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Abstract Sponge transcriptomes are important resources

for studying the stress responses of these ecologically

important filter feeders, the interactions between sponges

and their symbionts, and the evolutionary history of

metazoans. Here, we generated reference transcriptomes

for two common and cosmopolitan Indo-Pacific sponge

species: Carteriospongia foliascens and Cliona orientalis.

We also created a reference transcriptome for the primary

symbiont of C. orientalis—Gerakladium endoclionum.

Assemblies for C. foliascens, C. orientalis, and G. endo-

clionum contained 67,304, 82,895, and 28,670 contigs,

respectively. Contigs represented 15,248–37,344 isogroups

(* genes) per assembly, and N50s ranged from

1672–4355 bp. Sponge transcriptomes were high in com-

pleteness and quality, with an average of 93% of core

EuKaryotic Orthologous Groups (KOGs) and 98% of sin-

gle-copy metazoan core gene orthologs identified. The G.

endoclionum assembly was partial with 56% of core KOGs

and 32% of single-copy eukaryotic core gene orthologs

identified. These reference transcriptomes provide a
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valuable resource for future research assessing sponge

stress responses.

Keywords Porifera � Transcriptome � Sponge � Cliona
orientalis � Carteriospongia foliascens � Gerakladium
endoclionum

Introduction

Sponges, phylum Porifera, are one of the oldest lineages of

multicellular animals (Feuda et al. 2017); hence, investi-

gating the transcriptomes of different sponge species can

provide insight into the evolution of metazoans and their

gene expression profiles. Sponges have an uncertain future

in the face of global climate change (see Bell et al. 2013;

IPCC 2014) as well as local stressors including coastal

development and increased runoff of nutrients, pesticides

and sediments (Kroon et al. 2012; Stender et al. 2014).

Transcriptomic analysis of sponges that have been exposed

to different environmental conditions would improve our

understanding of molecular stress response pathways and

enhance our ability to effectively manage these ecologi-

cally important filter feeders (e.g., Koutsouveli et al. 2020).

Although there are approximately 9,000 described sponge

species (Van Soest et al. 2020), relatively few species have

published genomes or transcriptomes (e.g., Riesgo et al.

2014a, b).

Here, we assembled the transcriptomes of two common

and widely distributed Indo-Pacific sponge species—Car-

teriospongia foliascens and Cliona orientalis. Both are

emerging model species that have been used extensively to

study the physiological and ecological effects of environ-

mental stressors on sponges (e.g., Pineda et al.

2016, 2017a, b, c). While both C. foliascens and C. ori-

entalis host diverse populations of bacterial symbionts (see

Pineda et al. 2016), C. orientalis additionally hosts an

abundant population of eukaryotic Symbiodiniaceae: Ger-

akladium endoclionum (LaJeunesse et al. 2018), which

comprises up to 96% of its algal symbiont community

(Ramsby et al. 2018). We used sequences generated from

the C. orientalis holobiont, i.e., host and symbiont, to

construct a partial reference transcriptome for Gerakladium

endoclionum. Matching host and symbiont transcriptomes

provide a valuable tool to understand the holobiont

response to changing environmental conditions and deter-

mine the cause–effect pathways for declining host health

with environmental change.

Materials and methods

Samples and sequencing

Samples of C. foliascens and C. orientalis were collected in

May 2015 from Fantome Is. (S 18�41.0280 E 146� 30.706)
and Pelorus Is. (S 18� 32.9030 E 146� 29.1720), respec-
tively, in the Great Barrier Reef under permits G12/

35,236.1 and G13/35,758.1. Since C. orientalis is a bio-

eroding sponge, ten C. orientalis drill cores (* 5 cm in

diameter) were collected from a single individual growing

on a dead colony of Porites sp. An individual of C.

foliascens was cut into ten pieces (see Pineda et al. 2016).

Sponges were healed and acclimated under natural light

and flow-through seawater for 4 weeks before experiments

were performed.

To capture the full range of gene expression responses,

sponges were subjected to five different treatments at the

Australian Institute of Marine Science (AIMS) National

Sea Simulator: (i) decreased salinity, (ii) elevated temper-

ature, (iii) elevated suspended sediment concentrations

(SSCs) and sediment deposition, (iv) light attenuation, and

(v) no stress control (see Supplemental for details). One

genotype was used per species across all treatments to

control for genetic variation. Two clones of each species

were used for each treatment. Immediately after each

treatment, * 1 cm3 of tissue from each clone was frozen

in liquid nitrogen and stored at - 80̊C (Riesgo et al. 2012).

Approximately 50 mg of each clone was ground using a

mortar and pestle under a thin layer of liquid nitrogen to

limit RNA degradation. All tools were rinsed in ethanol

followed by RNase Zap (Sigma-Aldrich, USA) to remove

contamination and deactivate RNA degrading enzymes.

