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Abstract
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the
oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning
is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms
that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive
ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the
model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim-
inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic,
mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of
the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional
locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions
to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data
desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data
from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Keywords
Algal bloom, autonomous glider, autonomous underwater vehicles, feature tracking, ocean model predictions, path
planning

1. Introduction

Coastal ocean regions are dynamic and complex environ-
ments that are driven by an intricate interaction between
atmospheric, oceanographic, estuarine/riverine and land–
sea processes. Effective observation and quantification of
these processes requires the simultaneous measurement of
diverse water properties to capture the spatial and temporal
variability. The implementation of multiple and adaptable
sensors can facilitate simultaneous and rapid measure-
ments that capture the appropriate scale of spatiotemporal
variability for many of the phenomena that we seek to
understand occurring in the coastal ocean. Autonomous
underwater vehicles (AUVs) are a key tool in this effective,
efficient and adaptive data collection procedure to improve
our overall understanding of coastal processes and our
world’s oceans. Through development of these intelligent
systems, scientists can implement continuous monitoring
and sampling programs that provide fine-scale resolution
far surpassing previous sampling methods, such as infre-
quent measurements from ships, buoys and drifters. One

example of intelligent ocean sampling is the coordinated
control of autonomous and Lagrangian platforms and sen-
sors (ALPS), developed in the series of articles Fiorelli et al.
(2006), Leonard et al. (2007), and Paley et al. (2007, 2008).
Such research efforts have opened the door for the design
and implementation of adaptive, mobile sensor platforms
and networks to aid in the study of complex phenomena
such as ocean currents, tidal mixing and other dynamic
ocean processes.
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To this end, three laboratories at the University of South-
ern California (USC) have formed CINAPS (pronounced
[sin-aps]); the Center for Integrated Networked Aquatic
Platforms. The mission of this collaborative research group
is to bridge the gap between technology, communication
and the scientific exploration of local and regional aquatic
ecosystems through the implementation of an embedded
sensor network along the Southern California coast (Smith
et al. 2010a). This infrastructure is designed for facilita-
tion of long-term, in-depth, multi-faceted investigation of
physical, chemical and biological processes resulting from
coastal urbanization and climate change. One component
of this network, and the focus of this paper, are mobile
sensor platforms in the form of autonomous Slocum gliders
(gliders) (Webb Research Corporation 2008). Based on
their deployment longevity, and the use of multiple gliders
(see e.g. Davis et al. (2008)), these vehicles can provide an
extended spatiotemporal series of observations (see details
in Section 4). This study investigates a path planning
method for a multi-vehicle application for gliders in the
Southern California coastal ocean.

The path planning method presented here is based upon
predictions from a regional ocean model. As complex and
understudied as the ocean may be, we are able to model
and predict certain behaviors moderately well over short
time periods. Consistently comparing model predictions
with collected data, and adjusting for discrepancies, will
increase the range of validity of existing ocean models, both
temporally and spatially.

Utilizing available technology and infrastructure, we
consider the problem of integrating ocean model predic-
tions into the path planning and trajectory design procedure
for AUVs, with the goal of tracking and sampling within an
interesting and evolving ocean feature. Collecting data for
ocean science can be extremely hit-or-miss, both temporally
and spatially, especially when one is interested in a spe-
cific biogeochemical event. In addition, areas of scientific
interest within the ocean dynamically move and evolve.
Thus, continuously operating a sensor platform (static or
mobile) in a predesignated and confined sampling area is
not the most effective technique to gather data for analysis
and assessment of ocean processes which may occur spo-
radically, and dynamically propagate throughout the ocean.
Here we aim to increase the likelihood of gathering data
of high scientific merit, i.e. data of great importance to
understanding the feature of interest, by deriving the sam-
pling locations from a prediction of the evolution of a given
feature of interest. We build upon the three-dimensional
(two spatial dimensions plus time), single-vehicle algorithm
presented in Smith et al. (2009a), with the intention of
generating a mission plan that accurately steers multiple
gliders to locations of high value within an evolving ocean
feature. The primary contributions of this paper are the
development of an innovative toolchain, and the waypoint-
generation algorithms for the practical application of AUV
path planning and trajectory design.

The goal of this study is to present an innovative ocean
sampling method that utilizes model predictions and gliders
to collect scientifically interesting oceanographic data that
can also increase the predictive skill of a model. Our
motivation is to track and collect daily information about
an ocean process or feature which has a lifespan on the
order of weeks. Based on the interesting biogeochemical
ocean dynamics presented in Section 2, in addition to its
proximity to our laboratories at USC, we choose to focus
our research on an oceanographic region referred to as the
Southern California Bight (SCB)1. The regional location
of the SCB is denoted by the box in Figure 1(a), with an
enlarged view of the SCB presented in Figure 1(b).

The mission plan to track and monitor dynamically
evolving ocean processes or features is iteratively generated
as follows. First, we identify a feature of interest in the SCB
via direct observation or through remotely sensed data (e.g.
satellite imagery). We then use a regional ocean model to
predict the behavior of this feature, e.g. outfall from a waste
water treatment plant, over a short time period, such as one
day. This prediction is used to generate a sampling plan
for deployed glider(s) that steer the vehicle(s) to regions
of scientific interest, based upon the given feature and its
predicted evolution. Throughout execution of the sampling
plan, collected data are transmitted via an embedded
wireless network (Pereira et al. 2009; Smith et al. 2009b),
and assimilated into the ocean model. Incorporating this
in situ ground truth, a new prediction is generated by the
model. This entire process is repeated until the feature
dissipates or is no longer of interest.

We begin our discussion with a description of the
primary research focus related to this study, a harmful
algal bloom (HAB). An algal bloom, and in particular a
HAB, is a rapid increase of biomass of phytoplankton or
cyanobacteria (potentially toxin producing species) caused
by the addition of nutrients to and/or an alteration in
the chemical properties of the ocean. Nutrients can be
added to the coastal ocean via river runoff or waste water
outfalls. Ocean chemistry can be altered by the addition of
freshwater from these events, as well as by ocean processes
such as an eddy or upwelling.

We continue our discussion with definitions of the
sensor platform and ocean model considered, and a review
of previous work related to similar problems. Section
5 contains an in-depth discussion and statement of the
path planning problem, and describes the two main
algorithms designed to obtain the waypoints that define our
path. Here we present a waypoint-selection algorithm for
both a boundary-tracking and a centroid-tracking mission
scenario. We design sampling plans and present simulated
and implemented experimental results for AUV retasking
in Southern California coastal waters. We conclude with
an analysis of the experimental results and present areas
of ongoing and future investigation. A crucial component
to this study is the validation of this toolchain via at-sea
trials. Extensive deployment time (>1, 500 km traversed
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Fig. 1. (a) Google Earth image of the state of California. The oceanic region contained in the rectangle denotes the Southern California
Bight. An enlarged image of the Southern California Bight is presented in (b). The Southern California Bight is the oceanic region
contained within 32◦ N to 34.5◦ N and −117◦ E to −121◦ E. This region is the primary area of interest, investigation and deployment
for the USC CINAPS team. The labeled orange arcs are the locations of the base stations that compose the wireless sensor network
presented in Smith et al. (2010a).

during more than 100 days at sea from January 2009 to
September 2009) has provided several successful validation

results. Here we present two examples of feature-tracking
missions implemented on deployed gliders.
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2. Background and Motivation

2.1. Southern California Ocean Dynamics

The motivation for using predictive capabilities to design
trajectories with the intent of tracking an evolving ocean
feature is derived from a practical problem that exists
in many coastal communities around the world, and, in
particular, Southern California. As the rate of urbanization
in coastal communities continues to increase, land use and
land cover (i.e. significant increase in impervious surfaces)
in these areas are permanently altered. This alteration
affects both the quantity of freshwater runoff, and its
particulate and solute loadings, which has an unknown
impact (physically, biogeochemically, biologically and
ecologically) on the coastal ocean (Warrick and Fong 2004).
One documented result of these impacts is an increase in
the occurrence of algal and phytoplankton blooms. Such
biological phenomena are a primary research interest of the
authors. In particular, we are interested in the assessment,
evolution and potential prediction of algal blooms that have
the potential to include harmful algal species (i.e. harmful
algal blooms (HABs)). The environmental triggers leading
to the onset, evolution and dissemination of HAB events are
widely unknown and are under active investigation.

Given the ecological and socio-economic importance of
coastal regions, like Southern California (U.S. Commission
on Ocean Policy 2004), it is important to be able to
accurately assess, and ultimately predict, how changes
driven by urbanization and climate impact these areas.

In addition to regional anthropogenic disturbances,
Southern California experiences significant decadal and
interannual variability associated with the Pacific decadal
oscillation (PDO) and the El Niño southern oscillation
(ENSO) (Dailey et al. 1993; Kennedy et al. 2002). These
climatic phenomena impact the frequency and intensity
of the regional episodic storm events, as well as the
physical and biogeochemical dynamics of the coastal
marine ecosystem. The increased rainfall in an urban,
coastal region results in freshening of sea-surface waters
through direct rainfall into the ocean and from freshwater
inflow at the coastal boundary from streams and rivers.
The river runoff supplies nutrient-rich waters to the ocean
surface, which may lead to a bloom of photosynthetic
organisms (i.e. algal bloom).

