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Abstract Microbial communities are comprised of complex
assemblages of highly interactive taxa. We employed network
analyses to identify and describe microbial interactions and
co-occurrence patterns betweenmicrobial eukaryotes and bac-
teria at two locations within a low salinity (0.5–3.5 ppt) lake
over an annual cycle. We previously documented that the
microbial diversity and community composition within Lake
Texoma, southwest USA, were significantly affected by both
seasonal forces and a site-specific bloom of the harmful alga,
Prymnesium parvum. We used network analyses to answer
ecological questions involving both the bacterial and microbi-
al eukaryotic datasets and to infer ecological relationships
within the microbial communities. Patterns of connectivity at
both locations reflected the seasonality of the lake including a
large rain disturbance in May, while a comparison of the com-
munities between locations revealed a localized response to
the algal bloom. A network built from shared nodes (microbial
operational taxonomic units and environmental variables) and
correlations identified conserved associations at both locations
within the lake. Using network analyses, we were able to
detect disturbance events, characterize the ecological extent

of a harmful algal bloom, and infer ecological relationships
not apparent from diversity statistics alone.
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Microbial interactions

Introduction

Microbial communities in aquatic environments perform fun-
damental ecosystem services, such as primary production, tro-
phic transfer, and nutrient recycling [1, 2]. Interactions be-
tween these taxa and higher trophic levels range from mutu-
alistic to predatory or parasitic [3–5]. Central themes in mi-
crobial ecology are to quantify and describe patterns of inter-
actions within complex assemblages of microorganisms and
to measure and document changes in response to environmen-
tal forcing features such as seasonality [6, 7], natural distur-
bance [8, 9], and experimental manipulation [10, 11].

Network analyses facilitate the exploration of many inter-
connected correlations simultaneously and have become use-
ful tools for characterizing complex biological systems
[12–14]. Various forms of network analysis have documented
non-random clusters of microbial taxa, thereby identifying
potential metabolic consortia, trophic relationships, keystone
species, or modules of co-occurring microorganisms in space
and time [15, 16]. These approaches have been applied to
examine microbial communities from lakes [17], oceans [18,
19], soil [20–22], and the human microbiome [23]. At the
broadest scales, these analyses revealed co-occurrence pat-
terns among microbes within or between ecosystems [16]
and helped our understanding of the contribution of specific
taxa to global-scale biogeochemical processes, such as the
sinking of carbon from surface waters [24].
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In this study, we used network analyses to visualize and
quantify individual correlations between microbial metazoa,
protists, fungi, bacteria, and environmental parameters in a
lake affected by seasonality and ecological disturbance. Lake
Texoma is a brackish (PSU 0.5–3.5), temperate lake in the
southwest USA that routinely experiences localized harmful
algal blooms of the haptophyte Prymnesium parvum [25].
P. parvum forms ecosystem disruptive algal blooms
(EDABs) that are well documented throughout the world
[26]. The alga produces a suite of toxins [27, 28], possesses
mixotrophic (phagotrophic) ability [29, 30] and thus, can exert
strong effects on community structure across many trophic
levels [3, 26, 31–35].

We previously characterized the annual cycle of microbial
eukaryotic and bacterial diversity at two locations within Lake
Texoma: Lebanon Pool and Wilson Creek [36]. In that study,
beta diversity (Bray-Curtis similarity matrices) for the bacte-
rial and microbial eukaryotic communities exhibited statisti-
cally supported month-to-month seasonal changes and over-
laid responses to two specific disturbance events: (1) a biolog-
ical disturbance in the form of a localized P. parvum bloom in
Lebanon Pool from January to April, and (2) a physical dis-
turbance in the form of a large spring rain event at both loca-
tions during May. The monthly diversity indices exhibited
clear patterns of community similarity in response to environ-
mental forcing; however, they did not reveal which specific
community members were driving or responding to those
changes, nor did they provide insights into the ecological re-
lationships within the microbial food webs [36]. The network
approach used here allowed for the simultaneous testing of
thousands of taxa-to-taxa correlations and the identification
of suites of organisms within the community. The results from
Jones et al. 2013 [36] prompted the following research ques-
tions centered on disturbance events and taxa-to-taxa ecolog-
ical relationships: (1) Can network analyses identify and char-
acterize which taxa are positively or negatively associated
with ecosystem-disruptive P. parvum blooms? (2) Can the
network analyses detect seasonal forcing including a onetime
physical disturbance event within the year of data?
Specifically, which organisms turned over or changed as a
result of the disturbance? (3) Do the networks provide a dis-
covery tool to identify consortia of taxa that respond similarly
to environmental forcing in Lake Texoma?

Methods

Site Description and Sampling

Lake Texoma is a temperate, brackish reservoir on the border
of Texas and Oklahoma. Two locations were sampledmonthly
for 1 year from November 2008 to October 2009: Lebanon
Pool and Wilson Creek [36]. Near-shore waters were sampled

for temperature, salinity, dissolved oxygen, pH, extracted
chlorophyll a, Prymnesium parvum cell counts, and DNA
sequencing of the eukaryotic (18S) and bacterial (16S)
rRNA genes. The lake experienced a localized and prolonged
bloom of the toxic alga P. parvum from January through April
in Lebanon Pool only (Fig. S1a-c). Both locations experienced
a physical disturbance during May when heavy seasonal rains
caused a temporary salinity drop from 3.5 to ≈ 0 ppt. The
environmental parameters (temperature, salinity, pH, dis-
solved oxygen, and nutrients) at the two locations were highly
similar and could not alone account for the presence of the
P. parvum bloom in Lebanon Pool [36].

