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[1] Measurements to date have shown that both bulk and high molecular weight marine
dissolved organic nitrogen (DON) have a 15N/14N that is substantially higher than the
15N/14N of suspended particulate organic nitrogen (PNsusp) found in the same surface
waters (with d15N of ∼4 to 5‰ and ∼−1 to 1‰, respectively). Moreover, the concentration
and 15N/14N of DON are much less dynamic than those of PNsusp. These observations raise
questions regarding the role of DON in the upper ocean nitrogen (N) cycle. In this study,
the concentration and 15N/14N of nitrate and DON was measured in the upper 300 m
of the oligotrophic North Atlantic and North Pacific Oceans. Comparing these two regions,
the average DON concentration in the upper 100 m is similar, between 4.5 and 5.0 mM, but
the average d15N of DON is significantly different, 3.9‰ versus air in the North Atlantic
and 4.7‰ in the North Pacific. This difference parallels a similar isotopic difference
between shallow nitrate in these two regions; at 200 m in the North Atlantic, the d15N of
nitrate is 2.6‰, while it is 4.0‰ in the North Pacific. This isotopic correlation between
surface DON and subsurface nitrate indicates that DON is actively participating in the
upper ocean N cycle of each region. We describe a conceptual model that explains the
elevation of the 15N/14N of DON relative to surface ocean PNsusp as well as the interbasin
difference in the 15N/14N of DON. In this model, DON is produced from PNsusp without
isotopic fractionation but DON is removed by fractionating processes. The ammonium
and simple organic N compounds released by DON decomposition reactions are
reassimilated by algae into the PNsusp pool, as an integral part of the ammonium‐centered
cycle that lowers the 15N/14N of PNsusp relative to the nitrate supply from below. This
interpretation is consistent with the understanding of the chemical controls on isotope
fractionation and is analogous to the previously posed explanation for the 15N/14N
elevation of herbivorous zooplankton. In addition, it explains a lack of correlation between
in situ N2 fixation rates and DON concentration and 15N/14N on short time scales.
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1. Introduction

[2] Dissolved organic nitrogen (DON) is thought to play a
central role in the microbial loop and thus in the metabolism

of the ocean [Azam et al., 1983]. However, fundamental
questions remain about this complex pool of marine nitrogen.
DON can be produced by numerous biological mechanisms,
including direct release from living marine microbes, cell
death, viral lysis, and grazing [Bronk and Steinberg, 2008,
and references therein]. Still, a mechanistic understanding of
how, when, and why DON is produced under different
oceanographic conditions remains elusive [Azam, 1998].
Similarly, it has been shown that various constituents of
DON, especially amino acids and urea, can be assimilated
by phytoplankton and bacteria [e.g., Palenik and Morel,
1990; Bronk et al., 2007; Mulholland and Lee, 2009].
However, in the oligotrophic surface ocean, these simple
compounds are minor constituents of DON [e.g., McCarthy
et al., 1996, 1997; Aluwihare et al., 2005; Kaiser and
Benner, 2008, 2009]. It is possible that more complex
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forms of DON are also directly available to phytoplankton
and bacteria. However, it could be that DON is a large
reservoir of highly diverse, relatively recalcitrant organic N
containing compounds that can be broken down into simple,
commonly utilized forms of N (e.g., ammonium, amino
acids) which are then rapidly assimilated.
[3] In spite of its dynamic role in surface ocean N cycling,

characterization of the DON pool has proven challenging
due to its apparently recalcitrant composition and its low
concentration in the ocean. Tangential‐flow ultrafiltration
and resins have been used to concentrate and de‐salt marine
DON for chemical and isotopic characterization [e.g.,
Benner et al., 1992; McCarthy et al., 1996; Benner et al.,
1997; McCarthy et al., 1997, 1998; Aluwihare et al., 2005;
McCarthy et al., 2007; Guo et al., 2009; Kaiser and Benner,
2009]. However, the high‐molecular weight DON (HMW
DON) that is captured by ultrafiltration represents only
∼20 to 35% of the bulk DON pool [Benner et al., 1992,
1997], leaving the balance of the marine DON pool largely
uncharacterized.
[4] In addition, determination of in situ DON fluxes is

