
Article

The International Journal of

Robotics Research

1–18

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364915587723

ijr.sagepub.com

Data-driven robotic sampling for marine
ecosystem monitoring

Jnaneshwar Das1, Frédéric Py2, Julio B.J. Harvey2, John P. Ryan2,

Alyssa Gellene3, Rishi Graham2, David A. Caron3, Kanna Rajan2 and

Gaurav S. Sukhatme2

Abstract

Robotic sampling is attractive in many field robotics applications that require persistent collection of physical sam-

ples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and

water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of

plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical proper-

ties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection

decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret

for batches of plankton samples acquired by an AUVover multiple surveys. Samples are labeled at the end of each sur-

vey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the

AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge

of the quality of future samples. In addition to extensive simulations using historical field data, we present results from

a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier cam-

paign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first

time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect ‘‘closing the loop’’

on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to spe-

cify the mission at a relatively high level.
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1. Introduction

Many studies require persistent collection of physical sam-

ples for ex-situ analysis. For example, in the earth and envi-

ronmental sciences, air, water, and soil samples are

routinely collected to study properties that can only be

observed ex-situ through laboratory analysis. Robotic sam-

pling is attractive in these domains, enabling collection of

physical samples at spatial and temporal scales previously

infeasible. In marine ecosystem monitoring, our test

domain, detailed understanding of plankton diversity and

abundance requires complex morphological and molecular

analysis in a laboratory setting. To aid such studies, an

autonomous underwater vehicle (AUV) has been equipped

with a water sample collection system capable of retrieving

10, 1.8 L, samples for laboratory analysis (Figure 1).

Additionally, onboard sensors measure physical and chemi-

cal properties of water in-situ, in real-time. Using this

AUV as a testbed, we present an opportunistic, data-driven,

and iterative robotic sampling strategy that uses statistical

machine learning to maximize the total abundance of

plankton in the water samples collected. Specifically, we

maximize cumulative plankton abundance in water samples

collected during a campaign consisting of multiple AUV

surveys. Starting with no prior information on the factors

that drive the population abundance of the specific plank-

ton being studied, our approach creates a probabilistic
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model for plankton abundance with environmental covari-

ates sensed in-situ as its inputs. During a survey, the AUV

collects water samples using predictions from this model,

and the plankton abundance is labeled through laboratory

analysis after the completion of the survey. The freshly

labeled data is used to update the model, resulting in

improved sampling accuracy during subsequent surveys.

Extensive retrospective simulation studies (carried out by

mining historical field data) consistently demonstrate the

collection of samples with progressively higher abundance

over successive surveys. We note that the previous state of

the art in underwater vehicle deployment was to task the

vehicle using a sequence of waypoints. Our work allows a

domain expert to task the vehicle at a much higher level,

e.g. ‘‘gather samples that are high abundance in a particular

type of plankton’’, without needing to specify where to

sample.

When labeled data from previous campaigns is avail-

able, our approach can be used to maximize the total plank-

ton abundance from a single survey. During a six hour

field trial in Monterey Bay in October 2013, the AUV col-

lected water samples with an abundant amount of Pseudo-

nitzschia (PN), a toxigenic genus of phytoplankton known

to cause harmful algal blooms. To do so, the AUV used an

onboard predictive model trained on 87 water samples col-

lected during a campaign in 2010. The samples collected

during the 2013 trial were used by marine biologists to

study the physiology of PN.

1.1. Related work and contributions

A body of literature exists for robotic monitoring of terres-

trial and marine environments (Anthony et al., 2014;

Batalin et al., 2004; Bryson et al., 2010; Hitz et al., 2012;

Julian et al., 2012; Shkurti et al., 2012; Stealey et al., 2008;

Tokekar et al., 2010); however, the focus has been on prop-

erties that are directly measurable by onboard sensors, i.e.

observable in-situ. In this setting, approaches for comput-

ing probabilistic models for environmental processes has

been explored (Garg et al., 2012; Kim et al., 2013; Singh

et al., 2010). Strategies for sensor placement have been

developed to generate optimal maps of properties such as

temperature and pH (Krause and Guestrin, 2007; Krause

et al., 2006). Extended to mobile sensors, informative-paths

have been computed for robots to maximize information

gain from in-situ measurements (Binney et al., 2013; Low

et al., 2009; Singh et al., 2009; Zhang and Sukhatme,

2007). For terrestrial ecological monitoring, multi-modal

and multi-scale data from unmanned aerial vehicles (UAVs)

has been fused using Bayesian techniques to obtain maps

of terrestrial vegetation (Reid et al., 2013). Efficient plan-

ning for fertilization has been demonstrated using in-situ

measurements of nitrogen levels using UAVs and ground

robots (Tokekar et al., 2013).

The problem of samples whose desired properties of

interest cannot be analyzed in-situ but require ex-situ analy-

sis (e.g. in a laboratory) has been investigated to a lesser

extent. In the marine domain, the Dorado AUV (Figure 1)

has been used to collect water samples abundant in the

desired properties of interest, guided by onboard measure-

ments of environmental covariates (Fox et al., 2007; Garcia-

Olaya et al., 2012; Harvey et al., 2012a,b; Zhang et al.,

2010); however, the key design parameters such as spacing

between samples and thresholds have been specified by

scientists. This inhibits scaling of such approaches to robot

teams, as well as experiments over weeks or months that

may demand frequent parameter tuning. Most importantly,

many open problems in ecosystem monitoring are plagued

with an insufficient amount of the prior information needed

to specify such parameters precisely, resulting in sub-

optimal performance. This poses a significant bottleneck to

the role of robots in large-scale earth exploration. Our work

addresses this issue by using statistical machine learning to

train robots with past experiments, to guide future sampling

decisions. The key to this is a probabilistic model that pre-

dicts organism abundance from environmental covariates

measurable in-situ by the robot.

Examples can be found in the ecological modeling liter-

ature where hidden phenomena such as harmful algal

blooms have been predicted from environmental parameters

such as temperature, salinity, upwelling, and rainfall indices

(Anderson et al., 2010). In terrestrial environmental

Fig. 1. The Dorado AUV with an onboard water sample collection system consisting of 10 1.8 L ‘‘gulpers’’ that can be triggered by

the onboard computer. Real-time measurements by the AUVs sensor suite can guide physical sample collection decisions.