Establishing Microbial Operational Taxonomic Units

A detailed description of the protocol for sample processing,
sequence generation, and operational taxonomic unit (OTU)
calling can be found in Jones et al. [36]. Briefly, the v9 region
of the 18S rRNA gene [37] and the v6 region of the 16S rRNA
gene [38] were PCR amplified and sequenced via 454 titani-
um pyrosequencing to assess the diversity of the eukaryotic
and bacterial (including plastids) communities. Forty-eight
DNA sequence libraries were analyzed (two genes, two loca-
tions, 12 months). In the previous study [36], one true repli-
cate (December Wilson Creek) was analyzed and variability
between the replicates for each analysis was small compared
to the variability between the samples. The open-source soft-
ware mothur v.1.21.1 (http://mothur.org) was used for
sequence processing with the following criteria: (1) an aver-
age quality score of 25 or higher, (2) zero ambiguous bases,
(3) less than eight homopolymers, (4) exact matches to the
primers, and (5) passing chimera check for the 16S rDNA
dataset [39]. Mothur v.1.21.1 was used for the alignments
using a Needleman-Wunsch algorithm (kmer = 8) with the
following criteria: match (+ 1), mismatch (− 1), gap opening
(− 2), and gap extension (− 1) to a reference 18S rDNA or 16S
rDNA SILVA alignment, and for calling OTUs with the fol-
lowing criteria: 97% similarity using an average neighbor
method after a pre-clustering step [39–41]. We found 12,860
OTUs (ranging from 181 to 802 per month) in the 18S dataset
and 16,274 OTUs (350 to 771 per month) in the 16S dataset.
A taxonomy was assigned to each OTU using a representative
sequence (onewith the smallest distance to all other sequences
within the OTU) and stand-alone BLAST+ [42] to the SILVA
small subunit ribosomal database (SSUv108, http://www.arb-
silva.de/) [43] and NCBI nucleotide collection nr/nt (www.
ncbi.nlm.nih.gov) database. Sequences with high-sequence
similarity (at least 80% similarity over 95% of the query) were
assigned a taxonomic ID, a term that referred to the classifi-
cation associated with the sequence that was the best match to
our query. Tables S1, S2, and S3 contain a list of OTUs and
taxonomic assignments. Table S4 contains a list of OTUs and
their representative sequences. The multivariate software
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package PRIMER v6.1.7 was used to compute species rich-
ness, taxa evenness, and effective diversity of the total micro-
bial communities in each location [44, 45].

Computing Correlations and Visualizing Connections
in Network Diagrams

Our network analyses were built from Spearman’s correla-
tions computed over 12 data points (12 months) with each
location treated separately. We selected the Spearman correla-
tions (or ranks) for three reasons: (1) to look for monotonic
ecological relationships, (2) because a majority of the species
were not normally distributed even after transformations were
applied, and (3) in an effort to standardize the analyses of the
small subunit rDNA genes which can vary greatly in copy
number between and within the bacterial and eukaryotic com-
munities. Spearman correlations have also been used in other
microbial co-occurrence studies [20, 46]. Only those OTUs
detected in at least 4 of the 12 months at a given location and
those with relative abundances of at least 0.5% during 1 or
more months were included in the analysis. The analysis in
Lebanon Pool contained 106 18S OTUs, 128 16S OTUs, and
17 non-OTU or environmental variables. The analysis in
Wilson Creek contained 137 18S OTUs, 130 16S OTUs,
and 17 non-OTU or environmental variables.We used relative
abundances calculated from the total dataset in order to com-
pare the 18S and 16S datasets. We computed alpha diversity
indices to test for the likelihood of compositional effects
(artefactual correlations) that can be a problem if the sample
has a low functional diversity. The relative abundances of the
OTUs and absolute quantities of the environmental parame-
ters were normal score transformed as first described in [47].
Pairwise Spearman’s correlations (using the average tie-
breaking method), with associated permuted p values and q
values (false discovery rates) [48], were computed for the time
series at each location using the eLSA program and a python
script available at http://meta.usc.edu/softs/lsa [49].

Spearman’s correlations with p values ≤ 0.01 (associated q
values < 0.032 for Lebanon Pool or < 0.067 forWilson Creek)
and absolute values of 0.7 were then included in the network
analyses. The value of |0.7| was selected to trim the dataset and
include only strong correlations. An absolute value of 0.7 is
generally considered a meaningful association. The difference
in false discovery rates or q values associated with the same
p values cutoffs of ≤ 0.01 reflects the different numbers of
pairwise comparisons (31,375 for Lebanon Creek and
40,186 for Wilson Creek) within the two datasets.

Information on variables (nodes) and correlations (edges)
were imported into the open-source data viewing platform
Cytoscape v.2.8.3 for network analyses and visual representa-
tions of all significant correlations (edges) between the bacte-
rial OTUs, eukaryotic OTUs, and variables (nodes) [50–52].
The network nodes (microbial OTUs and environmental

variables) were depicted in the network visualizations by
shapes and colors, while the network edges (correlations)
were depicted as lines in the network diagrams. The total
relative abundances for the year of the OTUs were put into
eight size bins for visual representations in the network dia-
grams based on the following criteria: (1) < 0.1, (2) 0.1–0.25,
(3) 0.25–0.5, (4) 0.5–0.75, (5) 0.75–1, (6) 1–1.5, (7) 1.5–2, (8)
> 2%. The environmental parameters were given the middle
size bin of 4.