hindered by the heterogenous and largely unknown com-
position of the bulk surface ocean DON pool. 15N‐labeled
model organic compounds are added to culture or meso-
cosm experiments to constrain DON fluxes (see review by
Mulholland and Lomas [2008, and references therein]).
However, because these model compounds do not appear to
be a substantial component of the standing DON pool in
surface waters, it is not known how these fluxes relate to the
production and consumption of in situ DON.
[5] To better constrain oligotrophic surface ocean DON

sources and cycling, the concentration and isotopic com-
position of bulk DON were measured in samples collected
in the Sargasso Sea, the Western Tropical North Atlantic
Ocean, the North Pacific Ocean, as well as over the North
Australian shelf. Additionally, the concentration and d15N
of nitrate (NO3

−) in the upper 400 m was measured (where
d15N = {[(15N/14N)sample/(15N/14N)reference] − 1} and where
the reference is atmospheric N2). Finally, during several of
the cruises, at the same stations where our geochemical
samples were collected, euphotic zone N2 fixation rates
were measured by others using biological assay techniques.

Based on these data, we derive a conceptual model for the
role of DON in the upper ocean cycling of N and its
isotopes.

2. Methods

2.1. Sample Collection

[6] Samples were collected from Niskin bottles deployed
on a rosette into acid‐cleaned, sample‐rinsed 60 mL HDPE
bottles that were frozen at −20°C until analysis. The date,
latitude, longitude and depth of all samples are reported in
Data Set S1 in the auxiliary material.1

2.1.1. North Atlantic Ocean Samples
[7] DON and NO3

− samples were collected on three cruises
in the North Atlantic Ocean. In October 2002 unfiltered
seawater samples were collected along a meridional transect
between Bermuda and Puerto Rico at each degree of latitude
between ∼30° N and ∼19° N (Figure 1) aboard the R/V
Weatherbird II as part of the BVAL 32 cruise carried out by
the Bermuda Institute of Ocean Sciences (hereafter referred
to as the “BVAL 32“ cruise) (n = 108). In addition, surface
water (∼1 m) DON samples were collected in the Western
Tropical North Atlantic Ocean during two MANTRA/
PIRANA “Biocomplexity” cruises from January through
February 2001 (hereafter referred to as “MP1”) (n = 6) and
July through August 2001 (hereafter referred to as “MP3”)
(n = 12), aboard the R/V Seward Johnson and R/V Knorr,
respectively (Figure 1). MP1 and MP3 samples were col-
lected by an underway, towed fish [Vink et al., 2000] and
filtered through a 0.2 mm cartridge filter (MSI Calyx poly-
propylene) via peristaltic pump.
2.1.2. North Pacific Ocean and North Australian Shelf
Samples
[8] DON and NO3

− samples were collected on two cruises
in the Pacific Ocean. Unfiltered seawater samples were col-
lected in July through August 2003 aboard the R/V Revelle
on a MANTRA/PIRANA “Biocomplexity” cruise (hereafter

Figure 1. Cruise and station map overlaid upon World Ocean Atlas 2005 [Garcia et al., 2006] annually
averaged surface ocean [NO3

−]. Samples were collected in November 1999 above the North Australian
shelf (green filled squares); in January–February 2001 and July–August 2001 in the Central Western
Atlantic (“MP1,” pink diamonds, and “MP3,” purple triangles, respectively); in October 2002 in the
Sargasso Sea (BVAL 32) (filled red inverted triangles); and in July–August 2003 in the North Pacific
(MP9) (filled blue circles).

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/gb/
2010gb003878. Other auxiliary material files are in the HTML.
doi:10.1029/2010GB003878.
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referred to as “MP9”) (n = 136) between latitudes 18°N and
28°N, and longitudes 170°E and 154°W, although most
samples were collected within 5° of the Hawaiian Islands
(Figure 1). Additionally, surface water (∼5 m) DON samples
(n = 5) were collected from North Australian shelf waters
in November 1999 on the R/V Ewing (hereafter referred
to as the “Australia 1999” cruise) from a deployed zodiac
using a peristaltic pump and filtered through a 0.2 mm
MSI Calyx polypropylene cartridge filter following the
protocols described for the North Atlantic MP1 and MP3
cruises.