2 The International Journal of Robotics Research

 by guest on August 7, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


monitoring literature, the maximum entropy method has

been used to predict geographic distribution of terrestrial

species from environmental covariates of presence only

samples (Elith et al., 2011); however, acquiring data for

building such models is challenging. To this end, the

Dorado AUV has been used for oceanographic studies of

intermediate nepheloid layers (INLs) for prediction and

sampling using a classifier trained on scientist labeled data-

sets. Rules were specified by scientists for water sample

spacing, along with appropriate thresholds on predicted sig-

nals allowing the targeting of high probability INL samples

for analysis in the lab (Fox et al., 2007; Garcia-Olaya et al.,

2012). The Dorado AUV has also been used to acquire

water samples precisely at chlorophyll peaks and thermal

fronts using the properties of vertical yo-yo profiles (yo-yo

profiles are vertical sawtooth patterns carried out by AUVs

during a survey between specified depth envelopes) (Ryan

et al., 2010; Zhang et al., 2010, 2012). Inspired by these

efforts, we take a unified look at modeling and sampling

with the goal of maximizing a desired property of interest,

in this case the plankton abundance, in the acquired physi-

cal samples. We exploit the Bayesian optimization literature

where sequential and batch-mode sampling has been stud-

ied for both active learning (i.e. improving model accuracy)

and bandit-setting (maximizing the reward, or minimizing

the cumulative regret) (Chen and Krause, 2013; Srinivas

et al., 2009). We use the Gaussian process upper confi-

dence bound (GP-UCB) algorithm, a sequential sampling

policy with stochastic guarantees regarding cumulative

regret after multiple trials (Srinivas et al., 2012). During

each trial, the GP-UCB algorithm defines a utility function

that computes the utility of each candidate sample in the

input space, given the probabilistic estimates of the pre-

dicted sample value, i.e. the mean and the variance.

Acquiring the sample with maximum GP-UCB utility in

each trial results in progressively higher valued samples,

hence reducing the cumulative regret over multiple trials.

To address the selection of multiple samples during each

trial, various approaches for Bayesian batch optimization

have been developed. In this setting, instead of one sample

being acquired and labeled in each trial, a batch of samples

are collected and labeled. This results in improved time

efficiency, i.e. comparable performance in a fewer number

of trials. A hybrid Bayesian batch optimization algorithm

uses the expected improvement on a Gaussian process (GP)

model to switch between sequential sample acquisition,

and acquisition of batches of samples (Azimi et al., 2012).

The GP-UCB algorithm has been extended to the batch set-

ting where given full knowledge of the input space, multi-

ple samples are acquired during each trial for parallel

evaluation (Desautels et al., 2014). In contrast to these

approaches, our problem demands an opportunistic batch-

mode Bayesian optimization strategy where no prior spatial

map of target organism distributions is available; this is

ideal in marine environments where organisms are con-

stantly advected by ocean currents (Ryan et al., 2014a,b).

Hence, the AUV needs to make decisions online as it

carries out its survey. We provide an extension of the GP-

UCB algorithm where a single sample is drawn in each

trial, to fit our problem where k samples are acquired dur-

ing a survey, and labeled upon survey completion.

The online nature of our sample collection problem is

addressed using optimal stopping theory, which concerns

the right time to carry out a particular action (e.g. acquire a

physical water sample). Specifically, we seek a strategy to

select a batch of k water samples online in order to maxi-

mize the total utility of the sample set. Here the utility is

generated online by the GP-UCB algorithm operating on

probabilistic predictions from the organism abundance

model as the AUV makes in-situ measurements of environ-

mental covariates. Two algorithms are applicable to our

problem, the multi-choice hiring algorithm (Girdhar and

Dudek, 2009) and the submodular secretary algorithm

(Bateni et al., 2010). Both are derived from the secretary

(or hiring) problem that concerns an irrevocable hiring deci-

sion from a stream of N rankable candidates arriving inde-

pendent and identically distributed (IID) (Ferguson, 1989).

The optimal solution to this problem has a probability of 1/

e of selecting the top candidate. Extending the secretary

problem to a case where multiple candidates need to be

hired, Girdhar and Dudek (2009) present the multi-choice

secretary algorithm with a fixed threshold to choose the k

top-ranked secretaries with a probability of 1/ke. Where

candidates can be rated instead of ranked, Bateni et al.

(2010) present the submodular secretary algorithm that

seeks to maximize a set function that defines efficiency of

the selected secretarial group based on their overlapping

skills. Of the two choices, we use the submodular secretary

algorithm in our work for a couple of reasons. First, as

opposed to the multi-choice hiring algorithm where the can-

didates are ranked and a probabilistic guarantee is presented

for choosing the k top-ranked candidates, the submodular

secretary algorithm provides a mechanism to select the set

of candidates with the highest cumulative rating. This is

achieved by using a sum set function that reflects the total

utility of the selected set of physical samples. Second, we

found the submodular secretary algorithm to be robust

regarding correlations among the samples observed by the

AUV as it periodically passed through a thin layer of chlor-

ophyll (phytoplankton). The multi-choice hiring algorithm,

on the other hand, uses a fixed threshold to select k candi-

dates which results in the acquisition of spatially neighbor-

ing samples at the cost of future potentially high-value

samples. We discuss this in more detail in Section 2.

Our work presents the first opportunistic, data-driven,

and iterative robotic sampling strategy for physical sample

collection, exploiting algorithms from probabilistic model-

ing, Bayesian optimization, and optimal stopping theory.

The methodology is evaluated using different sampling

strategies within a novel framework that mines previously

collected AUV data to emulate campaigns with different

initial conditions. Our approach based on cumulative regret

minimization outperforms other approaches both for the

offline scenario where we have full knowledge of a survey
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in advance, and the online scenario where sampling deci-

sions are made sequentially with no knowledge of the

future. Additionally, water samples acquired during the

one-day field trial showed a high abundance of PN, facili-

tating studies of its physiology.

Through the results, we demonstrate that our data-driven

and iterative sampling strategy ‘‘closes the loop’’ on model

learning and knowledge extraction for ecosystem monitor-

ing. Input from domain experts is focused on tasking the

vehicle at a high level, and labeling the physical samples

collected. Although applied in the context of marine eco-

system monitoring, our approach is general and can be

scaled to other domains where opportunistic collection of

physical samples is necessary. By freeing scientists from

manual specification of parameters that can instead be

learned from past data, our approach has the potential to

expand the role of robotic explorers beyond observational

environmental monitoring, to being actors, persistently

retrieving high-quality physical samples from hazardous

and extreme environments inaccessible to humans.

1.2. Outline

The structure of the paper is as follows. In Section 2, we

present the problem statement and describe the technical

approach. Simulation studies to compare various strategies

are presented in Section 3, followed by a discussion of the

results from a field trial to target a harmful algae in Section

4. We conclude with a discussion of future directions in

Section 5.