Three overarching networks were constructed: (a) Lebanon
Pool (222 nodes and 4787 correlations), (b) Wilson Creek
(247 nodes and 3788 correlations), and (c) a shared dataset,
which contained the nodes and correlations (of the same qual-
ity [positive or negative], yet not necessarily the same quanti-
ty) found at both locations (134 nodes and 510 correlations).
The shared dataset was constructed using the advanced net-
work merge Cytoscape plug-in.

Networks were visualized in Cytoscape using two layouts
[51]: (1) Bedge-weighted, spring-embedded layout^ (nodes
are strongly repelled or attracted as a function of their
Spearman correlation value; spring strength = 50, spring rest
length = 100, strength of disconnected spring = 0.05, rest
length of disconnected spring = 500, and strength to avoid
collisions = 500) and (2) Bunweighted, force-directed layout^
(the placement of the nodes is optimized based on the number
of correlations between the nodes and the value of the corre-
lation is not taken into account; spring coefficient = 1−5, spring
length = 50, node mass = 3).

The networks were undirected, meaning that correlations
between nodes did not have directionality. Overarching statis-
tical properties (network density, average clustering coeffi-
cient, and average shortest path length) of the networks were
computed using the Network Analysis Cytoscape plug-in
[53]. The average network density is a normalized value (0
to 1) reflecting the average number of correlations per node
and can be used to compare the degree of interconnectivity
between different networks of varying sizes. The clustering
coefficient (CI) for a node is a ratio (0 to1) relating the number
of connections between a node’s neighbors (a neighbor is
defined as a directly connected node) and the total number
of connections possible between all neighbors of that node.
Values closer to 1 indicate a highly interconnected network,
one in which every node is correlated and connected to every
other node. The shortest path length (L) for a node represents
the average number of connections required for that node to be
connected to all other nodes via the smallest number of con-
nections. Values closer to 1 indicate a highly interconnected
network, one in which every node is directly connected to
every other node. Each network was statistically compared
to a self-randomized version and to an identically sized
Erdös-Réyni random model [51, 54] using the Random
Networks Cytoscape plug-in (http://web.ecs.syr.edu/
~pjmcswee) in order to establish that the connections
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detected were not generated at random. The log response
ratios of the CI and L (observed values: value from random
network) were computed in order to normalize our values and
compare the properties of our networks to those generated in
other studies. Log distributions of the number of correlations
per node (also known as degree distributions) of the networks
and Erdös-Réyni random models were plotted and trend lines
fitted using SigmaPlot v11.0. The AllegroMCODECytoscape
plug-in [55] was used to find and isolate highly intercorrelated
clusters of nodes within the larger networks. The MCODE
parameters were degree cutoff = 2, node score cutoff = 0.03,
K-score = 2, and max depth 100.

Results

Correlation and Network Analyses Revealed Highly
Interconnected Microbial Systems

A total of 31,375 (Lebanon Pool) and 40,186 (Wilson Creek)
pairwise Spearman correlations were generated (see
BMethods^ section). The histograms of the associated p values
(Fig. S2) lacked a uniform distribution, as would be expected
under a null model, and instead were skewed towards zero
implying meaningful associations [47]. The Spearman corre-
lations with p values ≤ 0.01 (associated q values < 0.032 for
Lebanon Pool or < 0.067 for Wilson Creek) and absolute
values of > 0.7 were included in the network analyses. This
threshold retained 15% of the correlations (4787 [2669 posi-
tive correlations and 2118 negative correlations] between 222
variables) in Lebanon Pool and 9% (3788 [2403 positive cor-
relations and 1385 negative correlations] between 247 vari-
ables) in Wilson Creek. The edited dataset for Lebanon Pool
contained 94 18S rDNA OTUs including 8 metazoan OTUs,
and 122 16S rDNA OTUs including 12 plastid OTUs, while
the dataset for Wilson Creek contained 116 18S rDNA OTUs
including 6 metazoan OTUs, and 125 16S rDNA OTUs in-
cluding 11 plastid OTUs. Both datasets included 6 environ-
mental parameters. The shared dataset built from variables and
correlations found at both locations contained 134 variables
and 510 correlations. Tables S1, S2, and S3 contain a com-
plete list of OTUs, taxonomic assignments, environmental
variables, and their attributes.

The number of significant correlations (degrees) per variable
(node) ranged from 1 to 111 (Lebanon Pool), 1 to 88 (Wilson
Creek), and 0 to 31 (shared network), and did not correlate with
an OTU’s average relative abundance (Fig. S3), frequency of
occurrence (Fig. S4), or taxonomic group (Tables S1 and S2).
The microbial community in Wilson Creek had a species rich-
ness (Margalef) of 50, a taxa evenness (Pielou) of 0.92, and an
effective diversity (Hill) of 151. The edited community in
Lebanon Pool had a species richness (Margalef) of 48, a taxa
evenness (Pielou) of 0.86, and effective diversity (Hill) of 102.