2.2. Nitrate and DON Concentration Analysis

[9] The concentration of NO3
− ([NO3

−]) was determined by
chemiluminescent analysis [Braman and Hendrix, 1989] in
a configuration yielding a detection limit of ∼0.05 mM.
Nominal [NO3

−] measurements include nitrite (NO2
−), but

NO2
− concentrations are negligible (typically <0.05 mM; see

Lipschultz [2001] for the Sargasso Sea and Fujiki et al.
[2008] for the North Pacific Gyre). The average standard
deviation for replicate [NO3

−] analyses from an individual
sample is ±0.1 mM.
[10] The concentration of DON ([DON]) was deter-

mined using persulfate oxidation to convert DON to NO3
−

[Solórzano and Sharp, 1980], adapted according to Knapp
et al. [2005]. The resulting [NO3

−] was then measured using
chemiluminescence as described above. In cases where
samples were not filtered (i.e., those from the BVAL 32
and MP9 cruises), [DON] measurements are truly mea-
sures of the total N concentration ([TN]) in a sample. In
the upper 100 m of most sampling locations, however,
where the [NO3

−] is below the detection limit, ≥90% of
TN is present as DON [Abell et al., 2000], and so these
are essentially measures of [DON]. In the subsurface (i.e.,
>100 m) where the [NO3

−] is above the detection limit,
[DON] is determined by subtracting the [NO3

−] from the [TN]
of a sample. The average standard deviation for duplicate
[DON] analyses of individual samples that have unde-
tectable levels of NO3

− in the sample is ±0.30 mM, and
the propagated error for [DON] when NO3

− is present is
0.32 mM.

2.3. NO3 and DON d15N Analysis

[11] The isotopic composition of NO3
− was determined

using the “denitrifier” method [Sigman et al., 2001;
Casciotti et al., 2002] on samples with [NO3

−] >0.5 mM. The
standard deviation associated with replicate NO3

− d15N
analyses of an individual sample is ±0.2‰. The d15N of
DON was determined according to Knapp et al. [2005],
where DON samples were oxidized to NO3

− by persulfate
oxidation (as described above in section 2.2), acidified to a
pH range of 3 to 4, and measured as per NO3

− by the denitrifier
method. In samples with measurable NO3

−, the d15N of DON
is calculated by mass balance by subtracting the [NO3

−] and
NO3

− d15N from the [TN] and TN d15N measurements. In
surface samples with undetectable levels of NO3

−, the stan-
dard deviation associated with duplicate analysis of a sample
for DON d15N is ±0.3‰. For subsurface samples with
[NO3

−] approximately equal to the [DON], the propagated
error for the calculation of DON d15N using a Monte Carlo
method [Press et al., 1992], and assuming duplicate analysis

of a single sample and the standard deviations for [TN],
[NO3

−] and NO3
− d15N given above, is ±0.6‰.

3. Results

3.1. NO3
− and Bulk DON Concentration

[12] The [NO3
−] data from the BVAL 32 and MP9 cruises

are consistent with previous work in the Sargasso Sea [e.g.,
Michaels and Knap, 1996; Knapp et al., 2005] and in the
North Pacific gyre [e.g., Fujiki et al., 2008], with higher
[NO3

−] in the shallow subsurface (i.e., 100 to 400 m) in the
North Pacific than in the North Atlantic (Figures 2, S1, and
S2 and Data Set S1). Most of the Australia 1999 cruise was
over shallow (<100 m depth) shelf areas. Typically, the
surface water samples collected on the Australia 1999, MP1
and MP3 cruises had undetectable levels of NO3