2. Technical approach

The physical sample collection problem for marine ecosys-

tem monitoring is as follows. During a field campaign con-

sisting of multiple AUV surveys, water samples containing

a desired organism in high abundance must be collected.

The AUV is equipped with water samplers, each of which

can be triggered only once per survey. This constraint elim-

inates cross-contamination of collected water samples. The

path for a survey is predetermined. For example, a scientist

plans a lawnmower (or radiator) pattern over a region and

the AUV is tasked with acquiring water samples along the

survey track. Alternatively, surveys can be dynamic, carry-

ing out a predetermined pattern relative to the frame of ref-

erence of an advecting patch of water tagged by a GPS-

tracked drifter (Das et al., 2012). The goal is to develop a

principled strategy for collecting water samples during such

surveys, several of which typically comprise a campaign.

During a survey, the AUV makes irrevocable sample

collection decisions online on a sequential stream of pre-

dicted organism abundance values, with no knowledge of

the valuation of future samples. At the end of each survey,

the batch of k collected water samples are analyzed ex-situ

and the labeled data is assimilated back into the training

dataset to update a probabilistic predictive model. At the

beginning of a study, when no data is available to guide

sample collection decisions, random physical sampling is

carried out followed by labeling to learn an initial model.

We posit that as new labeled data is assimilated into the

existing predictive model at each iteration (i.e. survey), the

sample quality should improve in subsequent surveys. The

problem can be posed as a minimization of cumulative

regret for the physical sample values (in our problem the

organism abundance) from all the surveys of a campaign.

Cumulative regret is the total regret of all samples over

multiple surveys of a campaign.

Our approach is opportunistic by design, where sam-

pling decisions are carried out on an arbitrary survey with-

out prior knowledge of the spatial distribution of the

property of interest. A logical extension of this work is to

compute informative paths instead of using predetermined

surveys; however, we argue that the online opportunistic

approach has a practical benefit in the marine domain. In

the coastal ocean, the geographic distribution of properties

of interest change rapidly due to environmental forcing

such as water currents (Das et al., 2010). Hence, the com-

putation of informative paths is subject to the availability of

recent
1

data from a pilot survey, a scenario often infeasible

due to operational constraints. Dynamics of the spatial dis-

tribution of organisms also affects the organism abundance

model. Our analysis shows that spatial parameters, i.e. lati-

tude, longitude, and depth, are not necessary as inputs to

the predictive model of organism abundance, as long as rel-

evant environmental covariates are observed and used as

inputs. For example, temperature captures depth trends

when predicting phytoplankton abundance. Additionally,

the training dataset usually consists of samples analyzed

across seasons, spanning multiple weeks, months, or years.

This is acceptable for marine ecological studies since

organisms are known to show similar trends during similar

seasons. By ignoring geographic parameters, our modeling

approach is able to exploit a small training dataset collected

over a large spatial and temporal range to learn the ‘‘envi-

ronmental niche’’ of the target organism.

2.1. Problem formulation

An AUV equipped with k physical samplers is tasked to

obtain water samples with high values of a property

b 2 R
+ that can only be measured offline (i.e. ex-situ).

The AUV measures environmental feature vectors

fz1, . . . , zNg, z 2 R
D at corresponding spatial locations

fx1, . . . , xNg, x 2 R
3. The set of locations X = {x1,.,xN}

constitutes a geographic survey. T such surveys are carried

out, collectively forming a campaign, and k water samples

can be collected during each survey. Three practical consid-

erations constrain this problem. Firstly, for every survey,

N .. k. For the AUV used in this work, k = 10, and N is

upwards of 45,000 subject to survey duration. Hence, the

sample collection algorithm has to be highly selective.

Secondly, labeling of the acquired samples requires ex-situ

laboratory analysis to measure the value of b in each of the

k samples, and can only be performed offline when the

4 The International Journal of Robotics Research
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AUV is recovered at survey termination. Hence, measure-

ments of b are not available during the survey, and any

computation that depends on b can only be carried out at

the completion of a survey after sample analysis. Thirdly,

due to the opportunistic nature of our approach no pilot sur-

vey is carried out, and hence prior information on the spa-

tial distribution of environmental feature vector z is not

available. Related to this constraint, reiterative sampling of

spatially and temporally variable physical features (e.g.

phytoplankton thin-layers) in the marine environment is

notoriously difficult in water masses that are constantly

advecting due to ocean currents. To a smaller extent, pre-

cisely revisiting a physical feature is also difficult due to

state-estimation errors state-estimation errors – absolute

positioning through. Absolute positioning through GPS is

not available underwater; hence state-estimation is carried

out through dead-reckoning, with corrections through peri-

odic surfacing, e.g. once every 30 minutes. The lack of

prior information demands that the batch of k water sam-

ples be collected online.

Under the above constraints, the autonomous water sam-

ple collection problem for a campaign of T surveys is as

follows. Let B = {b1,.,bk} denote a set of k physical water

samples that can be acquired by the AUV during each sur-

vey. We are given an initial set of water samples acquired

randomly from p pilot surveys, Bpilot = {B1,.,Bp}. The

goal is to find a policy that adaptively acquires the sample

set Badaptive = {Bp+ 1,.,BT} from subsequent surveys

using a model g trained from pilot survey data, and updated

after completion of each survey. Each sample in the set Bj

from the jth survey (where p\ j � T ) is acquired online

using prediction b = g(z), with no knowledge of the pre-

dicted value of future samples. The sample set Bj is labeled

after the termination of the jth survey when the AUV is

retrieved and collected water samples analyzed in the lab.

The goal is to minimize the cumulative regret of all the

water samples collected during a campaign given by

Bcampaign = {Bpilot, Badaptive}. Here, regret of a physical

sample is the difference between the value of the best sam-

ple (i.e. the highest target organism abundance) that could

have been acquired from the survey by an optimal strategy,

and the value of the sample acquired by an online algo-

rithm. For the set Bj, we compute the average regret of k

samples, and the goal is then to minimize the cumulative

average regret of samples collected during the campaign.

Using the collected and laboratory-analyzed samples

from each survey, we iteratively learn the predictive model

g : RD 7!R that maps the in-situ measured environmental

feature vector z to the hidden property of interest b.