An open question in coastal ocean science is to dissem-
inate whether or not we can distinguish anthropogenically
affected processes from natural variations and effects. The
ability to track and monitor evolving features resulting from
anthropogenic inputs can help answer this question and oth-
ers related to the increased urbanization of coastal regions.

2.2. Harmful Algal Blooms

Microscopic organisms are the base of the food chain
and are what all aquatic life ultimately depends upon for
food. There are a few dozen species of phytoplankton and
cyanobacteria that can create potent toxins when provided

with the right conditions. These harmful algae can cause
harm via toxin production, or by their accumulated biomass
which may affect levels of dissolved oxygen in the water.
Impacts to humans from HABs include, but are not limited
to, severe illness and potential death following consumption
of, or indirect exposure to, HAB toxins. In addition, coastal
communities and commercial fisheries can suffer severe
economic losses due to fish, bird and mammal mortalities,
and decrease in tourism due to beach closures. For these
reasons, it is of interest to predict when and where HABs
may form and which coastal areas they may affect. For
general information on HABs, we refer the interested reader
to Anderson (2008). Harmful algal blooms are an active
area of research on all coasts of the United States, and
are of large concern for coastal communities in Southern
California (Schnetzer et al. 2007).

A related threat of HABs deals with the sinking
of Pseudonitzschia, i.e. transfer of toxicity to the sea
floor, as discussed in Wood et al. (2009). Autonomous
gliders have been used recently during the North Atlantic
Bloom experiment to track the sinking of primary
production from the surface to 800–1,000 m (Gray et al.
2008). It is of interest to document the sinking of
the Pseudonitzschia biomass to determine the harmful
effects away from the surface. Vertical movement or
aggregation at specific depths can also be important factors
affecting the abundance of some harmful algae such as
dinoflagellates and their associated toxins (Kudela et al.
2008). Marine biologists are interested in defining the
vertical zonation and migratory patterns of a dinoflagellate,
and the interactions of the organism with physical processes
of the ocean (e.g. currents, shear, density gradients, light)
and the chemical structure (e.g. nutrients). Hence, with
their unique sawtooth-shaped trajectories, gliders are a good
candidate platform to study surface blooms as well as their
vertical migration.

Motivated by the number of problems linked to HABs,
and algal blooms in general, it is of interest to study
ocean features that can potentially promote a bloom event.
In particular, blooms are likely to occur when nutrient-
rich waters are brought to the surface. Ocean processes
and features of interest promoting these conditions are
cold-core eddys, upwelling, river runoff and waste water
outfalls. These events alter the biochemical composition
of the surrounding water, and provide the excess
nutrients to support higher productivity and a bloom of
microorganisms.

From the coastal dynamics and rapid urbanization in
Southern California coastal communities discussed earlier,
we choose plumes from river runoff and waste water outfalls
as features to track and monitor. Both of these events can
be discretely quantified; river runoff happens after a storm
event and most waste water outfalls are human controlled.
Hence, we have a good idea of when and where a plume will
be present in the SCB, and can employ the proper means
to detect its onset and evolution. Henceforth, we will refer
to a feature of interest to be tracked as a plume, which is
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understood to encompass freshwater plumes, waste water
outfalls and algal blooms.

The density of the considered plumes is less than the
surrounding sea water, and forms a lens on the surface.
The movements of these plumes are dominated by surface
currents and local winds. The focus of this paper is on
tracking the movement of plumes through the ocean by
use of predictive tools and gliders to study the factors and
conditions leading to the onset and lifespan of a HAB event.
We remark that similar techniques to those presented here
can be applied to study eddys and upwelling; however,
with the choice taken here, we increase the likelihood
of catching an actual event upon which to implement
this innovative technology toolchain and trajectory design
method.

3. Regional Ocean Modeling System

The predictive tool utilized in this study is the regional
ocean model system (ROMS) – a split-explicit, free-
surface, topography-following-coordinate oceanic model.
ROMS is an open-source, ocean model that is widely
accepted and supported throughout the oceanographic and
modeling communities. Additionally, the model was devel-
oped to study ocean processes along the western U.S. coast,
which is our primary area of study. The model solves
the primitive equations using the Boussinesq and hydro-
static approximations in vertical sigma (i.e. topography-
following) and horizontal orthogonal curvilinear coordi-
nates. ROMS uses innovative algorithms for advection,
mixing, pressure gradient, vertical-mode coupling, time
stepping and parallel efficiency. Detailed information on
ROMS can be found in Shchepetkin and McWilliams
(1998, 2005).

The version of ROMS used in this study is compiled
and run by the Jet Propulsion Laboratory (JPL), California
Institute of Technology, and provides hindcasts, nowcasts
and hourly forecasts (up to 36 h) for the SCB via a web
interface (Vu 2008) or via access to their THREDDS
data server (Jet Propulsion Laboratory 2009). The JPL
version of ROMS (see e.g. Chao et al. (2008) and Li
et al. (2008a,b)) assimilates HF radar surface current
measurements, data from moorings, satellite data and any
data available from sensor platforms located or operating
within the model boundary.

This model utilizes a nested configuration, with
increasing resolution covering the U.S. western coastal
ocean at 15 km, the Southern California coastal ocean
at 5 km and the SCB at 1 km. In addition to the 1 km
output, a resampled 2.2 km resolution output, correlated
to the assimilated HF radar grid resolution, is produced.
The computations and predictions presented here use this
2.2 km resolution product.

The interaction with JPL related to this research and
ROMS improvement is a two-way street. We need the
predictions to design efficient, effective and innovative

Fig. 2. One of the two Slocum gliders owned and operated by
CINAPS. The glider has just been deployed and is preparing
to start a mission. This picture was taken directly north of the
entrance to Isthmus Cove off the northeast coast of Santa Catalina
Island.

AUV trajectories. The JPL updates their ROMS by utilizing
the feedback from field deployments to assess the validity
of each prediction, and to increase the skill of future
predictions.

4. Mobile Sensor Platform: AUV

The mobile sensor platforms used in this study are Webb
Slocum autonomous underwater gliders (Webb Research
Corporation 2008); see Figure 2. A glider is a type of AUV
designed for long-term ocean sampling and monitoring
(Schofield et al. 2007). These gliders fly through the water
by altering the position of their center of mass and changing
their buoyancy. Due to this method of locomotion, gliders
are not fast-moving AUVs, have operational velocities
on the same order of magnitude as oceanic currents
(� 1 km h−1) and follow a sawtooth-shaped trajectory.
The endurance (� 1 month per deployment) and velocity
characteristics of a glider make it a good candidate vehicle
to track plumes that move with ocean currents, and that
have a residence time on the order of weeks. We have
upgraded the communication capabilities of our gliders to
take advantage of, and become, a node in our local wireless
network; details can be found in Pereira et al. (2009) and
Smith et al. (2009b).

Considerable work has been done on the kinematic and
dynamic modeling and control of underwater gliders, and
we refer the interested reader to Leonard and Graver (2001),
Graver (2005) and the references therein for a detailed
treatment of these topics. Here we assume that the glider
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can successfully navigate from one location to another.
This is a non-trivial assumption due to the complexity of
the underwater environment and the forces experienced
by an AUV while underway. An entire body of research
exists that is dedicated to accurate and precise execution
of prescribed missions by AUVs, and is outside the scope
of the work presented here. In relation to this work,
research is active to improve the navigational accuracy
of our gliders by use of ROMS predictions in the SCB;
see Smith et al. (2010b,c).

Briefly, an example mission for a standard glider consists
of a set maximum depth along with an ordered list of
geographical waypoints (W1, . . . , Wn). An exact path or
trajectory connecting these locations is not prescribed by
the operator, nor are the controls to realize the final
destination. When navigating to a new waypoint, the
present location L of the vehicle is compared with the
next prescribed waypoint in the mission file (Wi), and the
on-board computer computes a bearing and a range for
execution of the next segment of the mission. We will refer
to the geographical location at the extent of the computed
bearing and range from L to be the aiming point Ai.
The vehicle then dead reckons with the computed bearing
and range towards Ai with the intent of surfacing at Wi.
The glider operates under closed-loop heading and pitch
control only. Thus, the computed bearing is not altered,
and the glider must surface to make any corrections or
modifications to its trajectory. When the glider completes
the computed segment (i.e. determines that it has traveled
the requested range at the specified bearing), it surfaces
and acquires a GPS fix. Regardless of where the vehicle
surfaces, waypoint Wi is determined to be achieved. The
geographical positional error between the actual surfacing
location and Wi is computed, and any error between
these two is fully attributed to environmental disturbances
(i.e. ocean currents). A depth-averaged current vector is
computed, and this is considered when computing the range
and bearing to Wi+1, the next waypoint in the mission list.
Hence, Ai is in general not in the same physical location
as Wi. The offset between Ai and Wi is determined by
the average velocity and the perceived current experienced
during the previous segment.