Friedman 2012 recommends an effective diversity of at least 50
to eliminate concern about false correlations resulting from
compositional effects [56, 57]. The effective diversity in our
samples was high (> 100) indicating a diverse community with
meaningful ecological correlations. The distributions
representing the frequency of the number of correlations per
node for the Lebanon Pool, Wilson Creek, and shared networks
(Fig. S4, closed symbols) were each statistically different from
the Erdös-Réyni model distributions (Fig. S4, open symbols).
The model distributions each fit Poisson curves as expected
[58]. The variables’ degree distributions for the Lebanon Pool
andWilson Creek networks did not fit power curves as found in
some [14], but not all [59] biological networks.

The overwhelmingmajority (100 and 98%) of the variables
and correlations within Lebanon Pool or Wilson Creek each
resolved into large highly interconnected networks (Fig. 1 a,
e). A majority (70%) of the nodes and correlations shared at
both locations also resolved into one interconnected shared
network (Figs. S5a).

Network analyses provide a picture of all the direct associa-
tions within a biological system. Various topological properties,
which include the average clustering coefficient and mean
shortest path length (see BMethods^ section), describe the pat-
terns of connections found within a network. These features can
be statistically compared against those from random networks
and can be used as points of comparison with other experimen-
tal networks. The average clustering coefficients (CI = 0.601,
0.541, and 0.453) and mean shortest path lengths (L = 2.35,
2.62, and 2.75) of the Lebanon Pool, Wilson Creek, and shared
networks, respectively, were each significantly different from
the values computed from the Erdös-Réyni random models
built from the same number of nodes and correlations, and to
self-randomized networks (Table 1).

The Microbial Networks Revealed Unique Communities
Along Broad Seasonal Divides Reflective of a Physical
Disturbance Event

Edge-weighted, spring-embedded layouts within Cytoscape
were used to organize the networks and position the variables
based on their correlations. Amajority (> 90%) of the negative
correlations within the microbial association networks in
Lebanon Pool, Wilson Creek, and the shared network separat-
ed the nodes into two distinct subclusters (Figs. 1 and S5). A
majority (95%) of the positive correlations were contained
within one or the other subclusters at each location. Known
seasonality patterns of the variables were overlaid on the net-
works (Figs.1c–h and S5c, d; yellow highlighted symbols)
and indicated that the two subclusters were composed primar-
ily of variables with opposite seasonal abundance patterns
divided by the rain disturbance in May: 90% of the variables
with a November-to-April seasonality comprised one cluster
(Figs. 1c, g and S5c; yellow highlighted symbols) and 90% of
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the variables with a May-to-October seasonality comprised
the other (Figs. 1d, h and S5d; yellow highlighted symbols).

Correlations Found Between Algae and Their Plastids
Supported the Network Analysis

Positive correlations between plastid OTUs and photosynthet-
ic algal OTUs highlighted likely host/organelle pairs in the

networks (Fig. S6). The dataset contained 15 total chloroplast
OTUs (11 in Lebanon Pool and 11 Wilson Creek) and all but
one (69-U.C.) were identified to phylum level. Thirteen of the
chloroplast OTUs showed good correlations to their likely
photosynthetic hosts. Two haptophyte plastids (green circles:
12-Hap and 1-Hap) from Lebanon Pool (Fig. S6a) were cor-
related with each other (0.97), to P. parvum cell counts (or-
ange square Ppar) (0.81) and two 18S haptophyte OTUs (blue

Fig. 1 The Spearman correlations between the nodes within the network
diagrams revealed seasonal abundance patterns among the microbial taxa
from Lebanon Pool (a–d) and Wilson Creek (e–h). The networks were
visualized with the edge-weighted, spring-embedded layout (nodes in the
network were positioned based on the strength and sign of their Spearman
correlation values). OTUs with 75% or more of their relative abundances
contained in the 6-month periods of November–April (c, g) or May–
October (d, h) are highlighted in yellow. Connections drawn from posi-
tive Spearman correlations are black solid lines, and those from negative

correlations are gray dotted lines. All correlations (4787 and 3788 [> 0.7
or < − 0.7 and p values ≤ 0.01]) are displayed in a, c, d, e, g, and h. Only
positive correlations (2669 and 2403) are displayed in b and f, demon-
strating strong positive correlations between taxa within a season at each
location, but not between seasons. Bacteria are red circles, single-celled
eukaryotes are blue diamonds, metazoa are purple diamonds, environ-
mental parameters are orange squares, and chloroplasts are green circles

Table 1 Average clustering coefficient (CI) and mean shortest path length (L) for the microbial association networks

Network type Lebanon Pool
(222 nodes, 4787 edges)

Wilson Creek
(245 nodes, 3788 edges)

Shared
(102 nodes, 510 edges)

Microbial CI 0.601 0.541 0.453

Erdös-Réyni CI random 0.196 (± 0.002) 0.125 (± 0.001) 0.10 (± 0.007)

CI/CI random1 3.066 4.328 4.530

ln r CI2 1.120 1.465 1.510

Microbial L 2.346 2.617 2.750

Erdös-Réyni L random 1.81 (± 0.008) 1.9 (± 0.009) 2.24 (± 0.006)

ln r L3 0.262 0.323 0.205

Randomized
network

CI random 0.441 (± 0.010) 0.318 (± 0.007) 0.196 (± 0.017)

L random 1.93 (± 0.004) 2.1 (± 0.006) 2.4 (± 0.021)

1 CI/CI random: ratio of the CI of the network and the coefficient from an identically sized random network
2 ln r CI: natural log of the ratio
3 ln r L: natural log of the ratio of the L of the network and the coefficient from an identically sized random network values in parentheses is standard
deviation
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diamonds: 1-Hap and 56-Hap) (0.75 to 0.82). A diatom OTU
(blue diamond: 14-Dia) and a diatom plastid (green circle: 10-
Dia) had strong correlations in both Lebanon Pool andWilson
Creek, 0.93 and 0.85, respectively (Fig. S6a, b).