Specifically, we use GP regression (Rasmussen, 2006), a

Bayesian function approximation technique to learn a prob-

abilistic model. GP regression output is the predictive dis-

tribution for the hidden property of interest b, for a given

deterministic candidate environmental feature vector z. The

probabilistic predictions of the GP regression model are

converted to a real-valued sample utility in a Bayesian opti-

mization setting to maximize long-term reward, i.e.

minimize cumulative regret over multiple trials (or surveys

of a campaign). Finally, since sample collection has to be

performed online on a stream of candidate sampling loca-

tions with no knowledge of future locations, we employ

optimal stopping theory to determine a theoretically sound

best-choice algorithm to make this decision. Specifically,

we use the submodular secretary algorithm to choose the k

highest utility (best water sampling locations) candidates

from each survey online. These three subproblems are

described in the following sections.

2.2. Probabilistic model

The goal of the probabilistic model is to learn the mapping

from z= ½temperature, salinity, . . .� 2 R
D, measured at

spatial locations x= ½latitude, longitude, depth� 2 R
3, to

a desired parameter of interest, in our case plankton abun-

dance b 2 R
þ. We use GP regression to learn this mapping,

with the assumption that the joint distribution of the observed

plankton abundance is Gaussian. In this setting, the underly-

ing process can be defined completely by a mean function

(assumed to be zero without loss of generality), and a covar-

iance or kernel function that captures the correlation between

data points in the input space. The kernel function enforces

smoothness constraints on the trained function, where the

observed values for closer input samples are more correlated

than the ones farther apart. This is a desirable feature when

modeling the ‘‘environmental niche’’ of a target organism

where the organism abundances are correlated in the input

space of environmental covariates. The training data

T ¼ hz1; b1i; hz2; b2i; . . . ; hzN ; bN i is drawn from the GP

b= g(z)+ e ð1Þ

where e is a Gaussian noise term. Using the training data,

we can compute the posterior mean and covariance for an

unobserved test data point using the following equations

m(z�)= k(K +s2
nI)
�1b ð2Þ

s2(z�)= k(z�, z�)+ k(K +s2
nI)
�1k ð3Þ

Here, s2
n is the measurement noise, K is the covariance or

Gram matrix, generated using a kernel function k that cap-

tures correlations between data points. For our work, we

use a squared-exponential kernel function given by

k(zp, zq)= e1=(2l
2) zp�zqk k2 ð4Þ

where l is the decorrelation length scale. k is a vector of

correlations between the test data point and the training

data points computed using the kernel function k. We used

the GPML toolbox (Rasmussen and Nickisch, 2013) for

MATLAB to learn the dominant input variables and hyper-

parameters from training data.

For a measured environmental feature vector, z*, the
model predicts plankton abundance through the posterior

distribution p(b�jT, z�)=N b�jm(z�),s2(z�)ð Þ, where m(z*)

Das et al. 5
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and s2(z*) are the mean function and covariance function,

representing the learned GP model. We train the GP regres-

sion model on shore, and use it on board the AUV for real-

time predictions of the mean plankton abundance, and the

associated prediction variance.

2.3. Bayesian optimization

The GP regression model enables probabilistic prediction

of plankton abundance given a measured environmental

feature vector z. The goal is to design a sampling policy

that minimizes cumulative regret for samples post labora-

tory analysis. Bayesian optimization addresses the compu-

tation of the utility of candidate samples to minimize

cumulative regret over multiple trials. The balance between

exploiting a known model to maximize reward (high-abun-

dant samples), and improving the model accuracy to ensure

the global optimum is not missed by exploring points with

high variance is discussed in the machine learning literature

in the context of the multi-armed bandit problem (Audibert

et al., 2009). The goal is to develop a sampling policy that

chooses the next best sample, taking into account the bal-

ance between exploration and exploitation, i.e. using the

mean and the variance of the abundance predictions. Given

a prediction of mean and variance for a candidate input

data point, the sampling policy concerns maximization of a

utility function h : R2 ! R
+ where utility u = h(m(z),

s2(z)). The goal is to maximize the utility function over the

input space to obtain the best sample zt for the tth trial

zt = argmax
z2Z�

h(mt�1(z),s
2
t�1(z)) ð5Þ

Hence, the utility function h computes the sample utility

using the mean and variance estimates from the previous

trial, i.e. mt21(z) and s2
t�1(z) respectively for a candidate

sample z. For an efficient utility function to guide sam-

pling, we use GP-UCB, a sequential stochastic optimiza-

tion strategy that uses a GP regression model to minimize

cumulative regret over T trials, with regret bounds (Srinivas

et al., 2009, 2012). Using the learned GP regression model,

instead of seeking the maximum of the mean or the var-

iance independently, the GP-UCB algorithm prescribes the

utility function for a candidate sample z

h(m(z),s(z))=m(z)+b
1=2
t s(z) ð6Þ

The best candidate zt for timestep t is given by

zt = argmax
z2D

mt�1(z)+b
1=2
t st�1(z) ð7Þ

where zt is the sampling candidate for the tth trial, and bt is

a constant that grows logarithmically with each trial, given

by

bt = 2 log
Dj j t2p2

6d

� �
ð8Þ

Here, jDj is the number of input dimensions, t is the trial

number (or iteration), and d is a parameter that defines the

probability of the regret bound being satisfied. By targeting

points that maximize a combined function of mean and var-

iance, the GP-UCB algorithm strikes a balance between

exploration and exploitation, with the goal of keeping the

average regret within bound after T trials.

The GP-UCB algorithm expects update of the model,

i.e. functions m(z) and s2(z), after every sample has been

acquired and labeled. In our problem, however, the GP

model can only be updated once a batch of k samples have

been retrieved and labeled after a survey. The GP-UCB

algorithm has been investigated for the batch setting (GP-

BUCB) for parallelizing exploration–exploitation trade-

offs, but the sampling decisions are made with complete

knowledge of the predicted utility for the input space

(Desautels et al., 2014). Based on this map, the GP-BUCB

algorithm selects the k candidate samples to be labeled for

each trial. However, in our approach for opportunistic sam-

pling the AUV can predict the utility of the sample only

during the survey as it acquires real-time measurements of

environmental covariates, without knowledge of future sam-

ple utilities. In this setting, the GP-BUCB algorithm cannot

be applied, and instead we simply use the GP-UCB algo-

rithm by selecting samples with the top k utilities online for

every trial, instead of planning for a batch of k samples as

prescribed by the GP-BUCB algorithm. Empirical results

presented in Section 3 demonstrate the efficacy of our

approach. The pseudo-code for our batch-update GP-UCB

algorithm is described in Algorithm 1.

