seriata, with P.
multiseries and an unknown putative Pseudo-nitzschia sp. (147–148 bp)
comprising a very small part of the assemblage (Fig. 6e).

3.4. Shifts in species and toxicity during the 2015 bloom

Ninety-seven Pseudo-nitzschia strains were isolated from January
through April 2015 prior to initiation of the bloom period (defined as
April 29th when P. australis abundances at SCW first exceeded 5×104

cells l−1) and were assigned to the following species based on se-
quencing of the LSU locus: P. australis (n= 19), P. delicatissima ‘c’

(n= 1), P. fraudulenta (n= 13), P. multiseries (n= 34), P. pungens
(n= 29), and P. seriata (n= 1). From April 29th to July 7th, two hun-
dred twenty-seven strains were established and assigned to the fol-
lowing species based on sequencing of the LSU locus: P. australis
(n= 207), P. delicatissima ‘a’ (n= 3), P. fraudulenta (n= 2), P. multi-
series (n= 3), and P. seriata (n= 12). Subsets of isolates from both time
periods were used to determine pDA cell−1 (Table 3). Isolates of P.
australis consistently exhibited the highest cellular toxin content during
both pre-bloom and bloom periods, followed by P. seriata and P. pun-
gens, which were present only during the pre-bloom period.

A shift in species abundance spanning the beginning of the bloom
period was captured in two data sets. First, benchtop sandwich hy-
bridization assays on shipboard bottle cast samples (surface and DCM)
from ten sites demonstrated the shift in abundance for three species: P.
multiseries/P. pseudodelicatissima, P. australis, and P. fraudulenta (Fig. 7a,
b). Second, whole cell hybridization probes on weekly samples col-
lected at the SCW site revealed an abrupt shift from P. multiseries / P.
pseudodelicatissima to P. australis between April 22, 2015 and April 29,
2015, with pDA values trending with P. australis concentrations
(Fig. 7c). Although the muD2 probe detects P. pseudodelicatissima
(Miller and Scholin, 1996; in particular P. hasleana within this species
complex [Bowers et al., 2017]), the labeled cells in this study belonged
to the larger ‘seriata’ size class and were therefore assigned as P. mul-
tiseries.

Fig. 6. Dorado AUV transect across the south bay on May 28, 2015 depicted by the black line in Fig. 6a (cloud cover precluded inclusion of SST data). (b)
Concentrations of total phytoplankton, total Pseudo-nitzschia, and ‘seriata’ size class Pseudo-nitzschia for each AUV sample based on light microscopy. (c) Chlorophyll
distribution within the water column depicting a deep maximum layer; solid white circles indicate the locations of AUV water sampling; open white circles represent
the concentration of particulate domoic acid (pDA) in each sample. (d) Optical backscattering, further distinguishing phytoplankton populations across the upwelling
filament. (e) Relative abundance of Pseudo-nitzschia species based on DNA fingerprinting analysis (ARISA).
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4. Discussion

Efforts to understand the ecological dynamics of Pseudo-nitzschia
blooms have been hampered by a lack of species resolution within ex-
isting observational records. While more than thirteen species (of forty-
nine described globally to date) have been documented within
Monterey Bay (Bates et al., 1998; Bigelow and Leslie, 1930; Cupp,
1943; Horner et al., 1997; Lelong et al., 2012 [review]; Lundholm et al.,
2006; Villac et al., 1993; Walz et al., 1994; Trainer et al., 2000; this
study), detection methodologies and monitoring efforts have focused
primarily on P. australis and P. multiseries, given historical events (e.g.
Bates et al., 1989; Scholin et al., 2000; McCabe et al., 2016). Intra-
species variability in per cell toxin quotas for these and other docu-
mented domoic acid producers (Trainer et al., 2012; Lelong et al.,
2012), ongoing descriptions of new toxic and non-toxic species (e.g.
Lim et al., 2012, 2013; Lundholm et al., 2012; Harðardóttir et al., 2015;
Percopa et al., 2016; Teng et al., 2014, 2016), and documented shifts in
global distributions (e.g. Jester et al., 2009; Lundholm et al., 2010;
Lelong et al., 2012) and bloom events (e.g. Schnetzer et al., 2007;
Trainer et al., 2009; Du et al., 2016; McCabe et al., 2016) all support the
need to address species diversity within the complexities of bloom in-
itiation, persistence, and decline (Thorel et al., 2017).