−, although
the 5 November sample from the Australia 1999 cruise had
0.45 mM NO3

−, and station 46 on the MP1 cruise had
0.45 mM NO3

−.
[13] The range in bulk [DON] from all depths on all

cruises was 3.0 to 8.1 mM (Figure 3), with lower [DON]
observed at greater depths (Figures 2a, S1, and S2). Within
the upper 100 m, 90% of [DON] was between 4.0 and
5.5 mM (total range 3.4 to 8.1 mM). The average [DON] of
samples collected in the upper 100 m on BVAL 32 and MP9
are not statistically distinguishable, 4.7 mM and 4.8 mM,
respectively (Figures 2a, 4b, S1a, and S2a and Table 1), and
exhibit a similar concentration gradient from the upper
100 m to 200 m (Figures 2a, S1a and S2a). The average
[DON] decreases significantly (p < 0.005; Kruskal‐Wallis
test for non‐parametric data [Triola, 2001]) to 3.7 and
3.8 mM at 200 m in the North Atlantic and North Pacific,
respectively, indicating a net addition of ∼1 mM DON in the
upper 100 m of both basins, relative to the background
[DON] exchanged with the shallow thermocline (Figure 2a
and Table 1). In the North Atlantic, half of this change in
concentration (∼0.5 mM) occurs between the upper 60 m and
the 80–100 m depth interval, and the other 0.5 mM [DON]
change occurs between 100 m and 200 m (both statistically
significant changes, Figure 2a). However, in the North
Pacific, the largest break in [DON] is between 100 m and
200 m (Figure 2a). These interbasin differences in [DON]
with depth are consistent with previous observations from the
Sargasso Sea and the North Pacific [Harrison et al., 1992;
Hansell and Carlson, 2001; Knapp et al., 2005; Fujiki et al.,
2008].
[14] The surface water samples from the Australia 1999

and from the MP1 and MP3 cruises to the Western Tropical
North Atlantic have a similar range in bulk [DON] (Figure 3).
The [DON] of MP1 and MP3 samples range from 3.8 to
7.1 mM, and samples from the Australia 1999 cruise range
from 3.4 to 8.1 mM (Figure 3 and Data Set S1).

3.2. NO3
− and DON d15N

[15] The depth profiles of NO3
− d15N from the BVAL 32

and MP9 cruises are comparable to previous measurements
(e.g., those by Knapp et al. [2005, 2008] in the Sargasso Sea
and Sigman et al. [2009] for the North Pacific), although the
shallow thermocline NO3

− d15N data in Casciotti et al. [2008]
from station ALOHA are lower than the data reported here. In
general, the d15N of NO3

− in the thermocline of the North
Pacific is higher than in the North Atlantic (Figures 2b, S1,
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and S2) because of denitrification occurring in the oxygen
minimum zones of the Eastern Tropical Pacific [Brandes
et al., 1998; Sigman et al., 2009]. The average NO3

− d15N
at 200 m is 4.0‰ in the North Pacific, and 2.6‰ in the
Sargasso Sea (Figure 2b and Table 1).
[16] The range in DON d15N in all samples from all

depths was the same as the range in DON d15N of samples

from the upper 100 m, the typical euphotic zone depth for
these cruises, between 1.1 and 6.1‰, although 90% of DON
had a d15N between 3.4 and 5.5‰ (Figures 3 and 5 and Data
Set S1). The average DON d15N for the upper 0 to 100 m
was 3.9‰ ± 0.5‰ (1 S.D.) and 4.7‰ ± 0.5‰ (1 S.D.) for
the BVAL 32 and MP9 cruises, respectively (Figure 2b and
Table 1). Comparison of the average DON d15N in mixed

Figure 2. (a) Depth versus cruise average [NO3
−] (filled circles) and [DON] (plus symbols) for the

BVAL 32 (red) and MP9 (blue) cruises, and (b) depth versus cruise average NO3
− d15N (filled circles)

and DON d15N (plus symbols) for the BVAL 32 (red) and MP9 (blue) cruises. The standard deviation
(for [NO3

−] and NO3
− d15N) and propagated error (for [DON] and DON d15N) are shown as error bars;

for [NO3
−] the error bars are smaller than the size of the symbol. Suspended (PNsusp) (bowties) and sinking

(PNsink) (inverted triangles) particulate organic nitrogen d15N for the North Atlantic (red) are from Altabet
[1988] and for the North Pacific (blue) are from Casciotti et al. [2008] and Dore et al. [2002], respec-
tively, in Figure 2b.