Total RNA was isolated using the Zymo ZR RNA miniprep

kit, with in-column DNase digestion, and cleaned using the

Zymo RNA Clean and Concentrator kit (Zymo Research,

USA). Total RNA quality was checked using gel elec-

trophoresis and quantified using a Quant-iT RiboGreen

Assay (Thermo Fisher Scientific, USA). For each sponge

species, RNA from individual treatments was combined in

equal amounts from all sponge clones to a final total RNA

concentration of 93 ng ll-1 for C. foliascens and

160 ng ll-1 for C. orientalis. To isolate eukaryotic mes-

senger RNA (mRNA), a TruSeq Stranded mRNA-seq

sample prep was performed. The mRNA was then

sequenced across two Illumina HiSeq2500 lanes at the

Ramaciotti Centre for Genomics (University of New South

Wales, Australia), generating 2 9 100 base pair (bp)

paired-end (PE) rapid runs.
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Transcriptome assembly and annotation

Reads were trimmed using publicly available scripts (Matz

2015; Meyer 2016) and assembled with Trinity v 2.8.5

(Grabherr et al. 2011) following established protocols

(Kenkel and Bay 2017, see Supplemental Material and the

github repository below for a full description). After

assembly, additional quality control was performed to

ensure that only target transcripts, i.e., derived from C.

foliascens, C. orientalis or G. endoclionum, were included

in their respective reference transcriptomes using protocols

outlined by Kitchen et al. (2015) and Kenkel and Bay

(2017). These quality controls also removed short contigs,

ribosomal and mitochondrial RNA contamination (see

Supplemental Material). Within each of the three tran-

scriptomes, contigs were assigned to isogroups (* genes)

and assigned gene names, gene ontologies (GO) (Gene

Ontology Consortium 2000) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) IDs, following established

protocols (Dixon 2015; Matz 2015b; Kenkel and Bay 2017;

see Supplemental). The guanine-cytosine (GC) content of

the transcriptomes was calculated using the BBMap

package (Bushnell 2014). Transcriptome completeness was

assessed by Benchmarking Universal Single-Copy Ortho-

logs (BUSCO) analysis (Simão et al. 2015) using metazoan

or eukaryotic references for sponge and algal transcrip-

tomes, respectively.

Results and discussion

In the decreased salinity and darkness treatments, C. ori-

entalis visibly bleached after two days, but C. foliascens

did not exhibit any color changes. Sponges were not visibly

affected by sediment exposure or elevated seawater tem-

perature. For C. foliascens and C. orientalis, respectively,

RNA had average A260/A280 ratios of 1.88 and 2.02 and

A260/A230 ratios of 1.11 and 1.67. The low quality of the

latter RNA was likely due to proteinaceous contamination

that appeared to be universal in this species across treat-

ments but did not interfere with sequencing depth or

quality. Sequencing produced 409 and 418 million raw

reads for C. foliascens and C. orientalis, respectively

(Table 1).The holobiont assemblies of C. foliascens and C.

orientalis contained 225,126 (N50 = 1,284) and 146,510

(N50 = 1,949) contigs[ 400 bp (Table 1). After parti-

tioning, 67,304 and 82,895 contigs, for C. foliascens and C.

orientalis, respectively, were considered the ‘sponge-

specific’ transcriptome assemblies. The partitioned G.

endoclionum transcriptome isolated from the C. orientalis

holobiont comprised 28,670 contigs (Table 1). The C.

foliascens, C. orientalis, and G. endoclionum transcrip-

tomes contained 15,248, 37,344, and 21,566 isogroups,

respectively, with mean lengths of 3,024, 1,756, and

1,375 bp (Table 1). The number of isogroups identified in

the C. foliascens and C. orientalis transcriptomes was

comparable to previously published sponge transcriptomes

with * 11,000–60,000 expressed genes (López-Maury

et al. 2008; Riesgo et al. 2014a; Guzman and Conaco

2016). The G. endoclionum transcriptome was comparable

in size to the S. kawagutii genome (36,850 genes, Lin et al.

2015) and other Symbiodiniaceae transcriptomes

(23,777–26,986 genes, Ladner et al. 2012). The respective

GC content of each assembly was 40.2, 45.5, and 59%,

matching reported values for metazoans (35–55%, Riesgo

et al. 2014b; Francis et al. 2017; Karimi et al. 2017) and

Symbiodiniaceae (45–65%, Karimi et al. 2017). For C.

foliascens and C. orientalis, the percentage of genes

assigned a name or GO term was 64 and 77%, respectively

(Table 1), comparable with other sponge transcriptomes

(30–70%, Riesgo et al. 2014a). Only 39% of G. endo-

clionum isogroups could be assigned functions or GO term

annotations; however, this is consistent with functional

annotation of other intracellular Symbiodiniaceae tran-

scriptomes (34–44%, Ladner et al. 2012). The isogroups

for C. foliascens, C. orientalis, and G. endoclionum were

assigned 3641, 5339, and 2191 unique KEGG annotations,

respectively.

The transcriptomes for C. foliascens and C. orientalis

were largely complete based on BUSCO analysis (92.8%

and 94.2% complete, respectively) and the representation

of nearly all core eukaryotic Orthologous Groups (KOGs)

97.9% and 98.7%, respectively (Table 1). BUSCO analysis

of the transcriptome of G. endoclionum was 32.3% com-

plete, and 56% of core KOGs were identified (Table 1). A

reduced completeness (33–42%) in genomes isolated from

intracellular Symbiodiniaceae also occurs in corals (Liu

et al. 2018), perhaps due to poor representation of related

phyla within the BUSCO eukaryotic gene set. The G.

endoclionum transcriptome contained 86% more isogroups

than the Symbiodiniaceae transcripts identified within the

transcriptome assembly of the closely related sponge

holobiont, Cliona varians (Riesgo et al. 2014b). Therefore,

the current transcriptome for G. endoclionum was consid-

ered useful for future studies in hospite.

C. foliascens and C. orientalis are widely distributed

throughout the Indo-Pacific and are ecologically important

components of the reef ecosystem, particularly in the GBR

where C. foliascens is a dominant component of the ben-

thos and C. orientalis bioerodes calcium carbonate sub-

strate, including the skeletons of live coral. These data

represent a substantial contribution to publicly available

poriferan genetic resources and will provide the framework

needed to develop these two sponge species into models for

field and laboratory studies, particularly research
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examining the molecular mechanisms underpinning how

reef sponges respond to environmental perturbation.
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