5. Problem Outline and Path Planning

In this section, we formally pose the path planning problem
and present the algorithms that generate the locations
(waypoints) for the AUV to visit, which steer it to follow
the general movements of a plume. Depending upon the
feature considered, and the instrumentation suite available
on the vehicle, different locations within a feature may be of
interest, e.g. its boundary or extent, subsurface chlorophyll
maximum, salinity minimum, its centroid, O2 or CO2

threshold, etc. Since the focus of this research is on asset
allocation to the right place at the right time, and is only
motivated by the study of HABs in the SCB, we choose
to track proxy areas of interest within a given feature. In

particular, we extend the work presented in Smith et al.
(2009a) to include the use of multiple vehicles to track the
centroid and the boundary of the extent of a plume. Similar
algorithms to those presented here are under development,
and will consider alternate sampling locations, such as the
aforementioned areas of interest.

Considerable study has been reported on adaptive control
of single gliders and coordinated multi-glider systems;
see e.g. Paley et al. (2007, 2008) and the references
therein. In these papers, the trajectories given to the
gliders were fixed patterns (rounded polygons) that were
predetermined by a human operator. The adaptive control
component was implemented to keep the gliders in an
optimal position, relative to the other gliders following
the same trajectory. The difference between the method
used in Paley et al. (2008) and the approach described
here is that our sampling trajectory is determined from the
output of ROMS, and, thus, at first glance, may appear
as a seemingly random and irregular sampling pattern.
Such an approach is a benefit to the ocean modelers and
scientist alike. Scientists can identify sampling locations
based upon ocean measurements they are interested in
following, rather than setting a predetermined trajectory
and hoping the feature enters the transect while the AUV is
sampling. When deploying multiple vehicles, this method
allows the operator to generate trajectories that survey an
appropriate spatial extent of the feature of interest. And,
model skill is increased by the continuous assimilation
of the in situ collected data; which, by choice, is not a
continuous measurement at the same location.

A plume may dissipate rapidly, but can stay cohesive
and detectable for up to weeks. It is of interest to track
these plumes based on the discussion in Section 2 as
well as in Cetinic et al. (2010). In addition to tracking a
plume, it is also important to accurately predict where a
plume will travel on a daily basis. Such knowledge can
aid in proper assessment for beach and fishery closures to
protect humans from potential toxins of HABs occurring in
the area. The ROMS prediction capabilities are good, but
model skill can significantly increase from assimilation of
in situ measurements. Since ROMS assimilates HF radar
data for sea surface current measurements, we can make
the general assumption that predicted surface velocities
are fairly accurate. Also, assuming a no-slip boundary
condition, the model is assumed accurate within a few
meters of the sea floor. For the region between the top few
meters and the bottom few meters, the ability to accurately
predict ocean current velocity is highly debated, especially
in near-shelf regions. Open-ocean, autonomous navigation
is a challenging task, primarily due to the complexity
of unknown environmental disturbances, such as ocean
currents. For most of the ocean, we only have a general
notion of the variability of current velocity as a function
of both depth and time. ROMS provides a prediction of
this variability that can be leveraged for AUV navigation.
A long-term effort of this research is to address the open
question of how beneficial ocean model predictions are for
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increasing the accuracy and effectiveness of path planning
and trajectory design for AUVs.

Currently, commercially available, remote-sensing tech-
nologies for ocean observation only allow us to extract
information from the first few meters of the upper water
column. Large-scale detection of ocean features, e.g. algal
blooms, existing more than a few meters below the surface
is not possible at this time. Only through ship-side sampling
or driving a mobile sensor through the feature can we
extract any information regarding its 3-D structure. Since
ship sampling is time consuming, expensive and infrequent,
and steering a mobile asset to a precise location for sam-
pling is very difficult, we have a great deal to learn about the
3-D structure and evolution of algal blooms. In addition to
the the physical structure and composition, the drivers and
mechanistic processes behind bloom conception, evolution
and collapse are not well understood due to complex inter-
actions between the members of the microbial communities
and the surrounding environment. As a result, our capacity
to assess the range of potential future scenarios for a plume
that might result is highly limited. To this end, and as an ini-
tialization point for this area of research, we choose to track
features that are observable via commercial remote-sensing
techniques, or direct observation. This choice presents us
with a 2-D representation of the feature extent, although it
is known that this observed feature has some 3-D structure
that we would like to investigate. Since the feature will
propagate and evolve with ocean currents and internal
microbial interactions, it is of interest to utilize a mobile
sensor, e.g. glider, to track the feature to gather time-series
data from within and around the feature. In this paper, we
assume that ocean currents dominate the propagation of the
given feature. Since our initial representation of the feature
is 2-D and on the ocean surface, we assume that the plume
is propagated primarily by ocean surface currents, which,
as previously mentioned, have fairly accurate predictions
from ROMS. The waypoint-selection algorithms presented
in Section 5.2 that determine the path for the glider are
based on the 2-D propagation predictions. By implementing
these paths on gliders, which traverse the ocean following
a sawtooth trajectory, we hope to gain more information
about the 3-D structure and evolution as the glider samples
vertically through the water column.

With the development of a new technology or innovation,
it is important to assess the associated strengths and
weaknesses. For implementation of AUVs to conduct
ocean observation, there are a few established methods for
path planning and trajectory generation, e.g. lawnmower
pattern, transect lines or a regular grid, with which to
compare new approaches. However, these techniques are
not known to be optimal or even efficient for a given
ocean sampling mission. Additionally, the metric of success
for the paths executed by these vehicles may not be
linked to optimization of some cost, but is primarily
dependent upon the data collected during the deployment.
A regular grid pattern placed in the appropriate location
may be an excellent option (see e.g. Das et al. (2010)),

but may also entirely miss an evolving algal bloom hot
spot. In our method, we choose to try to keep the vehicle
moving with the feature, to increase information gain, and
decrease the potential for the feature to outrun the vehicle.
Accurately assessing and comparing the effectiveness
of the path planning techniques presented here is a
task for a multi-year, multi-deployment study, in which
sampling techniques are implemented simultaneously to
study the same feature of interest. We are working towards
implementing a system to determine the environmental
triggers for onset, development and ultimate mortality of an
algal bloom. Thus, we are motivated to track algal blooms
or features that have the potential to become algal blooms,
and develop efficient strategies to keep the sensor within the
feature for as long as possible to gather data that will help
us understand more about these complex phenomena.

5.1. Problem Statement

Given a plume, we are interested in designing trajectories
to guide autonomous gliders to track and sample along
the path of the centroid, as well as the boundary or
extent. We will assume that we have at least two vehicles
to perform the missions, e.g. one centroid tracker and
one boundary tracker. Due to the large amounts of
chromophoric dissolved organic matter, a plume resulting
from river runoff or waste water outfall can easily be
identified from satellite imagery with visible coloring on
the ocean surface. Additionally, these directly follow a rain
event, and the discharge location (i.e. river mouth) is well
known or, in the case of waste water outfalls, is determined
by the local sanitation district. Thus, we may assume that
we are aware of the occurrence and can delineate the
boundary or extent of a plume at an initial point in time. As
previously mentioned, the plume boundary is a 2-D feature
defined by the outline presented in remotely sensed satellite
imagery using proxies, such as fluorescence line height
(FLH) and chlorophyll. On-board the glider, chlorophyll
and optical sensors, among others, collect data regarding
specific properties of the water. The paths presented here
are not adaptive during implementation, as restricted by
the glider’s operation, so we do not intend the vehicles to
detect or sense the boundary of a plume during a mission.
Data is collected and post-processed to examine dissipation,
dispersion, chemical changes, etc. of the plume. These
data are analyzed to further understand plume ecology
and evolution, as well as to assess model predictions.
Additionally, for the planning results presented here, we
assume that the plume we are tracking is a single connected
region. In all likelihood, a plume or algal bloom that we
are interested in may evolve into multiple disconnected
regions. In this case, we select a single region to track
based on parameters of scientific interest. The choice of a
particular region to track is ongoing work done by other
members of our research team. For example, a region
or hot spot can be chosen using the detection algorithm
presented in Section IIB of Das et al. (2010), which is
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based on thresholding FLH values from satellite imagery.
Other proxies that may be used for selecting a region to
track include chlorophyll-a and normalized water-leaving
radiance at 551 nm (LwN( 551)), both detected via satellite
imagery.