Figure 3. Bulk DON d15N versus [DON] for all samples collected at all depths on all cruises, including
upper 100 m samples from all cruises as well as subsurface samples in the North Pacific (MP9) and North
Atlantic (BVAL 32) cruises; symbols follow from Figure 1.
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layer samples alone (the upper ∼40 m during both cruises)
suggests an even larger interbasin DON d15N difference,
3.8‰ in the North Atlantic and 5.0‰ in the North Pacific.
The 0 to 100 m average bulk DON d15N from BVAL 32 and
MP9 are slightly lower than the HMW DON d15N previ-
ously reported for similar sites in the North Atlantic (3.9‰
for bulk versus 4.1‰ for HMW DON) and North Pacific
(4.7‰ for bulk versus 5.4‰ for HMW DON) (HMWDON
d15N data from Meador et al. [2007]). Nevertheless, these
data show the same sense and a comparable magnitude of
Pacific‐to‐Atlantic isotopic difference, as do other HMW
DON d15N data from Atlantic‐ and Pacific‐influenced
waters of the Arctic Ocean [Benner et al., 2005]. The
average (±1 S.D.) surface ocean bulk DON d15N from the
Australia 1999 cruise is 4.4 ± 0.8‰, from the MP1 cruise is
4.5 ± 0.7‰, and from theMP3 cruise is 3.1 ± 1.0‰ (Figures 3
and 5a).
[17] While [DON] gradients with depth are essentially

identical in the Sargasso Sea and North Pacific gyre, the
changes in DON d15N with depth appear to differ between
the two basins. The average d15N of DON at 200 m in the
Sargasso Sea is 4.3‰ (Figure 2b and Table 1), similar to
previous measurements [Knapp et al., 2005], and is statis-
tically higher than the average DON d15N in the upper
100 m, 3.9‰. By mass balance, this surface‐to‐subsurface
gradient in DON d15N implies that the ∼1 mM DON that has
accumulated in the upper 100 m of the Sargasso Sea has a
d15N of ∼2.4‰ ± 1.1‰. In the North Pacific gyre, however,
at 200 m the average DON d15N is 4.6‰, insignificantly
different from the 0 to 100 m average DON d15N of 4.7‰

(Figure 2b and Table 1). This implies that the d15N of the
1 mM DON added in the upper 100 m of the North Pacific
is ∼5.3‰ ± 1.1‰ (i.e., indistinguishable from the d15N of
the background DON).
[18] As noted above in section 2.1.1 and 2.1.2, our DON

measurements from the BVAL 32 and MP9 cruises are in
fact measures of total organic nitrogen (TON) since these
samples were not filtered. While PNsusp is typically ≤10% of
the oligotrophic surface ocean TON concentration ([TON])

Figure 4. (a) Average DON d15N for the BVAL 32 transect in the upper 0 and 20 m samples (red
crosses), 40 and 60 m samples (orange filled triangles), and 80 and 100 m samples (green filled squares)
versus latitude; average of all samples in the upper 100 m at each station (blue filled circles), and average
of all samples in the upper 100 m at northern (30°N) and southern (19°N) stations (black filled bow‐ties).
(b) Average [DON] for same samples; symbols follow Figure 4a. The propagated error for [DON] and
DON d15N are shown as error bars.

Table 1. Average Values for Samples Collected on the Bermuda
to Puerto Rico Cruise (N. Atl.) and MP9 Cruise (N. Pac.)

[TN] (mM)
TN d15N

(‰ Versus Air)

N. Atl. N. Pac. N. Atl N. Pac

Avg. upper 40 m 4.8 4.8 3.8‰ 5.0‰
Avg. upper 100 m 4.7 4.8 3.9‰ 4.7‰
Avg. at 200 m 3.7 3.8 4.3‰ 4.6‰
D (100 m – 200 m) 1.0 1.0 2.4‰ 5.3‰
PNsusp

a 0.25 0.25 −2.0‰ −3.8‰
DONb 0.75 0.75 3.9‰ 8.3‰

[NO3
−] (mM)