We define the average regret Rt of a sample set from a

trial Bt as the average difference between the sum of abun-

dance of acquired samples, and the best sum possible if

values of all candidate samples are known. Note that the

values of all candidate samples are not available to the

batch-update GP-UCB algorithm during an actual trial (i.e.

deployment); however, for analyzing the performance

(Section 3), we have deployment datasets for which the val-

ues of all samples are known. For a trial t,

Rt ¼ S
k
i¼1ðb�i � biÞ=k, where b�i is the ith top ranked sam-

ple in hindsight, and bi is the ith acquired sample. To evalu-

ate the performance of a sampling algorithm, we use

cumulative regret over T surveys, defined as R=S
T
t= 1Rt.

A lower cumulative regret shows better long term reward

collection by the algorithm.

2.4. Optimal stopping theory

Taking into account the lack of a priori information about

the utility of candidate samples, the batch-update GP-UCB

algorithm demands online collection of k top-utility sam-

ples (i.e. Algorithm 1, line 3). An additional constraint is

that sample collection decisions are irrevocable by design

to avoid cross-contamination across samples. To maximize

the total utility of the k irrevocable samples, the online

algorithm needs to have the following three properties.

Firstly, the algorithm should not be too greedy, thereby
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missing future samples with higher utility than those

already acquired. Secondly, the sampling algorithm should

not be too conservative, resulting in an opportunity cost of

fewer than k samples collected during the survey. Optimal

sampling would be exactly k samples collected during each

survey. Finally, it is undesirable to manually specify para-

meters for making sampling decisions. Typically, in a cam-

paign with multiple surveys spanning several days, a

scientist will have to manually specify thresholds for envi-

ronmental parameters. While this may be feasible over

short durations (i.e. days) or for a single robot, it becomes

unrealistic as the temporal scale and/or the number of

robots are increased. We believe scenarios where multiple

AUVs are employed for autonomous environmental data

and water sample collection, over extended durations, are

not far off.

Optimal stopping theory addresses the problem of when

to take a particular action (e.g. acquire a sample). In our

problem the desired action is to trigger a water sampler k

times during each survey. Considering the case of a single

decision, the hiring (or secretary) problem (Ferguson,

1989) addresses the optimal selection of the top candidate

from n applicants interviewed sequentially for a job. In this

setting candidates are ranked after each interview and the

recruiter has to make an irrevocable hire or reject decision

immediately after the interview. Assuming candidates

arrive for the interview IID, the optimal strategy then is to

observe the first n/e candidates without hiring (training

window), and select the next best candidate. If no better

candidate is found, then the last candidate is hired. This

strategy results in the best candidate being selected 1/e, or

37% of the time. Various approaches have been discussed

to extend the hiring problem to the case where the top k

candidates need to be chosen instead of a single candidate.

Using a modified training window size of n/(ke1/k), Girdhar

and Dudek (2009) presents an algorithm to choose the k

top-ranked secretaries with a probability of 1/ke. The secre-

tary algorithm has also been extended to the case where the

candidates can be rated instead of being ranked, with the

goal of maximizing the expectation of a submodular set

function that defines efficiency of the selected secretarial

group based on their overlapping skills. Called the sub-

modular secretary problem (Bateni et al., 2010), this is the

ideal formulation for our problem for a couple of reasons.

First, as opposed to the case where the candidates are

ranked and a probabilistic guarantee is presented for choos-

ing the k top-ranked candidates (Girdhar and Dudek,

2009), the submodular secretary algorithm provides a

mechanism to select the set of candidates with the top sum

of individual rating of candidates. For a ground set V of

possible candidates, the submodular secretary algorithm is

an approximation algorithm for finding the set S with the

maximum expected skill measured using a submodular set

function F : 2V ! R. Specifically, this skill function is

chosen to be a set-sum function F(S) = Sv2Sv, where the

skill of set S is the sum of the values of the set elements.

The set-sum function F is an additive measure with the

property F(A)+F(B)=F(A \ B)+F(A [ B) 8A,B � V,

and hence monotone submodular (Bach, 2011).
2

Exploiting

the submodularity of the set-sum function F, the submodu-

lar secretary algorithm seeks to find argmaxS F(S) such that

S � V, jSj = k by splitting the stream of candidates into k

equal windows and applying the secretary algorithm on

each section. This strategy results in a competitive ratio of

(1 2 1/e)/11. We use the submodular secretary algorithm

to make online choices for water samples to be collected,

where the skill function F captures the sum of observed

organism abundance of the selected set of water samples S.

The second reason for using the submodular secretary

algorithm has to do with the determination of thresholds.

The multi-choice hiring algorithm uses a single threshold

to select k candidates, which in our application can result

in the acquisition of spatially neighboring samples at the

cost of future potentially higher value samples. This hap-

pens when the AUV carries out vertical yo-yo profiles

through three-dimensional geographic space and iteratively

samples a vertically narrow (meters thick), chlorophyll-rich

feature. Hence, neighboring samples can be correlated

when the AUV traverses through a layer with high target

organism abundance. The submodular secretary algorithm

demonstrates a better worst case performance than the

multi-choice secretary algorithm under these circumstances

since samples are split uniformly into k equal windows

prior to independent application of the secretary algorithm

to each window, resulting in exactly one sample per win-

dow. The size of each window is determined from the

planned deployment time, and typically consists of multiple

windows. Pseudo-code for the submodular secretary algo-

rithm is described in Algorithm 2.

3. Simulation studies

We evaluated our approach by mining previously collected

AUV data from an eight-day campaign in 2005, consisting

Algorithm 1. Batch-update GP-UCB algorithm.

Data: Input dimension D, GP Prior m = 0, s0, k
1 for t 1 to T do
2 bt = 2 log ( Dj jt2p2

6d
);

3 Choose top k arguments Zt = z1...zk corresponding to top k peaks of mt�1(z)+b
1=2
t st�1(z);

4 Sample set Bt = g(Zt)+ et;
5 Perform Bayesian update to obtain mt and st;
6 end
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of at least two surveys per day and 17 surveys in total.

Physical sample collection was emulated by taking AUV

survey environmental data, and hiding one of the measured

parameters, chlorophyll fluorescence (a proxy for phyto-

plankton abundance; the property of interest), from the

sampling algorithm during each survey. Our framework

used batches of k emulated ‘‘gulps’’ (or samples) with high

chlorophyll fluorescence for each survey, with the goal of

minimizing cumulative regret of samples from the whole

campaign. Chlorophyll fluorescence, although measured in-

situ by the AUV, was subsequently converted into a hidden

ground-truth by our framework, and only revealed at the

end of each survey. The workflow for our simulation frame-

work is shown in Figure 2. Being a proxy for algal biomass,

chlorophyll fluorescence was also an ideal candidate for our

analysis since it evaluates the prediction of biological fea-

tures from environmental covariates only, ignoring geo-

graphic parameters such as latitude, longitude, and depth.