Specific Correlations Between P. parvum and Other Taxa
in Lebanon Pool

P. parvum (18S_OTU1) was the most dominant OTU in
Lebanon Pool with a relative abundance of 14% (Table S1)
where it formed an ecosystem disruptive harmful algal bloom
from January to April (Fig. S1a, b). P. parvum (18S_OTU1)
had 59 significant correlations (28 negative and 31 positive) in
Lebanon Pool (Table S5). Taxa with negative correlations to
P. parvum included six ciliates (18S_OTU85, 203, 27, 16, 21,
and 120), three cryptophytes (18S_OTU31, 47, and 45), and
13 bacterial OTUs. Taxa with positive correlations to
P. parvum included two fungi (18S_OTU88, and 2), three
chrysophytes (18S_OTU114, 108, and 163), three
cyanobacteria (16S_OTU39, 62, and 40), and nine
alphaproteobacteria (Table S5).

Positive Correlations Revealed Highly Interconnected
and Distinct Microbial Assemblages Within Seasonal
Subclusters

The negative correlations between the nodes overwhelmingly
separated the microbial communities at each location into two
seasonal sub-assemblages (Fig. 1); therefore, we removed the
negative correlations from the networks to investigate patterns
of positive associations among the taxa. The edge-weighted,
spring-embedded layout (Fig. 2) optimized the placement of
the nodes based on the number and strength of the positive
Spearman correlation values; thus, nodes with the strongest
correlation values were placed more closely together. The
resulting visual representations of the positive correlations
also separated the nodes based on their seasonal abundance
patterns in Lebanon Pool (Fig. 2a) andWilson Creek (Fig. 2b).
Clusters on the left were mostly comprised of variables with
high abundances during November–April and had network
density scores of 0.3 and 0.2 (Lebanon Pool and Wilson
Creek, respectively), while clusters on the right were predom-
inantly comprised of variables with high abundances during
May–October (network density scores of 0.2). The MCODE
algorithm identified the densest, most interconnected regions
at each location. The top two scoringMCODE clusters at each
location fell into each of the seasonal subclusters (CI of 0.8
and 0.9 in Lebanon Pool; Fig. 2a, yellow highlights, and CI of
0.9 and 0.9 in Wilson Creek; Fig. 2b, yellow highlights). The
clusters identified with the MCODE algorithm exhibited qual-
itatively different compositions of variables that reflected
community responses to disturbance (P. parvum bloom,
January–April in Lebanon Pool only) and seasonality (Fig. 3).

The highly interconnected November–April subcluster in
Lebanon Pool contained 41 variables including P. parvum
counts (orange square Ppar), Prymnesium 18S OTUs (blue
diamonds: 1-Hap and 56-Hap), and two Prymnesium-related
plastids (green circles: 1-Hap and 12-Hap); Fig. 3a). These
nodes had similar annual relative abundance patterns (Fig.

Fig. 2 Networks representing the positive Spearman correlations
between the microbial OTUs and environmental variables from
Lebanon Pool (a) and Wilson Creek (b). The networks were visualized
with the edge-weighted, spring-embedded layout (nodes in the network
were positioned based on the strength of their positive Spearman corre-
lation values). The visual spread in each network divided the nodes by
broad seasonal distribution patterns, the left-hand cluster is primarily
composed of OTUs with high abundances from November–April, and
the right-hand cluster contains primarily OTUs with higher abundances in
May–October. The MCODE algorithm was used to identify regions of
highly interconnected clusters of nodes. The top two MCODE clusters in
Lebanon Pool (a) and Wilson Creek (b) are highlighted in yellow.
Connections drawn from positive Spearman correlations are black solid
lines. Bacteria are red circles, single-celled eukaryotes are blue diamonds,
metazoa are purple diamonds, environmental parameters are orange
squares, and chloroplasts are green circles. The size of the nodes reflects
the average relative sequence abundance
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S1a,c) and were highly interconnected to eight other eukary-
otic OTUs (blue diamonds) including two fungal OTUs (2-
Fun, 55-Fun), two chrysophyte OTUs (114-Chr and 108-Chr),
one chlorophyte OTU (33-Chl), and two unclassified OTUs
(32 and 118). Themajority (71%) of the cluster was composed
of 32 bacterial OTUs (red circles), including four
cyanobacteria (a Synechococcus [2-Cy] plus filamentous
forms [39-Cy, 62-Cy, and 40-Cy]) and 16 (50%)
alphaproteobacteria (Alp). Refer to Tables S1 and S2 for a
complete list of the OTUs and their identifications.