NO3
− d15N

(‰ Versus Air)

N. Atl. N. Pac. N. Atl. N. Pac.

Avg. at 200 m 2.05 4.26 2.6‰ 4.0‰

aThe contribution of PNsusp to the 1 mM pool of TN that accumulates in
the upper 100 m of both the North Atlantic and North Pacific.

bThe contribution of DON to the 1 mM pool of TN that accumulates in
the upper 100 m of both the North Atlantic and North Pacific.
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[Abell et al., 2000], the gradients we report in [TON] and
TON d15N with depth are small, so it is appropriate to
consider what fraction of the surface to subsurface gradients
described above is attributable to changes in PNsusp over the
same depth range. Since PNsusp samples were not collected
on these cruises, we use previously reported data from the
Sargasso Sea [Altabet, 1988;Michaels et al., 1994; Michaels
and Knap, 1996] and the North Pacific gyre [Dore et al.,
2002; Fujiki et al., 2008] to determine these gradients. As
was observed for [DON], the change in the concentration of
PNsusp ([PNsusp]) between the upper 100 m and at 200 m is
the same between both basins. In each case, [PNsusp]
decreases by ∼0.25 mM between the upper 100 m and
200 m, and thus most (0.75 mM) of the 1 mM [TON] depth
gradient can be attributed to changes in [DON] over the
same depth range (Table 1).
[19] However, the bulk of the change in TON d15N

between surface and subsurface waters results from changes
in PNsusp d

15N with depth, and not from changes in the d15N
of DON. In the North Atlantic, the 0.25 mM decrease in
[PNsusp] between the upper 100 m and at 200 m corresponds
to a change in the d15N of PNsusp over the same depth range
of ∼4.5‰ (e.g., from −0.2‰ in the surface to 4.3‰
at 200 m) [Altabet, 1988]. This difference implies that the
0.75 mM of DON accumulating in the upper 100 m of the
North Atlantic has a d15N of ∼3.9‰ ± 1.3‰, which is
similar to subsurface DON d15N (4.3‰), and is higher than
the d15N of NO3

− at 200 m, 2.6‰ (Table 1). In the North
Pacific, the change in the d15N of PNsusp over the same
depth range is ∼5.5‰ (i.e., from −0.5‰ in the surface to
5.0‰ at 200 m) [Dore et al., 2002]. Thus, in the North

Pacific, of the 1 mM TON accumulating in the upper 100 m,
0.75 mM is DON which would appear to have a d15N of
∼8.3‰ ± 1.3‰ (Table 1), which is higher than the d15N of
DON in the subsurface (4.6‰) as well as the d15N of NO3

− at
200 m (4.0‰). While we emphasize that these calculations
are very sensitive to small changes in [PNsusp] and PNsusp

d15N, they imply that the bulk of the change in TON d15N
between the upper 100 m and at 200 m in the North Atlantic
is due to changes in the d15N of PNsusp over that depth
range, and not due to changes in the d15N of DON. Similar
results were found by Knapp et al. [2005] for samples
collected at the Bermuda Atlantic Time series Study site.

3.3. Comparison of DON Data to N2 Fixation Rates

[20] Areally integrated N2 fixation rates from these five
cruises in oligotrophic waters vary by ∼four orders of
magnitude, from 0.05 to 8400 mmol N m−2 d−1 (Figure 5).
The majority of these cruises took place during or imme-
diately following the season of peak N2 fixation rates in
these regions [Orcutt et al., 2001; Dore et al., 2002], in the
summer or early fall, with the exception of MP1 which took
place in the Western Tropical North Atlantic Ocean in
January, where seasonality is in any case reduced due to its
low latitude. In addition, the BVAL 32 cruise sampled
across a southward increase in previously reported in situ N2

fixation rates [Orcutt et al., 2001; K. M. Achilles, Bio-
availability of iron to Trichodesmium colonies and other
ecologically important cyanobacterial cultures: Implications
for global carbon and nitrogen cycling, unpublished Ph.D.
thesis, University of Delaware, 2004]. Measured and mod-
eled atmospheric dust fluxes also increase southward along