Chlorophyll fluorescence was predicted by a probabilis-

tic model that uses environmental covariates measured by

the AUVas inputs. These predictions were used to collect k

samples during every simulated survey and samples were

labeled at the end of each survey when our framework

revealed the measured chlorophyll fluorescence to the sam-

pling algorithm. The newly labeled data was assimilated

into the training dataset to update the predictive model, and

used to guide sampling decisions in subsequent surveys.

To compute a predictive model for chlorophyll fluores-

cence, we used p pilot surveys to collect pk random sam-

ples. The GPML toolbox (Rasmussen and Nickisch, 2013)

for MATLAB (2013) was used to learn a GP regression

model from the pk records. In subsequent surveys this

model was used to guide sampling with the goal of mini-

mizing cumulative regret of the whole campaign.

The k samples acquired during each subsequent survey

formed the set B = {b1, b2,.,bk}. An optimal set B+ was

computed offline on each survey resulting in k samples

with maximum abundance (global chlorophyll fluorescence

peaks). To serve as a baseline, we also computed a set, Br,

that consisted of k random samples without replacement

from each survey. To determine how well the sampling pol-

icy performs in an exploitation-exploration setting over

multiple surveys, we used the average regret of acquiring

the set B instead of the optimal set B+ . To evaluate the

accuracy of the learned model for different choices of envi-

ronmental parameters as inputs, we computed the correla-

tion coefficient for predicted and observed values of

chlorophyll fluorescence for all samples collected during

each survey.

Based on the approach chosen for sample labeling and

model updates, we investigated three cases. First, we

stopped labeling after p pilot surveys, and used the result-

ing model for all subsequent sampling decisions. This was

indexed as the initial or INI strategy. Next, by continually

Algorithm 2. Submodular secretary algorithm to maximize utility of k online water samples.

Data: Gulp set B = ;, number of gulpers= k, total survey samples expected= N, stopping parameter= r, current trial= t
Result: Gulp set B

1 Window duration Nw =
N
k

� �
;

2 Observation duration No =
Nw

r

� �
;

3 Start survey: n = 0;
4 Set window count w = 1;
5 Set best utility u* = 0;
6 while survey time n � N do
7 while not at end of current window w do
8 read current environmental feature vector zn;
9 use GP model to compute utility of candidate sample uðznÞ ¼ mðznÞ þ b1=2sðznÞ;
10 if within observation window then
11 if un . u* then /* update utility threshold */
12 Set u* = un;
13 end
14 else /* sampling window */
15 if no candidate added to B from current window w then
16 if un . u*then
17 add candidate at n to B;
18 end
19 end
20 end
21 end
22 if no candidate added to B from current window w then /* sample at end of window */
23 add current candidate to B;
24 end
25 Increment window count w while w � k;
26 Set best utility u* = 0;
27 end

8 The International Journal of Robotics Research

 by guest on August 7, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


labeling after each survey, we updated the model using

only data from the previous p surveys (with p = 2, the win-

dow or WIN strategy). Finally, when we used all the data

from previous surveys to keep the GP model updated, we

generated the case for all data. For each of the three update

methods, we used three utility functions, i.e. mean, var-

iance, and GP-UCB. Along with random sampling, this

resulted in 10 methods in total. We emulated 100

campaigns for each method, by starting with a new set of k

samples drawn randomly from the first p pilot surveys.

Figure 3 and Figure 4 show the signals (true, predicted

mean, and GP-UCB utility) and the transect plots (true and

predicted mean) for survey 11/17 of one of the simulated

campaigns. In this example, the submodular secretary algo-

rithm has been used on the GP-UCB utility, predicted using

a model that was learned using all data until survey 10/17.

Fig. 3. Plots showing the measured true fluorescence signal (top), predicted fluorescence mean signal (center), and the GP-UCB

score during survey 11/17 of one of the simulated campaigns (bottom). Black crosshairs show the gulps taken within sampling

windows using the submodular secretary algorithm, and red crosshairs show the gulps taken at window ends due to lack of better

candidates within the sampling windows in question.

Fig. 2. A campaign of 17 AUV surveys was carried out over eight days in August 2005. We used chlorophyll fluorescence, one of the

in-situ measurements, as the property of interest, and emulated collection of samples with high values for chlorophyll fluorescence. pk

samples are randomly sampled from the first p surveys (p = 2 for day 1), followed by training and update of a GP model to guide

sample collection in subsequent surveys. The inlay at right shows a synoptic view of chlorophyll fluorescence from one of the

surveys, with warmer colors depicting higher values. The same triangular survey pattern was repeated 17 times over eight days.
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Figure 5 shows the regret and cumulative regret of each

survey, averaged over 100 campaigns. We observe that the

lowest cumulative regret is obtained when the GP-UCB

algorithm is used with a model updated with all data up to

previous survey (ALL-GPUCB). The worst performance is

when random sampling is used during each survey. The

variance driven utility function (VAR) is analogous to using

a greedy strategy to maximize mutual information in the

sequential setting (Krause and Guestrin, 2007). Although

considered in the batch setting, the VAR utility function

serves as a comparison of the GP-UCB utility with the sce-

nario where global model accuracy is improved after every

iteration. In contrast, the mean-driven utility function tar-

gets samples with highest predicted mean (reward), demon-

strating only exploitation and no exploration. When using

all data, the GP-UCB approach outperforms the other

model update methods, demonstrating the advantage of the

trade-off between exploration and exploitation. Figure 6

highlights the result of the mean-driven strategy where the

model misses the global optimum in the high-backscatter

and high-temperature region of the input space. Survey 12

shows high regret with random sampling, suggesting the

presence of a stronger hotspot compared to other surveys.

ALL-GPUCB shows a trend of lower regret with each sur-

vey, validating the claim for this work. Figure 7 shows the

summary of campaign results for the 10 methods.

Our results also demonstrate how the GP-UCB algo-

rithm learns the distribution of chlorophyll fluorescence in

the backscatter–temperature space in a data-driven manner.

Specifically, it successfully learns a known relationship

between chlorophyll fluorescence, backscatter, and tem-

perature. Backscatter is a measure of particle concentration

and shows strong correlation with algal biomass; however,

due to the presence of suspended sediment particles of

comparable or greater concentration than algae, especially

in deeper waters, additional information is necessary for

the accurate prediction of chlorophyll fluorescence.