The highly interconnected November–April cluster in
Wilson Creek contained 42 variables and was equally com-
posed of eukaryotic and bacterial OTUs (17 each; Fig. 3c).
The eukaryotes included P. parvum cell counts (orange square
Ppar) and one Prymnesium plastid OTU (green circle 1-Hap),
although at much lower abundances than for the same period
in Lebanon Creek. Similarly, cell counts of P. parvum and
sequences in Prymnesium-related OTUs were much lower in
Wilson Creek (Fig. S1a and b compared to c). The eukaryotic
community (blue diamonds) in Wilson Creek also included
three haptophyte (64-Hap, 56-Hap, 158-Hap), three
chlorophyte (Chl), one diatom (134-Dia), four cercozoan
(Cer), two ciliate (Cil), and two metazoan OTUs (purple dia-
monds). The bacterial community (red circles) included a di-
versity of phylum-level groups, but no cyanobacterial OTUs
(Tables S1 and S2).

The highly interconnected communities during May–
October (Fig. 3b, d) were comprised of similar numbers of
eukaryotic and bacterial OTUs at both locations. The eukary-
otic community (blue diamonds) in Lebanon Pool during this
period included four cryptophytes (Cry), one chlorophyte
(Chl), one diatom, and a diatom plastid (14-Dia, and green
circle 10-Dia), three ciliate (Cil), and two metazoan OTUs
(purple diamonds: 35-Rot and 281-Rot), while the bacterial
community (red circles) was composed of a diversity of taxa,
including two cyanobacteria (7-Cy and 51-Cy) (Fig. 3b). The
eukaryotic community (blue triangles) inWilson Creek during
this period included three diatom, one cryptophyte, six
chlorophyte, three ciliate, and three cercozoan OTUs, while
approximately half of the bacterial OTUs in Wilson Creek
were cyanobacterial OTUs (red circles Cy; Fig. 3d). The net-
work analyses identified 11 cyanobacterial taxa as a major part
of the highly connected cluster in Wilson Creek (Fig. 3d).

Conserved Correlations in the Shared Network Suggest
a Common Microbial Community in the Lake

A total of 134 microbial OTUs, six environmental variables,
and 510 interactions (352 positive) were shared between the
datasets from Lebanon Pool and Wilson Creek (Table S3 and
Figs. 4 and S5a). The negative correlations in the joint net-
work also separated the community into clusters along sea-
sonal divides (Fig. S5c, d). The unweighted force directed

layout of the positive correlations also divided the shared
community along seasonal divides and into two subclusters
(Figs. 4 and S5b). The smaller sub-network observed
November–April was 70% composed of bacterial OTUs (red
circles) including 10 alphaproteobacteria and four
betaproteobacteria, and contained only six shared eukaryotic
OTUs (blue diamonds) which included a Prymnesium (blue
diamond: 1-Hap) and plastid OTU (green circle: 1-Hap)
(Fig. 4a). The alphaproteobacteria (red circles Alp) were the
most highly connected group and constituted 66% of the cor-
relations during these months. The larger May–October sub-
network contained an equal proportion of eukaryotic (blue
diamonds) and bacterial (red circles) OTUs, including four
diatoms (Dia), six ciliates (Cil), seven cryptophytes (Cry),
and four plastids (green circles) (Fig. 4b). This cluster also
contained 11 cyanobacterial OTUs including both
Synechococcus [Cy(Sy)] and filamentous forms (Cy). The
cyanobacteria were the most highly connected group May–
October and contained 59% of the total connections.

Discussion

Network analyses are powerful applications for characterizing
complex multi-member biological systems [14]. Microbial as-
semblages are often comprised of a high diversity of taxa with
seemingly overlapping niches that interact in complex ways.
Network approaches are a logical tool for quantifying and
visualizing microbial occurrence patterns and relationships
and, in particular, for analyzing large datasets yielded by
high-throughput environmental gene sequencing studies [17,
19–22, 60]. As observed in other microbial co-occurrence
networks [6, 7, 19, 46], our analyses identified consortia of
taxa that tracked together during the year, implying the exis-
tence of physiological/ecological relationships that might ex-
plain these co-occurrence patterns. Our networks reflected the
seasonality and rain disturbance of the system and organically
divided the lake into pre- and post-rain seasonal sub-
communities at each location (Fig. 1). The networks also en-
abled us to more deeply characterize the ecological effects of
the P. parvum bloom in Lake Texoma (Figs. 2 and 3).

Strong Associations Implicated by Microbial Networks

Our log response ratios of the average clustering coefficient
(CI) (1.1 to 1.5) and the average shortest path lengths (L) (0.21
to 0.32) (Table 1) were comparable to those reported for the
multi-domain microbial ecological network from an open-
ocean environment [19], presumably indicating similar de-
grees of connectivity among the microbial taxa in very differ-
ent planktonic ecosystems. The low average path lengths and
high CIs of the networks together suggest that our networks
have Bsmall world properties^ [61], meaning that the nodes
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represent highly interconnected consortia of microbes, both
eukaryotes and bacteria, with strong associations and
interactions.

Our samples were collected at monthly intervals; however,
microbes generally interact with each other on much shorter
timeframes of hours or days. Thus, our analyses were restrict-
ed to contemporaneous associations between consortia of taxa
that responded similarly to environmental forcing conditions
over the year, and could not reveal time-delayed relationships
such as predator-prey or host-parasite. Our datasets contained
high functional diversity as described by Friedman and Alm,
thus minimizing the risk for artefactual correlations [57]. In
addition, strong correlations between plastid OTUs and their
eukaryotic hosts provided anticipated and straightforward ex-
amples of the ability of the networks to identify biologically

meaningful relationships (Fig. S6). Thus, we hypothesize that
our networks revealed microbial communities composed of
organisms with strong non-random correlations reflecting
ecological interactions and coordinated responses to environ-
mental forcing at monthly and seasonal time scales (Table 1
and Supplemental Fig. S4).