Since we assume that the propagation of the plume
is determined primarily by surface currents, we forecast
its hourly movement by use of ROMS surface current
predictions; see Smith et al. (2009a). The prediction begins
with the initial delineation of the plume and is the basis for
determining the waypoints that define the computed paths.
For safety concerns, we restrict a glider to surface no more
than once every four hours. In Smith et al. (2009a), we
considered surface intervals as short as one hour. However,
surfacing that frequently kept the vehicle close to the
surface and in danger of collision with other vessels2. In
addition, upon surfacing the glider acquires a GPS fix,
and communicates its position and collected data over the
network. This communication time is significant (� 15
min) when considering the temporal aspect of tracking a
moving plume. This gives further support for the restriction
to a 4-h interval between surfacings because the more time
the glider is on the surface, the less time it is collecting data
and keeping up with the moving plume. The 4-h interval
was chosen to reduce surfacings during a mission, but also
to allow for frequent contact with the vehicle. Hence, in an
instance of a severe modeling error, computational error or
gross misguidance, we have the ability to abort, replan the
mission and potentially get back on track. Since the basic
idea is to track the plume for many days while assimilating
collected data into the model, the accuracy of the model
prediction degrades with time and we need time to run the
model each day, we choose to plan a T = 16 h tracking
and sampling mission for each day as early in the ROMS
prediction as possible.

To begin, we assume that the starting location L of
each vehicle is known, and the prediction of the plume
evolution is accurate. The initial delineation of the plume
is done by selecting a set of geographical locations (D) that
encompass the plume’s extent. The discrete locations in D
are forecasted as if they were Lagrangian drifters in the
ROMS surface current prediction. Additionally, we assume
that the glider travels at a constant speed v km h−1, and
define dh km to be the distance (in kilometers) traveled in
h h. For the waypoint selection and path generation, we
do not consider vehicle separation except for guaranteeing
that two vehicles are not sent to the exact same location at
the exact same time. The gliders do not have the sensory
capabilities to actively assess vehicle separation while
underwater; thus, there is no way to enforce a separation
constraint on a deployed glider, even if we imposed one dur-
ing the path planning stage. There is no adaptive behavior
incorporated during the execution of the planned trajectory.
In particular, we do not provide an adaptive approach in our
algorithm to overcome model or navigational error when
tracking a plume. It is well known that an autonomous

glider is a slow-moving vehicle with limited control capa-
bilities. With this in mind, if the vehicle surfaces in a loca-
tion that is extremely off course, or conditions have changed
dramatically, our remediation approach is to generate a new
plan. The idea is to improve the collection of scientific data
by predicting the best locations to send a glider to, while
also providing feedback to JPL on the accuracy of ROMS.
In the long run, both communities will benefit.

5.2. Waypoint-selection Algorithms

In this section, we present the centroid and boundary-
tracking, waypoint-generation algorithms. These algo-
rithms utilize the ROMS hourly predictions of a delineated
plume to generate a sampling mission that guides the AUV
to predicted locations of the selected areas of interest within
the given feature. As previously mentioned, the areas of
interest for a given feature may be different based upon
the sensor suite available on the vehicle and/or the science
return desired. The use of path planning to collect data
of high scientific merit, with respect to a selected area of
interest, translates to navigating the vehicle to a location
that contains the quantity to be measured or area to be
surveyed. Note that for both the implemented and simulated
experiments presented in Sections 6 and 7, we neither
consider vehicle dynamics nor the effect of the ocean
currents upon the vehicle in the determination of the paths.
The reasoning behind this omission is based in the initial
study upon which this paper is based (Smith et al. 2009a).
Our motivation was to develop high-level path planning
techniques, and we made the assumption that a low-level
controller was in place and was sufficient to steer the vehi-
cle between two prescribed waypoints. Given that Slocum
gliders are used widely in oceanographic applications, and
are proven to be very robust platforms, this assumption
seemed reasonable, and we were willing to initially accept
navigational errors based on the standard operation of the
chosen test-bed platform during the preliminary stages of
this research. Over the last year, we have conducted several
field trials with multiple gliders, traversing > 1500 km
over > 100 days at sea. From these deployments, we have
compiled a database to analyze the navigational accuracy
of the gliders and their ability to realize a prescribed path.
Considering more than 200 trajectories, with an average
distance traveled of 2 km, the median error between the
actual location where a glider surfaced and the prescribed
surfacing location was 1.1 km. Details of this analysis are
presented in Smith et al. (2010c). Based on this analysis,
it was determined that we needed to increase the accuracy
of the gliders to effectively execute the paths computed by
use of the algorithms presented here. This is especially the
case when attempting to design a strategy to steer a vehicle
to a specific location within an evolving feature. To this
end, we have developed extensions to the waypoint-
selection algorithms presented here that incorporate
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4-D (three spatial plus time) velocity predictions into the
trajectory design of the glider (Smith et al. 2010c). Here we
present preliminary results that show a 50% reduction in
navigational error by using ROMS predictions, rather than
the depth-averaged current estimations utilized for standard
glider operations. Additionally, research is ongoing to
couple vehicle kinematics and dynamics with ocean current
predictions to generate trajectories to follow the paths that
track evolving ocean features; see Smith et al. (2010b) for
preliminary results.

5.2.1. Centroid-tracking Algorithm We begin with the
centroid-tracking, waypoint-generation algorithm. Let T ∈
Z

+ be the duration, in hours, of the planned mission. The
input to the trajectory design algorithm is a set of points,
D (referred to as drifters) that determine the initial extent
of the plume (D0), and hourly predictions (Di, i ∈ T)
of the location of each point in D. For the points in Di,
we compute the convex hull as the minimum bounding
ellipsoid, Ei, for i ∈ T . We consider the predicted locations
of D0 after 4 h, D4. We let Ci be the centroid of Ei, and, with
a slight abuse of notation, also refer to Ci as the centroid
of Di. The algorithm computes dg( L, C4), where dg( x, y)
is the geographical distance from x to y. Given upper and
lower bounds du and dl, respectively, we have three possible
cases for choosing a location to send the glider to. Case 1:
if dl < dg( L, C4) ≤ du, the generated waypoint is C4, and
the path is simply defined as the line LC4; see Figure 3(a).
Case 2: if dg( L, C4) ≤ dl, the algorithm first checks to see if
there exists a point p ∈ E4 ∪ D4 such that

dl ≤ dg( L, p) +dg( C4, p) ≤ du. (1)

If such a point exists, the algorithm generates two waypoints
(p and C4) and the path is defined as the line Lp followed
by the line pC4. In general, this will not be the case,
since the distance from the centroid of the plume to
its boundary can be many kilometers. Thus, if {p ∈
E4 ∪ D4|dl ≤ dg( L, p) +dg( C4, p) ≤ du} = ∅, then the
algorithm computes the locus of points, L = {p∗ ∈
L|dg(L, p) +dg( p, C4) = d4}, and selects a point at random,
p∗ ∈ L, as another waypoint. Here the path is the line Lp∗
followed by the line p∗C4; see Figure 3(b). This additional
waypoint computation was inserted into the algorithm when
considering a single-vehicle deployment. In this scenario,
one would like to acquire as much data as possible. In
the case of a multiple-vehicle mission, it is less useful to
include the additional waypoint in the trajectory design,
as the other vehicles are gathering supplemental data.
During deployment, p∗ is visited if and only if we feel the
safety of the vehicle will not be compromised by frequent
surfacings (e.g. based on geographical location, day of the
week and time of day). Case 3: if dg( L, C4) > du, the
algorithm generates a waypoint Cw in the direction of C6,
such that dg( L, Cw) = d4; see Figure 3(c). The choice of
Ci+6 over Ci+j, j ∈ {5, 7, 8}, is made here since Ci+6 is
the predicted location of the centroid halfway between the

surface interval times. Here we choose Ci+6 to be fixed for
all scenarios, and, as in Smith et al. (2010c), we incorporate
Ci+j, j ∈ {5, 6, 7, 8}, as an optimization parameter to give
the glider the best chance of executing the prescribed path.
Let AZ( a, b) be the azimuth angle between locations a
and b. The location of the vehicle L is updated to C4 or
Cw and the process is iterated for the duration T . This
waypoint-generation process is presented in Algorithm 1.

Algorithm 1 Centroid-tracking, Waypoint-selection
Algorithm
Require: Hourly forecasts, Di, for a set of points D

defining the initial plume condition and its movement for
a period of time, T .
for 0 ≤ i ≤ T do

Compute Ci, the centroid of the minimum bounding
ellipsoid Ei of the points Di. Compute d4.

end for
while 0 ≤ i ≤ T − 1 do

if dl ≤ dg( L, Ci+4) ≤ du then
The trajectory is LCi+4.

else if dg( L, Ci+4) ≤ dl and ∃p ∈ Ei+4 ∪Di+4 such that
dl ≤ dg( L, p) +dg( p, Ci+4) ≤ du then

The trajectory is Lp followed by pCi+4.
else if dg( L, Ci+4) ≤ dl and {p ∈ Ei+4 ∪ Di+4|dl ≤
dg( L, p) +dg( p, Ci+4) ≤ du} = ∅ then

Compute L = {p∗ ∈ L|dg( L, p) +dg( p, C4) = d4},
select a random p∗ ∈ L and define the trajectory as
Lp∗ followed by p∗Ci+4.

else if dg( Ci, Ci+1) ≥ du then
Compute Cw such that dg( l, Cw) = d4 and
AZ( L, Cw) = AZ( L, C6).