The GP-UCB algorithm learns the trend between back-

scatter and depth when predicting fluorescence by defining

peak fluorescence in the high-temperature and high-

backscatter region of the temperature–backscatter input

space. This is illustrated in Figure 6, and results in the pre-

cise acquisition of chlorophyll fluorescence samples

through targeting of high-backscatter samples that are also

warmer, i.e. near the surface.

4. Field experiment

Our field experiment was carried out in October 2013, tar-

geting PN a genus of phytoplankton known to cause poten-

tially toxic blooms. The goal was to acquire AUV water

samples rich in PN, over a course of a six hour survey car-

ried out in northern Monterey Bay (Figure 8). The survey

consisted of three 1 km × 1 km Lagrangian box patterns

(Das et al., 2012), with the Dorado AUV conducting verti-

cal yo-yos to a depth of 30 m while tracking a virtual drif-

ter. The experimental design and a summary of results

indicating high PN abundance in AUV water samples are

discussed below.

4.1. Experiment design

A training dataset was composed from molecular analysis

results of 87 water samples collected by the Dorado AUV

during a field campaign in October 2010 (the same season)

using the chlorophyll peak-capture algorithm (Zhang et al.,

Fig. 4. The true (top) and predicted (bottom) chlorophyll fluorescence from survey 11/17 of one of the simulated AUV campaigns. It

shows the AUV carrying out vertical profiles between the surface and a depth of 100 m (shown between the surface and 40 m depth

for clarity). The submodular secretary algorithm is used on the utility computed from probabilistic abundance predictions, and black

crosshairs show gulps taken within sampling windows. Red crosshairs show gulps taken at the window ends due to lack of better

candidates within the sampling windows in question.
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Fig. 5. Cumulative regret measured over the course of the 17-survey campaign, and averaged over 100 simulated campaigns.

Fig. 6. Survey 2/17 and survey 17/17 during one of the emulated campaigns. The top plots and bottom plots show prediction means

and variances, respectively, for the input space. Circles on the top plots and dots on the bottom plots show ex-situ sample locations.

Circle sizes are proportional to the true value of chlorophyll fluorescence, after ex-situ labeling.
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2010). Along with measured PN abundance, the in-situ

measurements of temperature, salinity, chlorophyll fluores-

cence, dissolved oxygen, backscatter, and nitrate concentra-

tion from the AUVs onboard sensor suite were recorded in

the training dataset. The hyperparameters for the kernel

function, and the input variables were chosen using four-

fold cross validation, and chlorophyll fluorescence and

temperature were observed to be the dominant input para-

meters for prediction of PN abundance. Figure 9 shows the

predicted mean and variance of PN abundance over a range

of chlorophyll fluorescence and temperature values. Using

the trained PN abundance model, the goal was to acquire

water samples with PN in high abundance. Due to opera-

tional constraints, sampling was restricted to a single sur-

vey. Given that we had a model trained on a large number

of analyzed water samples (equivalent to about nine sur-

veys), we use an exploitation only sampling policy (b = 0)

to maximize the expected PN abundance from the samples.

We ran the GP model for PN abundance on board the

Dorado AUV during a deployment lasting six hours in

north Monterey Bay, resulting in a value prediction for PN

abundance b* for every measured environmental feature

vector z*. The sample variance was not used during this

trial because we used a mean-driven sampling strategy. We

Fig. 7. Summary statistics of regret and correlation coefficients for 100 simulated campaigns. Lower regret and a higher correlation

coefficient are desirable. The results are divided into four parts based on how the samples are selected: random sampling used as a

baseline (RND), sampling using a model learned from samples acquired during an initial p-survey pilot and never updated (INI),

sampling using a model learned on data from a window of p previous surveys (WIN), and sampling using a model learned on all

available data so far. Regret statistics for the ALL-GPUCB algorithm demonstrated the lowest regret for both the offline and online

scenarios (red arrows).
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included AUV surface time (necessary for communication

with the vehicle) in our estimation of total survey duration.

Since the AUV spent longer than expected on the surface

due to variability in surface data transmission time, our

algorithm collected eight gulps out of the tasked nine. The

ninth gulp was not triggered because the last segment was

not completed within the preset duration.

The total duration of the survey was set to be approxi-

mately 2.18 hours, with the total expected in-situ data

points N = 15,725. The submodular secretary algorithm

splits this window into nine segments, resulting in the seg-

ment size Nw = 1747, approximately 14 minutes. We used

stopping parameter r = 3, resulting in the observation win-

dow length for each segment being approximately 5 min-

utes. A moving-average filter is used by the submodular

secretary algorithm to filter out spikes in the sensor data

while carrying out threshold updates, with a tolerance of

0.2 optical density (a proxy for abundance, measured by

molecular analysis (Harvey, 2014)). This tolerance is also

used when making firing decisions to avoid erroneous

gulps resulting from data spikes.

4.2. Results

Figure 10 shows the AUV transect and the predicted PN

mean abundance. Black crosses show the locations where

gulps were taken. We observe that five out of eight gulps

were taken in PN hotspots (the region in red showing high

predicted abundance). Out of the remaining three samples,

sample five appears to be at the boundary of the PN hotspot

at a depth of approximately 14 m, and samples six and

eight in deeper waters with low predicted abundance. The

corresponding distributions of the gulp locations in the

environmental parameter space (temperature, fluorescence)

are shown in Figure 11. This figure reflects the distribution

of gulps with respect to the PN abundance prediction model

used. Gulp numbers one, two, three, four, and seven were

taken close to the PN abundance prediction peak, demon-

strating the performance of the submodular secretary algo-

rithm in targeting prediction peaks.

The submodular secretary algorithm’s sample collection

decisions are shown in Figure 12, highlighting the gulp

locations with respect to predicted PN abundance and

adaptive threshold updates. The periodic variations in pre-

dicted PN abundance corresponded to the movement of the

AUV through the predicted PN layer (high abundance

between depths of 4 m to 10 m). The solid line shows how

the thresholds were picked, with updates happening in,

approximately, the first six minutes (observation window)

of each segment with total duration of approximately 18

minutes, and the sampling happening in the remaining 12

minutes (sampling window). When a better candidate was

not found in the sampling window, samples were taken at

the end of the window. This explains the low PN abun-

dance for gulps five, six, and eight. Data spikes were fil-

tered during threshold update, and hence the sampling

algorithm ignored extreme values.

Figure 13 shows the distribution of gulps as vertical

dashed lines overlaid on histograms for chlorophyll fluores-

cence (Figure 13(a)), temperature (Figure 13(b)), and the

predicted PN abundance (Figure 13(c)). The first two fig-

ures show the distribution of gulps across the two input

parameters, whereas the last figure shows the distribution

of gulps across predicted PN abundance. A key observation

from this figure is that the randomly fired gulps at the win-

dow ends essentially resulted in control samples. Because

PN hotspots occupy only a small portion of the water col-

umn, the mode of the predicted PN distribution consists of

negligible abundance values. Statistically, samples at win-

dow ends are likely to be at the mode, resulting in low value

samples that are useful as controls.