Networks Reflected the Natural History of the Lake

The natural history (strong seasonality, physical rain distur-
bance, and a toxic algal bloom event) of the two locations in
this study provided an interesting framework for our network
analyses. Both sampling locations exhibited strong seasonal
trends in community composition that reflected forces from
gradual seasonal environmental changes, as well as a natural

Fig. 3 Highly interconnected clusters of nodes extracted with the
MCODE algorithm from the networks representing all of the positive
Spearman correlations from Lebanon Pool (from Fig. 2a) and Wilson
Creek (from Fig. 2b). The MCODE algorithm identified two highly in-
terconnected clusters from each location: Lebanon Pool (a, b) andWilson
Creek (c, d). Each cluster contained nodes predominantly observed in
either November–April (a, c) or May–October (b, d). The networks were
visualized with the edge-weighted, spring-embedded layout (nodes in the
network were positioned based on the strength of their positive Spearman
correlation values). The size of the symbols reflects the average relative
sequence abundance. Bacteria are red circles, single-celled eukaryotes are
blue diamonds, metazoa are purple diamonds, environmental parameters
are orange squares [Prymnesium cell counts (Ppar) and dissolved oxygen

(DO)], and chloroplasts are green circles. Connections drawn from pos-
itive Spearman correlations are shown as black solid lines (insets in a–d).
In the larger representations, the connections were omitted for easier
reading of the node identifiers. The number on the symbols refers to the
OTU identifier numbers. The following identification codeswere used for
the OTUs with good taxonomic resolution: Alp (alphaproteobacteria),
Bet (betaproteobacteria), Gam (gammaproteobacteria), Fla
(flavobacteria), Sph (sphingobacteria), Cy (cyanobacteria), Fun (fungi),
Hap (haptophyte), Chr (chrysophyte), Chl (chlorophyte), Cer (cercozoa),
Cil (ciliate), Cry (cryptophyte), Dia (diatom), Rot (rotifer), Cru (crusta-
cean), Pol (polychaete), and UC (unclassified). Refer to Tables S1 and S2
for a complete list of the OTUs and their identifications
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physical disruption in the form of a massive spring rain event
during May [36].

The seasonality of the system at each location was readily
apparent in the force-directed, spring-embedded visualiza-
tions of the networks (Figs. 1 and 2). We previously docu-
mented seasonal monthly succession of the microbial eukary-
otic and bacterial communities likely in response to seasonal
fluctuations in temperature, light, and a strong spring rain
event [36]. The negative correlations in our networks over-
whelmingly reflected opposing seasonal abundance patterns
of the OTUs divided by the physical rain disturbance in May
(Fig. 1). The networks built only from positive correlations
also reflected this seasonal divide as two distinct winter/spring
(November–April) and summer/fall (May–October) subnet-
works emerged from all of the positive correlations in the lake
over the year (Fig. 2). Together, they demonstrate the power of

the networks to detect the disturbance event and reveal the
qualitative restructuring of the communities at both locations.

The Ecosystem Disruptive Nature of P. parvum

P. parvum is classified as an ecosystem disruptive algal bloom
(EDAB) [62] and has demonstrated direct negative effects on
many members of the plankton community [32, 33, 35]. The
alga releases a suite of toxins [27, 63] that can affect several
trophic levels ranging from the death of gill-breathing organ-
isms [26], altered life histories and fecundity of crustaceous
zooplankton [3, 34], and decreased mobility and/or growth
rates of ciliates, flagellated algal cells, diatoms, and filamen-
tous cyanobacteria [31]. In addition, P. parvum is
mixotrophic, combining phagotrophic and phototrophic nutri-
tion. The alga appears to be an obligate phototroph (i.e.,

Fig. 4 Diagrams representing the nodes, and their positive Spearman
correlations, shared by Lebanon Pool and Wilson Creek. Network
diagrams were visualized with the unweighted force-directed layout
(the placement of the nodes was optimized based on the number of cor-
relations between the nodes, and the value of the correlationwas not taken
into account). The output yielded two discrete clusters: a represents the
117 positive correlations across the 38 shared nodes with November–
April abundance patterns, while b represents the 236 positive correlations
across the 64 shared nodes with May–October abundance patterns.
Bacteria are red circles, single-celled eukaryotes are blue diamonds,
metazoa are purple diamonds, environmental parameters are orange
squares [Prymnesium cell counts (Ppar), Temperature (Temp), Salinity