end if
end while

5.2.2. Boundary-tracking Algorithm Similarly to the pre-
sentation in Section 5.2.1, we define the boundary-tracking,
waypoint-generation algorithm, presented in Algorithm 2.
We begin with the same predictions as above, and define
Pi to be the polygon formed by connecting the points Di

for i ∈ T . Let B( a, r) be the disc of radius r, about a.
This algorithm first computes N = B( L, d4) ∩P4. Again
we have three possible cases to investigate to define the
path for the boundary-tracking vehicle. Case 1: if N ≥ 2,
the generated waypoint B4 is a random selection of one of
the intersection points; see Figure 4(a). Case 2: if N = 1,
the generated waypoint B4 is that precise intersection point;
see Figure 4(b). Case 3: if N = ∅, B4 is computed such
that dg( L, B4) = d4 and AZ( L, B4) is the average azimuth
of Di for the considered 4-h time period; see Figure 4(c).
We reassign L = B4, and the algorithm is repeated. For
the boundary-tracking scenario, it would be of interest to
traverse the entire predicted extent of the given plume over
the duration of the survey. However, the test-bed vehicles
considered move too slowly to entertain this sampling
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Fig. 3. The three possible cases for the waypoint generation that defines the path for the centroid-tracking vehicle. (a) Case 1: the
distance from L to the predicted centroid C4 is within the defined bounds, dl < dg( L, C4) ≤ du, and thus it is reachable. The generated
waypoint is C4, and the path is defined as the line LC4. (b) Case 2: the distance from L to the predicted centroid C4 is less that the
defined lower bound, dg( L, C4) ≤ dl, so the algorithm computes an additional waypoint, p or p∗, to be visited. The path is the line Lk
followed by the line kC4, for k ∈ {p, p∗}. (c) Case 3: the distance from L to the predicted centroid C4 is greater than the defined upper
bound, dg( L, C4) > du; thus, it is determined to be unreachable. Here the algorithm defines a waypoint Cw, such that dg( L, Cw) = d4
and AZ( L, Cw) = AZ( L, C6). The path is defined as the line LCw.

method. Thus, we choose to select a random point on the
boundary when posed with multiple options. Also, since we
are interested in assessing the dispersion, and potentially the
subsurface mixing of the plume waters with the surrounding
ocean waters, navigating near or crisscrossing the actual
plume boundary can gather interesting data.

5.2.3. Ocean Plume Tracking Algorithm Based on Ocean
Model Predictions After we have generated the waypoints
that define the trajectory for the vehicle to follow, we

implement an iterative procedure to track the feature of
interest over multiple days. This involves assimilating
gathered data into ROMS and updating the projections
for generating the trajectories for subsequent days. This
overall iterative process to design an implementable plume
tracking strategy based on ocean model predictions is given
in Algorithm 3. With the inclusion of the optimization
parameter mentioned in Section 5.2.1 and the incorporation
of the 4-D ROMS current predictions in determining the
path between the selected waypoints, Algorithm 3 has been
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Fig. 4. The three possible cases for the waypoint generation that defines the path for the boundary-tracking vehicle. (a) Case 1: a circle
of radius d4 about L intersects the predicted polygon that defines the boundary of the plume, P4, at least twice, N ≥ 2. The generated
waypoint B4 is a random selection of one of these intersection points, and the path is defined as LB4. (b) Case 2: a circle of radius d4
about L intersects the predicted polygon that defines the boundary of the plume, P4, exactly once, N = 1. The generated waypoint B4 is
the intersection point, and the path is defined as LB4. (c) Case 3: a circle of radius d4 about L does not intersect the predicted polygon
that defines the boundary of the plume, P4, N = ∅. The generated waypoint B4 is computed such that dg( L, B4) = d4 and AZ( L, B4) is
the average azimuth of Di for the considered 4-h time period, and the path is defined as LB4.

extended in Smith et al. (2010c), and is renamed the ocean
plume tracking algorithm built on ocean model predictions
(OPTA-BLOOM-Pred).

In the following sections, we proceed to present
simulation and field experiments that implement paths
generated by use of Algorithm 3. By construction, these
paths are generated to track a plume that propagates on
the ocean surface (0–30 m), while the vehicle used to
track them, i.e. a Slocum glider, operates from the surface
down to depths of ∼ 80 m. It is not valid to assume that

both of these are subjected to the same current regime,
in both velocity and direction. In particular, a vertical
velocity profile of ocean current for a given location within
the SCB is, in general, not constant. This observation is
illustrated in Figure 5 with an example plot of current
velocity versus depth. Figure 5 displays a ROMS prediction
for the meridional component of a vertical current profile
located at 33.58◦ N, −118.38◦ E for 8 July 2009. From
this example, we see that it may be possible for a plume
to outrun a slow-moving vehicle (i.e. dg( Ci, Ci+1) ≥ du or
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Algorithm 2 Boundary-tracking, Waypoint-selection
Algorithm
Require: Hourly forecasts, Di, for a set of points D

defining the initial plume condition and its movement for
a period of time, T .
for 0 ≤ i ≤ T do

Compute Pi, the polygon formed by connecting the
points Di. Compute d4.

end for

while i ∈ {4, 8, 12, 16} do
j = i/4

if B( L, d4) ∩ Pi ≥ 2 then

Bj is one of the intersection points chosen at
random. L = Bj.

else if B( L, d4) ∩ Pi = 1 then
Bj is the precise intersection point. L = Bj.

else if B( L, d4) ∩ Pi = ∅ then
Bj = {p|d( L, Bj) = d4, AZ( L, Bj) is the average
azimuth of Di for i = j − 4, . . . , j}. L = Bj.

end if
end while

Algorithm 3 Ocean Plume Tracking Algorithm Based on
Ocean Model Predictions
Require: A significant freshwater plume is detected via

direct observation or remotely sensed data such as
satellite imagery.
repeat

A set of points (D) is chosen which determine the
current extent of the plume.
Input D to ROMS.
ROMS produces an hourly forecast for all points in D.
Input hourly forecast for D into the trajectory design
algorithms.
Execute the trajectory design algorithms (Algorithms
1 and 2).
Uploaded computed waypoints to the AUV.
AUV executes mission.
The AUV sends collected data to ROMS for
assimilation into the model.

until Plume dissipates, travels out of range or is no longer
of interest.

N = ∅), especially when plumes may be propagated by
surface currents driven by high winds that are typical during
rain events in Southern California. Also, we remark that
for a high-endurance, slow-moving vehicle like a glider,
which generally will not have on-board instrumentation to
measure current velocities in situ , e.g. an Acoustic Doppler
Current Profiler (ADCP), having access to vertical current
profile predictions can assist in areas of path planning,
such as minimizing transit cost by staying in water masses
that are moving in a preferred direction, or determining

unreachable areas due to large-magnitude currents. An
extension of Algorithm 3 presented in Smith et al. (2010c)
takes a step towards addressing the issue of incorporation
of vertical distribution of current velocity into trajectory
generation for AUVs.

6. Simulation

Multiple environmental agencies, local and regional policy
makers, universities and outreach groups in Southern
California collaborate together to assess the status of
streams, estuaries, beaches and marine environments in
Southern California. More than 90 local organizations
contribute to this biannual effort called the Southern
California Bight Regional Marine Monitoring Program,
which includes assessment in areas of coastal ecology,
water quality, rocky subtidal, areas of special biological
significance and shoreline microbiology. Conducting large-
scale, collaborative, regional assessments is a benefit to
all agencies due to the widespread appeal and shared
data products between all contributors. Rather than making
comparisons to a small number of control sites, agencies are
able to compare local results to the entire breadth of natural
variability inherent to the ecosystem. This allows regulators
to target resources where action is most needed. A few
main questions posed for the study are the percentage of the
Southern California mainland shelf area exhibiting signs of
human disturbance, the number of stream miles impacted
by anthropogenic activities, or the long-term effects of rapid
urbanization in Southern California related to the frequency
of occurrence of HAB events.

The next Southern California Bight Regional Marine
Monitoring Program, commonly referred to as Bight 2010,
is occurring from late-January through early-April 2010.
The CINAPS group at USC will be a contributor in the
Bight 2010 survey. One planned aspect of our contribution
will be continuous operation of four Slocum gliders in the
SCB for the entire three-month program. During this time,
we are planning to implement the techniques presented in
this work to retask currently operating gliders in the field to
track and monitor a freshwater plume, waste water outfall
or HAB event. Through careful planning and a bit of luck,
we hope to capture the conditions in the SCB leading up to
and development of a HAB event. To this end, we present
a simulation experiment with four gliders tracking a feature
of interest off the coast of Newport Beach, CA. The general
area for the simulation is shown in Figure 6(a).