Also, in the histograms of fluorescence and temperature,

the distribution of samples acquired within the sampling

window was close to the predicted PN abundance peaks

(Figure 9). This is also evident in Figure 11 that shows the

location of AUV measurements, and gulps are shown in

environmental parameter space.

4.3. Ex-situ sample analysis

Following the experiment, the eight AUV water samples

were morphologically analyzed (microscopy) in a marine

microbiology laboratory to directly enumerate PN abun-

dance. The comparative results of algorithm predicted and

microscopy counts of PN abundances are shown in Figure

14. Consistent trends are evident between the predicted and

directly counted PN abundances for the acquired samples.

Note that the units for the predicted and enumerated

Fig. 8. The trial site for the October 2013 Dorado AUV field

experiment in northern Monterey Bay, marked with a white dot.
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abundances follow from molecular and morphological

analysis respectively, but both assess an abundance mea-

sure for the targeted organism (PN). The sample analysis

results show that we successfully trained a model, ran it

onboard the AUV to predict organism abundance in real

time, and acquired samples that were rich in the targeted

organism of interest. The fact that trends in data-driven pre-

dictions matched measurements obtained by taxonomic

experts suggests that the predictive capabilities of our algo-

rithm are accurate. Accomplishments of the ex-situ com-

parative AUV water sample analysis are as follows.

1. We designed and conducted an experiment in an

entirely data-driven fashion. Predictive models were

trained from laboratory analyzed water sample mole-

cular detection data from a previous season, October

2010. The model succeeded in October 2013 owing to

the model’s predictive accuracy under similar environ-

mental conditions associated with the Fall season. The

PN abundance prediction algorithm successfully

learned the ‘‘environmental niche’’ associated with the

target organism and exploited this fact during the

October 2013 field trial.

2. Scientists were able to observe the characteristics of

predictive models and the behavior of the sampling

algorithms through expressive plots. The use of prob-

abilistic models is especially useful since scientists

have a sense of the uncertainty inherent in predictive

models, facilitating introspection.

3. By assimilating the observed PN abundance from the

data back into the training dataset, the potential for

even higher abundance samples in future field trials

Fig. 9. Trained PN model used for the October 17 trial. The size of the circles is proportional to the measured PN abundance through

molecular analysis (highlighted next to the color scale for the PN model mean).

Fig. 10. Transect plot of the October 2013 AUV survey showing time on the x-axis and depth on the y-axis. The color shows

predicted PN abundance, with red corresponding to high values. Black ‘‘+ ’’ symbols mark the locations where gulps were taken using

our approach.
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can be realized. This in effect ‘‘closes the loop’’ on

marine ecosystem monitoring, with potential applica-

tions in a variety of other applications.

5. Conclusions

In this paper, we have presented a principled approach for

data-driven opportunistic robotic sampling to collect

batches of physical (water) samples iteratively. Our

approach has wide application in the earth sciences, where

physical samples can often only be labeled ex-situ after the

completion of each robot survey. Using marine ecosystem

monitoring as a test domain, we developed a sampling

strategy to minimize cumulative regret of water samples

collected during an AUV field campaign consisting of mul-

tiple surveys. We used previously collected data from pilot

surveys to train a GP regression model for probabilistic

prediction of target phytoplankton abundances. These pre-

dictions were used in a Bayesian optimization setting to

maximize the utility of batches of physical samples col-

lected during each subsequent survey, and labeled after

completion of the survey. Since prior information on the

distribution of predicted utility is not available during

opportunistic surveys, optimal stopping theory considera-

tions were used to maximize the utility of the sample batch

online. We evaluated our work extensively using a simula-

tion framework that emulated sample collection campaigns

by mining previously collected AUV data. The results

from 100 campaigns with different initial conditions, and

for different sampling strategies, demonstrated the lowest

cumulative regret for samples collected adaptively using

Fig. 11. Data points corresponding to in-situ measurements of

temperature (x-axis) and fluorescence (y-axis) taken by the AUV

during the survey, along with the predicted PN abundance

(color), and the AUV water sample locations in the temperature–

fluorescence space (numbered dots).

Fig. 12. The time series of predicted PN abundance from the deployment, with the threshold choices for each segment as determined

by the submodular secretary algorithm.

Fig. 13. Histograms showing the distribution of input measurements and predicted output (PN abundance) from the October 17 AUV

survey. Vertical dashed lines show locations of the eight gulps acquired during the survey. The predicted PN abundance (c)

demonstrates how gulps acquired at the end of sampling windows are by design random, and likely to happen at the mode of the

predicted signal, which in the mean-driven strategy is PN abundance. The mode in this case corresponds to low-abundance samples

that also serve as controls.
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the GP-UCB sampling policy, updated on available data

from all previous surveys. Performance online, using the

submodular secretary algorithm, showed the same trends.

A one-day field trial was carried out using a GP regres-

sion model trained on 87 previously collected samples by

an AUV. Using a mean-driven strategy, the AUV col-

lected eight water samples, highly abundant in the harm-

ful algal bloom producing diatom PN. This is the first

time such a field experiment has been carried out in its

entirety in a data-driven fashion, in effect ‘‘closing the

loop’’ on model learning since newly collected data is

always assimilated into the training dataset to improve

model accuracy.

Our work illustrates a path to increased autonomy

wherein a scientist can task the vehicle at a higher level

instead of providing waypoints or other positional informa-

tion. By iteratively learning the ‘‘ecological niche’’ of target

organisms, our robotic sampling methodology will allow

predictions to be made through improved ecological mod-

eling. Finally, although tested in the context of marine eco-

system monitoring, our approach can be applied to a

variety of other environmental monitoring problems that

demand persistent collection of physical samples for ex-situ

analysis. Examples include precision agriculture, forestry,

surficial geology, aerobiological sampling, and air quality

monitoring.
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Notes

1. Due to ocean dynamics, the geographical distribution of

plankton can change dramatically within a couple of hours.

2. A set function is submodular if and only if

8A,B � V : F(A)+F(B) � F(A \ B)+F(A [ B).
Alternatively, the marginal profit of each item should be non-

increasing, i.e. 8B � A � V : F(A [ a)� F(A)�F(B [ b)�
F(B). The set function F : 2V ! R is monotone if

F(A) � F(B) for A4B4V.
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