A multidisciplinary approach combining traditional and emergent
detection methodologies, with an array of mobile and stationary plat-
forms capable of in situ adaptive sampling, can enhance understanding
of bloom dynamics with respect to intensity, spatial scale, duration,
toxicity, and species composition. To that end, this study utilized stra-
tegic deployment of platforms and high-resolution detection cap-
abilities to uncover several interesting patterns in potential species re-
lationships across small-scale spatial and temporal scales within
Monterey Bay during two very different Pseudo-nitzschia bloom events.
While both the 2013 and 2015 bloom periods were dominated by the
larger ‘seriata’ size class of Pseudo-nitzschia cells, analyses documented
blooms dominated by low DA-producing P. fraudulenta and highly toxic
P. australis, respectively. With respect to variability in overall species

composition and toxin distribution between the two years, the study
design revealed unique spatial (2013) and temporal (2015) patterns.

During the 2013 study period, the bay was persistently dominated
by low toxin producing P. fraudulenta, while an offshore patch was
dominated by more toxic P. australis. These two unique populations,
revealed by AUV-targeted sampling and high-resolution genetic
methods, were located within just a few kilometers of each other and
were defined by differences in species diversity, cell abundance, and
toxicity. A cold upwelling filament that existed as part of an offshore
eddy separated the two populations. It is plausible that such offshore
bloom populations are a source for delivery of cells into Monterey Bay,
as described for the Pacific Northwest coast (Trainer et al., 2009).
Blooms of P. fraudulenta have not been documented in Monterey Bay,
although this species has been identified routinely in samples (e.g. Buck
et al., 1992; Cangelosi et al., 1997; Miller and Scholin, 1998; Scholin
et al., 1999) and was potentially part of historically described Nitzschia
assemblages (e.g. Bolin and Abbott, 1963). Low toxicity has been re-
ported for isolates of P. fraudulenta in select locations (this study,
Rhodes et al., 1998; Wells et al., 2005; Thessen et al., 2009), and thus
far documented blooms have not been toxic (e.g. Rines et al., 2002;
Gárate-Lizárraga et al., 2007). Isolates obtained during this study were
at the low end of cellular DA quotas (< 1/1000 of P. australis).

During the 2015 study period, samples from early spring exhibited
diversity in Pseudo-nitzschia species; however, in late spring there was
an abrupt shift to a bloom dominated by P. australis. This bloom was
part of an unprecedented west coast-wide toxic event (McCabe et al.,
2016) coincident with the persistent northeast Pacific warm anomaly
(Bond et al., 2015; Di Lorenzo and Mantua, 2016). McCabe et al. (2016)
identified the warm anomaly as a key factor in the 2015 HAB in the
northern California Current System, where unusually warm water was
linked to northward range expansion of P. australis. This species is a
common inhabitant of Monterey Bay, therefore range expansion was
not a local factor. Rather, high biomass was driven by a strong spring
upwelling transition, followed by intermittent upwelling that periodi-
cally rejuvenated HAB populations that were retained within Monterey

Table 3
Pseudo-nitzschia species isolated in 2015, with a subset used to measure pDA per cell. Strains
isolated before the bloom period started (defined as April 29, 2015 when P. australis abun-
dances at Santa Cruz Wharf first exceeded 5×104 cells L−1) are in the grey shaded boxes.
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Bay (Ryan et al., 2017). High toxicity was driven by anomalous back-
ground nutrient ratios, specifically exceptionally low ratios of silicate to
nitrate. Interestingly, Thorel et al. (2017) documented a recent non-
toxic bloom of P. delicatissima associated with a low ratio of silicate to
nitrate in the Bay of Seine (France), despite the occurrence of P. aus-
tralis in that region. During the 2015 Monterey Bay toxic event, silicate
exhaustion, coincident with available nitrate, was observed in asso-
ciation with subsurface HAB layers. Accumulations of high DA con-
centrations linked to silicate limitation are in agreement with previous
laboratory and field studies (Bates et al., 1991; Pan et al., 1996a,
1996b; Anderson et al., 2006; Schnetzer et al., 2007). It is interesting to
note that the anomalous environment in Monterey Bay selected for P.
australis and not one of the other four DA-producing species present
prior to the bloom, in particular P. multiseries, which had exceeded
bloom threshold concentrations at SCW. In recent years P. multiseries
has been a rare component of the phytoplankton assemblage in Mon-
terey Bay (K. Hayashi and G.J. Smith, unpubl. data), mirroring the
overall global decline in this species (Lelong et al., 2012).

Shifts in Pseudo-nitzschia species composition and abundance
leading into the 2015 HAB event in Monterey Bay were consistent with
observations made further north off Oregon and Washington coasts. In
Monterey Bay, P. australis transitioned from a minor to a prominent