In this scenario, we offset the start times of the
four vehicles to emulate asynchronous surfacing and
communication with the vehicles or to simulate deploying
the vehicles at multiple locations for the specific feature of
interest. Deploying vehicles or sensors specifically for an
event has the advantage of being able to place the sensor
assets intelligently, or in a predetermined location, to best
track the evolving feature. However, the disadvantage is
that a vehicle is not collecting data if it is sitting on shore,
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Fig. 5. An example vertical current profile prediction for a location within the SCB. This is a ROMS prediction of ocean depth versus
current velocity for the meridional component located at 33.58◦ N, −118.38◦ E. This is a prediction made for 8 July 2009.

and important aspects of algal bloom development and
evolution may be missed. Additionally, events occurring on
shorter time scales may be entirely missed, as deployments
do not always go as planned. For the features of interest
considered in this study, even intelligent deployment can be
non-trivial. As an example, consider the difference between
a freshwater river runoff plume and a subsurface effluent
algal bloom. Freshwater river outfall plumes are buoyant,
and float high in the water. In general, these plumes have
a stronger leading edge, i.e. sharper gradient, and a more
diluted trailing edge. Thus, deploying gliders at the front
of the plume may provide more information and allow the
vehicle a better chance to remain in contact with the feature.
For an algal bloom, it is a bit more complicated, as the
boundary of the bloom is dependent on the kind of system
that it is embedded in. In particular, subsurface effluent
plumes are submerged, and become density equilibrated,
making the boundary of the bloom more difficult to discern.
Also, contrary to a freshwater plume, an algal bloom is
composed of living organisms, whose life-cycle dynamics
affect the movement and structure of the bloom in addition
to the ocean currents. These chemical and biological
dynamics, along with the 3-D composition and evolution of
an algal bloom, are poorly understood, and are a primary
motivation for developing techniques to place mobile
sensors in the right place at the right time to gather data that
will increase our understanding of these complex systems.

For the simulation, at T = 0 h, we deploy two vehicles,
one centroid tracker and one boundary tracker, at the
southern extent of the plume (predicted plume front). At
T = 2 h we deploy a boundary-tracking vehicle on
the predicted western boundary of the plume. Finally, at
T = 4h, we start a boundary-tracking vehicle at the
predicted northern boundary of the plume (predicted
trailing edge of the plume). The initial delineation and
location of the first two gliders are presented in Figure 6(a).
The evolution of the plume with vehicle trajectories is
presented in Figures 6(a)–7(f). The trajectories of the
vehicles are the expected trajectories of the gliders,
projected to the ocean surface. Note that in Figures 6(a)–
7(f), we only display a trajectory for a vehicle at the
hour when it surfaces due to the offset in start times. The
predicted extent of the plume is delineated by the closed
polygon. The centroid of the predicted plume is depicted
by the dot inside the delineated plume extent; the centroid-
tracking vehicle follows the path given by the solid line and
the boundary-tracking vehicles follow the paths given by
the dashed lines.

The trajectory design is based upon model predictions,
and we are familiar with the deployment area; we do have an
a priori understanding of the general direction the feature
should travel in. This knowledge can be used to select the
initial locations of the vehicles based upon the information
to be gathered and areas of interest within the feature. In this
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Fig. 6. Simulation results for four vehicles tracking a propagating plume. The plume extent is delineated by the closed polygon. Three
vehicles (dashed line paths) follow the boundary, while one vehicle (solid line path) tracks the centroid of the plume. The centroid is
depicted by the dot inside the delineated plume extent. Panel (a) provides the initial delineation of the plume in the coastal region near
Los Angeles, CA. Panel (b) presents an enlarged image of panel (a). Panels (b)–(f) present snapshots every 2 h of the tracking simulation
from initialization to T = 8 h. The scale given in panel (b) is the same for panels (c)–(f). Images created by use of Google Earth.

example, since we see a rather fast-moving feature in the
southeast direction, we choose to start the centroid tracker
on the southern extent, or leading edge, of the feature.
Thus, we do not try and chase the area we are interested
in sampling, and have a higher probability of collecting
data within the plume. Based on the movement of the
feature, the centroid-tracking vehicle (solid line) actually
completes a U-shape trajectory, and from T = 12 to 16h
cannot keep up with the feature, based on our constant-
speed assumption. We also see the speed of the feature since

the boundary-tracking vehicles (dashed lines) traverse more
of a straight-line path than the zig-zag seen with a slower-
moving feature as in Figures 11(f) and 12(e). Overall, the
trajectories presented here, and in the previous deployment
sections, do not resemble those that a human operator would
design. However, the trajectories do guide the vehicles
through a large portion of the plume during its predicted
evolution, thus increasing the probability of collecting high-
valued data for both the marine biology community and the
modeling community alike.
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Fig. 7. Continuation of the simulation results for four vehicles tracking a propagating plume presented in Figure 6. The plume extent is
delineated by the closed polygon. Three vehicles (dashed line paths) follow the boundary, while one vehicle (solid line path) tracks the
centroid of the plume. The centroid is depicted by the dot inside the delineated plume extent. Panels (a)–(f) present snapshots every two
hours of the tracking simulation from T = 10 h to completion (T = 20 h). The scale for all images is given in panel (a). Images created
by use of Google Earth.

7. Implementation and Field Experiments in
the SCB

We present the results of two field deployments, during
which we implemented trajectories designed by Algorithm
3. In Section 7.1 we present the results of a single-
vehicle, centroid-tracking mission initially presented in
Smith et al. (2009a). We follow this in Section 7.2 with
a two-vehicle mission, tracking both the centroid and the
boundary of a plume. We remark to the reader that the

implementation of the path plans generated here would
ideally be implemented and executed in an opportunistic
fashion onto a currently deployed vehicle. In this case,
the ability to select the initial location of the vehicle
with respect to the feature of interest is not practical. In
the following field trials, the vehicles were on a routine
deployment and the presented experiments are meant to
simulate an opportunistic retasking event. Note that the
plume we wish to track is delineated close to near-future
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surfacing locations of the gliders so that missions can
be uploaded and executed in a timely fashion, and the
vehicles can continue with the previous routine survey.
Initial locations of the vehicles with respect to the plume
delineation are purposefully chosen to be suboptimal
to present a real-life situation. An alternate scenario to
opportunistic retasking is to consider that the vehicles are
deployed specifically for a detected algal bloom or river
plume. This situation has been addressed in the simulation
experiment presented in Section 6.

As noted in Smith et al. (2009a), the rainy season in
Southern California is generally between November and
March. During this time, storm events cause large runoff
into local-area rivers and streams, all of which empty into
the Pacific Ocean. Two major rivers in the Los Angeles
area, the Santa Ana and the Los Angeles River, input
large freshwater plumes to the SCB. Such plumes have a
high likelihood of producing HABs. Unfortunately, during
both deployments, weather and/or remote-sensing devices
did not cooperate to produce a rain event along with
a detectable plume. For both cases presented here, we
defined a pseudo-plume in two separate areas of the SCB
to demonstrate a proof-of-concept of the technology chain
and trajectory design method developed here.

For the centroid-tracking mission, we deployed a glider
into the SCB on 17 February 2009 to conduct a month-long
observation and sampling mission. For this deployment, the
glider was programmed to execute a zig-zag pattern mission
along the coastline, as depicted in Figure 8, by navigating
to each of the six waypoints depicted by the bullseyes.
During execution of this mission, we retasked the glider
mid-mission and uploaded the centroid-tracking trajectory
described in Section 7.1.

For the boundary-tracking mission, we deployed two
gliders off the northeast tip of Santa Catalina Island on
29 April 2009 to conduct a month-long experiment to
test the communication infrastructure described in Smith
et al. (2010a). For this mission, there was not a single,
predetermined path for the glider to traverse as before, but
we had the ability to retask the vehicles as needed. The
details of this mission, with regard to the communication
data collected, can be found in Pereira et al. (2009) and
Smith et al. (2009b). The 2-day mission presented below
was conducted during 11–13 May 2009.

7.1. Centroid Tracking

The mission presented in this section is reproduced from
Smith et al. (2009a). Since Algorithm 1 has been modified
based on the lessons learned during the execution of
this deployment, there are slight discrepancies in planning
between the following description and the method presented
in Algorithm 1. However, the general idea and methodology
is the same.

For this mission, we defined a pseudo-plume D with 15
initial drifter locations off the coast of Newport Beach, CA.
The pseudo-plume is given by the dashed line in Figure 9.

Fig. 8. The intended glider path of the month-long, zig-zag
pattern mission started on 17 February 2009 is given by the solid
line. The preset waypoints that define this path and were uploaded
to the glider are depicted by the bullseyes. This path represents a
routine deployment mission carried out regularly by USC CINAPS
gliders. Image created by use of Google Earth.

Fig. 9. An overview of the delineated plume to track and the
computed path to track the centroid of the plume. The solid
line connecting bullseyes represents the routine zig-zag mission
presented in Figure 8. The initial delineation of the plume to track
is given by the dashed line. The waypoints generated by Algorithm
1 are represented by the numbered diamonds. The intended glider
path (projected to the ocean surface) is the solid line connecting
the consecutively numbered waypoints. Image created by use of
Google Earth.

By use of ROMS, the locations of the points in D were
predicted for T = 15 h. The initial time and location for
the beginning of this retasking experiment coincided with
predicted coordinates of a future glider communication.
The pseudo-plume was chosen such that C0 was near this
predicted glider surfacing location.