(PSU), and dissolved oxygen (DO)], and chloroplasts are green circles.
Connections drawn from the positive Spearman correlations are connect-
ed by black solid lines. The number on the symbols refers to the OTU
identifier numbers: Alp (alphaproteobacteria), Bet (betaproteobacteria),
Gam (gammaproteobacteria), Fla (flavobacteria), Sph (sphingobacteria),
Cy (filamentous cyanobacteria), Cy(Sy) (Synechococcus cyanobacteria),
Fun (fungi), Hap (haptophyte), Chr (chrysophyte), Chl (chlorophyte), Cer
(cercozoa), Cil (ciliate), Cry (cryptophyte), Dia (diatom), Rot (rotifer), Ich
(ichthyophonida), and UC (unclassified). The size of the node is not
informative. Refer to Table S3 for a complete list of the OTUs and their
identifications
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requires light for growth), but it also readily engulfs and/or
kills a variety of prey ranging from bacteria, to cryptophytes,
small diatoms, ciliates, and heterotrophic dinoflagellates [29,
32, 33, 35]. We found that P. parvum was negatively correlat-
ed with several ciliates and cryptophytes (Table S5), a finding
that agrees with published laboratory and field experiments.
Interestingly, P. parvum was also positively associated with
many taxa and one of the highest MCODE scoring subnet-
works in Lebanon Pool included P. parvum-related nodes
(blue diamond: 1-Hap), two plastids (green circles: 1-Hap,
12-Hap), and P. parvum cell counts (orange square: Ppar)
(Fig. 3a). The highly interconnected consortium in Lebanon
Pool yielded a snapshot of the microbial community associat-
ed with the harmful alga, which contained only eight other
eukaryotic OTUs including two fungi and three chrysophytes.
A majority of the bacterial OTUs associated with the
P. parvum bloom were alphaproteobacteria (Fig. 3a and
Table S5). This association in time and space suggests that
these taxa may be resistant to the wide-ranging offenses of
P. parvum. This information provides fodder for hypotheses
and the design of future experiments regarding these species’
tolerance to P. parvum.

The magnitude of the P. parvum bloom structured the
community in Lebanon Pool and appeared to disrupt the
overall diversity of taxa and connections, when com-
pared to the composition of the non-bloom community
in Wilson Creek during the same period of time (Fig.
3a compared to c, and [36]). P. parvum cells and OTUs
were detected during the winter in Wilson creek (Fig.
S1b,c), but abundances remained well below bloom
conditions, apparently confirming the importance of en-
vironmental factors as an important aspect for the suc-
cess of this species [64, 65]. The most highly connected
microbial community within Wilson Creek during the
winter/spring contained 17 eukaryotes including
cercozoa, ciliates, chlorophytes, and a crustacean meta-
zoan, as well as a diversity of bacterial taxa (Fig. 3c).
The strong seasonality of the system makes the direct
ecological interpretation of negative correlations with
P. parvum challenging; however, P. parvum was nega-
tively correlated with taxa detected in Wilson Creek
inc lud ing s ix c i l i a t e s and th ree c ryp tophy tes
(Table 5S). Our findings during a natural bloom rein-
force the shifts in microbial community structure found
by Acosta et al. [66] during an experimental P. parvum
bloom. Their mesocosm experiments of community
structure during bloom and non-bloom conditions re-
vealed that chrysophytes and fungi were strongly asso-
ciated with the P. parvum bloom conditions, while the
non-bloom treatments were characterized by diatoms,
ciliate, and chlorophytes [66]. Our results also agree
with Michaloudi et al. who examined the response of
the microbial community during a natural P. parvum

bloom and found a marked decrease in diatoms and
cryptophytes [67].

The disruptive/toxic nature of P. parvum was apparent
within the properties of the network obtained for Lebanon
Pool. The biological disruption that occurred at that site was
presumably the reason for the smaller winter/spring subnet-
work (75 nodes), compared to the summer/fall (145 nodes)
subnetwork (Fig. 2a, left grouping compared to right). In con-
trast, the seasonal subnetworks in Wilson Creek were similar
in size (121 and 125 nodes; Fig. 2b). The log response ratio of
the clustering coefficient in Lebanon Pool (Table 1) was lower
(1.12) than the ratio in Wilson Creek (1.47) or the shared
network (1.51), indicating that fewer of the neighboring nodes
were connected to each other for the entire network. On a local
scale, P. parvum was part of a highly interconnected assem-
blage within the Lebanon Pool network (Fig. 3a). It would
appear that the presence of P. parvum may have resulted in a
small number of unique taxa that, as a suite, were not strongly
interconnected to the taxa that occurred under non-bloom con-
ditions in Lebanon Pool.

The Shared Network Revealed a Set of Shared Taxa
and Connections in the Lake

Nodes representing identical OTUs or environmental param-
eters and correlations of the same quality (positive or nega-
tive) were represented in the shared network (Figs. 4 and S5).
Overall, the alphaproteobacteria formed a highly interconnect-
ed consortium common to both locations in the winter/spring
(Fig. 4a) with very few eukaryotic connections common to
both locations. Several ciliates, cryptophytes, chlorophytes,
and cyanobacteria also had shared interactions found in the
summer/fall at both locations (Fig. 4b).

The shared relationships suggest a microbial community
within the lake that responded in parallel at both sites to sea-
sonal environmental forcing, and which persisted through the
radical biological disturbance created by the bloom of
P. parvum in Lebanon Pool. The shared community was com-
prised of a small proportion of the total number of taxa detect-
ed in this study, and an even smaller proportion of the possible
correlations, indicating that highly localized environmental
cues (including disturbance events) may control much of the
assemblage of dominant taxa and many of their detectable
interactions.

Taken together, our network analyses were able to detect
disturbance events, characterize the ecosystem disruptive na-
ture of the P. parvum bloom, and identify consortia of taxa that
responded similarly to environmental cues. We see networks
as a powerful tool for asking ecological questions and gener-
ating testable hypotheses regarding functional relationships
among microbial taxa.

Supplementary information is available at Microbial
Ecology’s website.
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