component of the assemblage during the latter part of April (105 cells
l−1 range), consistent with an increase in the number of P. australis
isolates established prior to (20%) and during the bloom event (91%).
Samples from Newport, OR showed that P. australis did not dominate
the Pseudo-nitzschia community (35%) in early to mid-April (McCabe
et al., 2016). Twice monthly phytoplankton counts along the Newport
Hydrographic transect captured a transition in mid-May from ‘medium’
sized Pseudo-nitzschia cells to the ‘wide’ cell size group (which includes
P. australis; Du et al., 2016). The first detection of DA in razor clams
near Newport was on April 21st (Du et al., 2016). Coincidently, on April
29th, DA concentrations in mussels off of Santa Cruz (CA) first exceeded
the regulatory limit (McCabe et al., 2016). P. australis was also a rela-
tively minor constituent of the Pseudo-nitzschia community (22%) in
samples from Kalaloch, WA collected early to mid-April (McCabe et al.,
2016). Beginning in May this species comprised over 90% of the total
Pseudo-nitzschia assemblage (105 cells l−1 range) off Long and Kalaloch
beaches (McCabe et al., 2016). Taken together, these findings suggest
that regional phytoplankton dynamics were connected through larger
scale processes along the entire coast. The shift to P. australis happened
nearly simultaneously over the entire region, coinciding with the spring
upwelling transition that supplied nutrients to the bloom and tem-
porarily eliminated warm anomalies throughout coastal waters of the

Fig. 7. Shifts in dominant Pseudo-nitzschia species, uncovered by benchtop sandwich hybridization assays on samples from ten stations (a,b) and whole cell hy-
bridization at the Santa Cruz Wharf (c). Period 1 includes samples prior to the start of the bloom (April 29, 2015), while Period 2 includes samples from after the start
of the event (b). Whole cell hybridization probes on weekly samples collected at the Santa Cruz Wharf captured the shift from P. multiseries/P. pseudodelicatissima to P.
australis between April 22, 2015 and April 29, 2015 (c).
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entire California Current System by May 2015 (Gentemann et al.,
2017).

The two ESPs deployed in 2015 provided a time-series of Pseudo-
nitzschia cell abundances and DA levels within areas of Monterey Bay
that routinely exhibit enhanced chlorophyll concentrations (as de-
termined by long-term remote sensing data, Ryan et al., 2014) relative
to the rest of the bay. Both areas serve as retention zones, with periodic
nutrient supplies that rejuvenate bloom populations (Ryan et al., 2008,
2009, 2011, 2014). The southern ESP recorded consistently greater
concentrations of P. australis (2X) and pDA (3X) compared to the
northern ESP, emphasizing that this secondary and smaller region of
high average chlorophyll concentrations is an important location for
monitoring Pseudo-nitzschia bloom events. The water column profiling
next to each ESP demonstrated that sampling was frequently not within
the chlorophyll maximum, which motivated targeted sampling of this
feature by the AUV. The high-resolution mapping and targeted samples
from the Dorado AUV revealed that the chlorophyll maximum extended
across the entire southern shelf, and that it was almost completely
dominated by P. australis. Further, AUV sampling targeted the most
dense bloom patches and revealed maximum cell concentrations an
order of magnitude greater than maximum cell concentrations from
nearby MW sampling. These densest bloom patches are more re-
presentative of potential HAB impact. Particulate DA concentrations
varied an order of magnitude across a distance of several kilometers and
were not simply related to Pseudo-nitzschia abundance. This latter ob-
servation supports the need for high-resolution mapping and sampling
to understand potential drivers of toxicity.

Results from consistent weekly sampling raised additional questions
related to Pseudo-nitzschia bloom ecology. Cell counts at the MW site
revealed a higher average correlation coefficient between the two size
classes in 2013 (0.87) versus 2015 (0.51). Were the species comprising
the ‘delicatissima’ size class significantly different in the two blooms?
Do interspecies interactions influence the trajectory of a bloom? Future
work using ARISA and SEM on archived samples from both years will
aim to uncover how P. fraudulenta (2013) and P. australis (2015) levels
fluctuated and the similarities/differences between the associated ‘de-
licatissima’ populations throughout the year. Such details of species
associations will help advance understanding of HAB causality and
contribute to improving the accuracy of predictive models.

5. Conclusions

The ability to study HAB events (initiation, persistence, and termi-
nation) across broad temporal and spatial scales provides both under-
standing and motivation to advance predictive skill. The sampling
strategy and tools used in this study informed understanding of Pseudo-
nitzschia population dynamics in Monterey Bay during two very dif-
ferent bloom years. Fine-scale shifts in diversity and toxicity were re-
vealed, both spatial and temporal, and these observations will allow us
to build on current monitoring and modeling strategies in the region.
For example, newly designed molecular probes (Bowers et al., 2017)
have expanded taxon-specific detection capabilities, and findings from
this study will help guide their future application. A key to future work
will be the mobility and adaptive sampling capabilities of platforms
such as the Dorado AUV and next generation ESP (3 G; Pargett et al.,
2015; Zhang et al., 2015). As major shifts in oceanic, land-sea, and
atmospheric processes that have the potential to impact frequency and
intensity of HABs are documented (e.g. Moore et al., 2008), high-re-
solution real-time data will aid marine resource management decisions
and public health protection.
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