Based on observed behavior for our vehicle during this
deployment, we take v = 0.75 km h−1, and initially defined
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Table 1. A Complete Listing of the Waypoints Generated by Algorithm 1. Waypoint Numbers 1, 3, 5 and 7 are the Predicted Centroids
of the Pseudo-plume at Hours 0, 5, 10 and 15, Respectively. Waypoint Numbers 2, 4 and 6 are the Additional Locations (p∗ ∈ L) to be
Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1

Number Latitude (◦ N) Longitude (◦ E) Number Latitude (◦ N) Longitude (◦ E)

1 33.6062 –118.0137 5 33.6189 –118.0349
2 33.6054 –118.0356 6 33.6321 –118.0257
3 33.6180 –118.0306 7 33.6175 –118.0361
4 33.6092 –118.0487

dl = 0.5 km and du = 0.8 km. The hourly predictions
were input to the trajectory design algorithm and a tracking
strategy was generated. Due to slow projected surface
currents in the area of study, the relative movement of the
plume was quite small. To keep the glider from surfacing
too often and to generate a more implementable trajectory,
we opted to omit visiting consecutive centroids. Instead,
we chose to begin at the initial centroid, then visit the
predicted centroid of the plume after 5, 10 and 15 h, C5,
C10 and C15, respectively. Between visiting these sites, the
algorithm computed an additional waypoint for the glider to
visit. These intermediate waypoints were chosen similarly
to the p∗ defined earlier, with d = 3.75 km; the distance
the glider should travel in five hours. This design strategy
produced seven waypoints for the AUV to visit during the
15 h mission. The waypoints are presented in Table 1. Note
that we include the initial centroid as a waypoint, since the
glider may not surface exactly at the predicted location.

Upon visiting all of the waypoints in Table 1, the
glider was instructed to continue the sampling mission
shown in Figure 8. Figure 9 presents a broad overview of
the waypoints in Table 1, along with a path connecting
consecutive waypoints. The plume is delineated by the
dashed line and the waypoints are numbered and depicted
by numbered diamonds. Note that the glider did not travel
on the ocean surface during this experiment. As previously
mentioned, between waypoints the glider submerges and
performs consecutive dives and ascents creating a sawtooth-
shaped trajectory as its glide path.

7.1.1. Analysis of Results Next, we present the imple-
mentation results of the aforementioned sampling mission
onto a glider operating in the SCB. The waypoints given
in Table 1 were computed under the assumption that the
mission would be loaded onto the glider at a specific
time and approximate geographical location. The glider
arrived and communicated at the correct time and location;
however, communication was aborted before the plume
tracking mission could be uploaded. We were able to
establish a connection two hours later at a different location,
and successfully upload the mission file; this location is
the droplet labeled 1 in Figure 10. We opted to not visit
waypoint 1 based on the location of the glider and to get
the glider back on schedule to track the plume. Figure 10
presents a magnified image of Figure 9, where computed

Fig. 10. Execution of the computed path for tracking the centroid
of an evolving plume. The initial delineation of the plume to track
is given by the dashed line. The waypoints generated by Algorithm
1 are represented by the numbered diamonds. The actual locations
where the glider surfaced are given by the numbered droplets. The
intended path of the glider (projected to the ocean surface) is the
solid line path connecting the numbered diamonds. Image created
by use of Google Earth.

waypoints are the numbered diamonds and the numbered
droplets are the actual locations visited by the glider.

We were able to successfully generate a plan and retask
a deployed glider to follow an ocean feature for 15 h. It is
clear from the data that consideration has to be made for
glider dynamics and external forcing from ocean currents
in the path planning process. This is an area of ongoing
research; see Smith et al. (2010b,c).

One element that we have neglected to discuss up to
this point is that we have no metric for comparison. In
particular, when we reach a predicted centroid, we do not
have a method to check whether or not the plume centroid
was actually at that location. We are planning experiments
to deploy actual Lagrangian drifters to simulate a plume, as
well as hoping for an actual event to present itself. This will
give a concrete comparison between the ROMS prediction
and the actual movement of the drifters or the plume.
Another component omitted from earlier discussion is time.
When tracking a moving feature, a predicted waypoint
contains temporal information as well as location. For this
implementation, the glider began the mission at 0302Z and
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Table 2. A Complete Listing of the Waypoints Generated by Algorithm 1 for Both Days of the Multi-vehicle Plume Tracking Mission
Presented in Section 7.2. The Left-hand Columns give the Selected Waypoints for Day One and the Right-hand Columns give the
Waypoints for Day Two of the Mission. These Waypoints Define the Implemented Paths for the Centroid-tracking Vehicle. For the First
Day, Waypoint Numbers 1, 2, 3, 4 and 6 are the Computed Surfacings for the Glider at Hours 0, 4, 8, 12 and 16, Respectively. Waypoint
Number 5 is an Additional Location (p∗ ∈ L) to be Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1. For the Second
Day, Waypoint Numbers 1, 3, 5, 6 and 7 are the Computed Surfacings for the Glider at Hours 0, 4, 8, 12 and 16, Respectively. Waypoint
Numbers 2 and 4 are Additional Locations (p∗ ∈ L) to be Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1

Day 1 Latitude (◦ N) Longitude (◦ E) Day 2 Latitude (◦ N) Longitude (◦ E)

1 33.5180 –118.3930 1 33.5060 –118.4970
2 33.5281 –118.4230 2 33.5236 –118.4810
3 33.5266 –118.4553 3 33.5241 –118.4901
4 33.5177 –118.4859 4 33.5060 –118.4781
5 33.5232 –118.4826 5 33.5118 –118.4809
6 33.5061 –118.4968 6 33.4867 –118.4688

7 33.4608 –118.4523

Table 3. A Complete Listing of the Waypoints Generated by Algorithm 2 for Both Days of the Multi-vehicle Plume Tracking Mission
Presented in Section 7.2. The Left-hand Columns give the Selected Waypoints for Day One and the Right-hand Columns give the
Waypoints for Day Two of the Mission. These Waypoints define the Implemented Paths for the Boundary-tracking vehicle

Day 1 Latitude (◦ N) Longitude (◦ E) Day 2 Latitude (◦ N) Longitude (◦ E)

1 33.5350 –118.5600 1 33.5350 –118.5600
2 33.5612 –118.5526 2 33.5081 –118.5584
3 33.5759 –118.5254 3 33.5332 –118.5466
4 33.5530 –118.5424 4 33.5201 –118.5183
5 33.5693 –118.5167 5 33.4974 –118.5357

ended at 1835Z; a total time of 15.55 h. Owing to external
disturbances, arrival at a few waypoints was not at the
predicted times. The primary external disturbance affecting
temporal, and spatial, accuracy is ocean currents. As
previously mentioned, extensions to Algorithm 3 have been
made in Smith et al. (2010c) to design more temporally
feasible paths for the glider while tracking the centroid of a
plume.

7.2. Centroid and Boundary Tracking

For this mission, we defined a pseudo-plume D with 12
initial drifter locations off the northeast coast of Santa
Catalina Island. Again, based on observed behavior, we take
v = 0.75 km h−1, and define dl = 2.7 km and du = 3.3 km.
An overview of the general testing area for this deployment
is presented in Figure 11(a). By use of ROMS, the locations
of the points in D were predicted for T = 16 h. Owing to
the predicted currents and proximity to Catalina Island, two
of the initially defined drifters exited the model boundary.
Thus, the plume was propagated and computations were
made by use of 10 drifters.

7.2.1. Analysis of Results This retasking mission further
validated the proof-of-concept of generating and imple-
menting trajectories by use of predictive ocean models.

In this case, we demonstrated further functionality by
incorporating multiple vehicles and testing the iterative
capabilities of the proposed technique by closing the loop
with data assimilation into ROMS to update the next
prediction. Since we used a pseudo-plume as a tracking
proxy, we again do not have a metric in this experiment
to assess any change in skill of ROMS predictions due
to the data assimilation conducted. However, it is worth
noting that collected data were successfully transmitted and
assimilated from the robot in the field to ROMS for use in
the next prediction. Using the methods described here to
generate trajectories for multiple vehicles is not difficult.
The complexity arises in synchronizing surfacings or com-
pensating for asynchronous communication with the fleet
of gliders. This synchronization problem was addressed in
Paley et al. (2008) for their specific application, and it is
of interest to us to implement a similar, high-level control
system to aid in the facilitation and management of multi-
vehicle deployments incorporating autonomous retasking.
Preliminary infrastructure and research towards this goal
is presented in Smith et al. (2010a) and Pereira et al.
(2009).

To begin, the plume was delineated in an area of current
operation of two deployed gliders. The initial location is
presented in Figure 11(b). The waypoints computed by
Algorithm 3 to follow this plume are presented for the
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Fig. 11. Deployment results for the first day of the mission for two vehicles to track an evolving plume. The plume extent is delineated
by the closed polygon. One vehicle (dashed line path) follows the boundary, while one vehicle (solid line path) tracks the centroid of the
plume. The centroid is depicted by the dot inside the delineated plume extent. Panel (a) provides an overview of the deployment area off
the coast of Los Angeles, CA. Panel (b) presents an enlarged image of the deployment area just off the northeast coast of Santa Catalina
Island, CA with the initial delineation of the plume. Panels (b)–(f) present snapshots every four hours of the tracking experiment from
initialization to completion (T = 16 h) for the first day. The scale given in panel (b) is the same for panels (c)–(f). Images created by
use of Google Earth.

centroid- and boundary-tracking vehicles in the left-hand
columns of Tables 2 and 3, respectively. The initial time
and location for the beginning of this retasking experiment
coincided with predicted coordinates of glider surfacings.
Since the assigned mission was to collect communication
data, the vehicles were surfacing frequently (� 2 h
intervals). This made coordinating surfacing time much

more manageable than in the scenario presented in Section
7.1, where the glider was surfacing approximately every
8 h. In addition, communication via our implemented
Freewave™ network (Pereira et al. 2009) facilitated more
robust communication, as well as more rapid file exchange
than during previous deployments. Once both gliders were
on the surface together (approximately 1800Z, 11 May
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2009), we ran Algorithm 3 with the location of each glider
initially being on the boundary of the plume. Figure 11(b)(f)
display the delineation of the plume with the locations of
both gliders at 4-h increments from T = 0 h (Figure 11(b))
to T = 16 h (Figure 11(f)). In these figures, the boundary-
tracking glider follows the dashed line and the centroid-
tracking glider follows the solid line. The respective icons
along the paths denote the locations where the glider
surfaced while executing the mission. When visible, the
dot inside the polygonal delineation of the plume extent
represents the predicted centroid of the plume; when not
seen, the centroid-tracking glider surfaced within 500 m of
the location of the predicted centroid. The solid and dashed
lines depict the path of the glider (projected to the surface)
between surfacings. Note that in the initial four hours of the
mission, the plume moved northward, and the boundary-
tracking vehicle was on the leading edge. However, after
the initial few hours, the plume migrated southward and the
boundary-tracking glider ended up following the trailing
edge of the plume. Day one of this mission ended shortly
after 1000Z on 12 May 2009.

Upon completion of the day-one mission, the gliders
resumed their previous missions of gathering communica-
tion data while we awaited the following day’s ROMS pre-
diction. The entire process mentioned above was repeated
beginning at approximately 2200Z on 12 May 2009. The
initial plume delineation, glider surfacing locations and
projected trajectories are given in Figure 12(a-e). The com-
puted waypoints for the centroid- and boundary-tracking
vehicles are given in the right-hand columns of Tables
2 and 3, respectively. Day two of the mission completed
shortly after 1400Z on 13 May 2009. Note that at the
start of day two, we redelineated the plume differently
from the final predicted configuration of day one. This is
applicable in practice because we cannot assume ROMS
to be 100% accurate, and we have a time gap between
the start of the sampling missions where we expect the
plume to further evolve. Additionally, we are forecasting
the evolution of a plume based on the predicted paths of
multiple, unconnected, Lagrangian drifters, which may not
behave exactly like a contiguous ocean feature.

Overall, this 2-day mission validated both the multi-
vehicle applicability as well as the ability to close the loop
on the technology toolchain from ROMS to path planning
to field AUV and back to ROMS. This further motivates
our efforts to prepare for a large-scale deployment, such as
Bight 2010 presented in Section 6, with hopes of locating
and tracking a plume from a significant rain event runoff, or
a HAB.

8. Conclusions and Future Work

In the study of path planning for field robots, designing
the trajectory is usually less than half the battle; the real
challenge comes in the implementation. This is exaggerated
when dealing with underwater robots due to the complex,

and often unknown, environment. Poorly understood ocean
dynamics, difficulty in localization and extreme conditions
all contribute to the struggle of successful implementation
of a planned mission for an AUV. In this paper, we examined
the use of ocean model predictions to help reduce some of
this uncertainty for the application of path planning to track
an evolving ocean feature.

Generating effective sampling strategies to study ocean
phenomena is a challenging task that can be approached
from many different angles. Here we presented a method to
exploit multiple facets of technology to achieve our goal.
Utilizing an ocean model, an embedded sensor network
and an AUV, we were able to construct a technology chain
which plans a path to track areas of scientific interest
within a chosen feature of interest for a chosen period of
time. This toolchain was used to design a single-vehicle
mission to track a plume’s centroid, and generate the paths
for a multi-vehicle mission for simultaneous sampling at
the centroid as well as along the boundary of a given
feature. We presented iterated field trials to demonstrate
closing the loop of the technology chain developed as
well as to demonstrate a proof-of-concept of the planning
method presented. This paper has demonstrated that we
have implemented the collaboration and technology chain
required to perform complex field experiments to track
dynamically evolving ocean features. Research is ongoing
to extend and improve upon the presented waypoint-
generation and path planning algorithms to incorporate
ROMS 4-D velocity predictions to improve the accuracy
of the implementation (Smith et al. 2010c). Additionally,
we are interested in assessing the accuracy of ROMS
velocity predictions, and the performance and reliability
of our gliders to more effectively utilize them to further
our understanding of the life cycle of an algal bloom
(Smith et al. 2010b). We remark that the implementation
and realization of the paths generated in this paper
were perfectly feasible, given that there was no temporal
constraint. Improving the temporal feasibility along with
the spatial accuracy is a primary focus of ongoing
and future work in this area. Based on the operational
constraints of the gliders, these are not the optimal
vehicles to chase fast-moving events or adaptively react to
dynamically changing conditions. The CINAPS team is in
the process of acquiring a different type of AUV that is
more agile and can more effectively carry out the strategies
designed here, with specific regard to fast-moving features.

The main implementation issue is the assumed ability of
the glider to accurately navigate to a given waypoint. In
general, this is a widely studied, and currently unsolved,
problem in underwater robotics. For the results presented
here, this artifact is a result of the waypoint-selection
algorithms only utilizing a 2-D propagation of the plume,
and ignoring the dynamics of the glider and predicted
vertical velocity profiles when generating the final path
plan. Research is active to extend these results to
incorporate the kinematic and dynamic aspects of the
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Fig. 12. Deployment results for the second day of the mission for two vehicles to track an evolving plume. The plume extent is
delineated by the closed polygon. One vehicle (dashed line path) follows the boundary, while one vehicle (solid line path) tracks the
centroid of the plume. The centroid is depicted by the dot inside the delineated plume extent. Panel (a) presents an enlarged image of
the deployment area just off the northeast coast of Santa Catalina Island, CA with an updated delineation of the plume for the start of
day two. Panels (a)–(e) present snapshots every four hours of the tracking experiment from initialization to completion (T = 16 h) for
the second day. The scale given in panel (a) is the same for panels (b)–(e). Images created by use of Google Earth.

glider, see Smith et al. (2010b), and extend this method
of path planning from a planar to a 3-D path planning
algorithm and trajectory generation toolchain, see Smith
et al. (2010c). As mentioned previously, we are making
progress to increase the performance of the AUV through
the use of ocean model predictions, but at this time we
are still not equipped to utilize ROMS predictions to
propagate a feature of interest in 4-D. The primary reason

for this is based on the lack of understanding and detection
capabilities of the initial 3-D structure and extent of a
given plume. Algal blooms, in particular, are too poorly
understood to hypothesize about their 3-D spatial extent; we
currently have difficulties determining and predicting their
2-D extent.

A long-term goal of this effort is to utilize the embedded
sensor network presented in Smith et al. (2010a) and
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Pereira et al. (2009) to enable real-time, optimal trajectory
design, based on ocean model predictions, to gather
in situ measurements of interesting and evolving ocean
features and phenomena while additionally increasing the
skill of regional ocean models. Through this effort, we aim
to quantitatively assess the effectiveness of ocean model
predictions in the design and accurate implementation of
trajectories for AUVs. As previously mentioned, this will
come with deployment of actual drifters simulating the
propagation of a feature, or the occurrence of an actual
HAB event during Bight 2010.

As discussed in Section 6, a more immediate implemen-
tation of the methods developed here will be used during
our participation in Bight 2010. Currently, we are expe-
riencing weak El Niño conditions, as equatorial Pacific,
sea-surface temperatures remained above average through
August 2009. These conditions are expected to strengthen
through winter 2009–2010 in the Northern Hemisphere
(Climate Prediction Center 2009), and have impacted
Southern California with more frequent and intense storm
events in early 2010. From the discussion in Sections 2.1
and 2.2, we can infer that the potential for the formation of
conditions that may promote an algal bloom is increased
over the next year. Such information presents a greater
opportunity to retest and validate our methods and algo-
rithms in a real scenario. Thus, we are motivated to further
develop our algorithms to steer AUVs into locations of
high scientific merit with regard to HAB research and help
ocean scientists better understand these complex phenom-
ena, while additionally assessing the prediction capabilities
of regional ocean models.
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Notes

1. The SCB is the oceanic region contained within 32◦ N to
34.5◦ N and −117◦ E to −121◦ E.

2. The SCB is a very high traffic region, and the glider has a low
visual profile when on the surface. Although the probability
of a collision is low, we choose to err on the side of caution.
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