Figure 5. (a) Average upper 100 m DON d15N for each station versus N2 fixation rate and (b) average
upper 100 m [DON] for each station versus N2 fixation rate; colors and symbols follow from Figure 1 and
correspond to the cruise the samples were collected on. Note the break in x axis scale between 1500 and
8000 mmol N m−2 d−1. Propagated errors for [DON] and DON d15N are shown as error bars. N2 fixation
rates from the Australia 1999 (D. Capone et al., manuscript in preparation), MP1 and MP3 [Capone et al.,
2005], and Bermuda to Puerto Rico (K. M. Achilles, unpublished thesis, 2004) cruises are Trichodesmium
spp.‐specific, depth‐integrated rates. N2 fixation rates for the MP9 cruise are bulk, depth integrated rates
and include contributions from all diazotrophs [Sohm et al., 2011].
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this transect [e.g., Prospero et al., 1996; Gao et al., 2001]
which may alleviate iron‐stress for N2 fixing organisms
[Kustka et al., 2003], and maximum winter mixed layer
depths also shoal to the south [e.g., Kara et al., 2003]. All of
these gradients would support an equator‐ward increase
in the importance of N2 fixation relative to subsurface NO3

−

as a source of new nitrogen to the euphotic zone along
BVAL 32. Among the wide range of N2 fixation rates
measured on all five cruises, notably high rates were encoun-
tered in North Australian shelf waters (rates of ∼1000 to
8361 mmol N m−2 d−1, Figure 5) [Montoya et al., 2004;
D. Capone et al., manuscript in preparation, 2011]. The
lowest N2 fixation rates were found in the Sargasso Sea,
with intermediate rates found at most of the stations in the
North Pacific and in the Western Tropical North Atlantic
(Figure 5), consistent with previous work [e.g., Montoya
et al., 2004; Capone et al., 2005, and references therein].
[21] In spite of the spatial and temporal variations in N2

fixation rates and other physical parameters, little differ-
ence in upper 100 m [DON] or DON d15N was observed
(Figures 2–5). A positive relationship between N2 fixation
rate and upper ocean [DON] was expected based on previ-
ous field [Karl et al., 1992; Lenes et al., 2001], culture
[Mulholland et al., 2004; Mulholland and Bernhardt, 2005],
and experimental studies of nitrogen release by a prominent
diazotroph in these waters, Trichodesmium [Capone et al.,
1994; Glibert and Bronk, 1994]. All of these previous
studies suggest that N2 fixing organisms are capable of
shunting a significant fraction of their newly fixed N into the
DON pool. However, no such relationship was observed in
the measurements reported here (Figure 5b). Since the d15N
of newly fixed N is ∼ −2 to 0‰ [Hoering and Ford, 1960;
Minagawa and Wada, 1986; Carpenter et al., 1997], if
newly fixed N resides in the DON pool, one might expect
inverse correlations between N2 fixation rate and the d15N
of DON, as well as between [DON] and the d15N of
DON. Again, no such inverse correlations were observed
(Figures 3 and 5a).
[22] Even the “extreme” [DON] and/or DON d15N values

from these data sets fail to show a correspondence with N2

fixation rate. For example, the high [DON] and low DON
d15N values from the Tropical Western North Atlantic
Ocean (MP3 samples, Figure 5a) correspond to low, not
high, N2 fixation rates within this data set. In addition,
while the highest [DON] in the data set corresponds to the
highest N2 fixation rate (observed in North Australian shelf
waters), the DON d15N for this same sample is among the
highest in the data set, failing to show a direct relationship
with N2 fixation. These observations indicate that the sur-
face ocean DON pool is not responsive to discrete events
of rapid N2 fixation.
[23] We suspect that the difference in the average d15N of

bulk DON between the MP1 and MP3 cruises, sampled in
similar regions of the Western Tropical North Atlantic,
reflects the seasonal influence of the Amazon river [e.g.,
Cooley and Yeager, 2006; Del Vecchio and Subramaniam,
2004; Subramaniam et al., 2008]. The MP3 cruise occurred
during July through August, when the Amazon River
experiences peak discharge, while MP1 occurred during
January through February, when discharge from the Amazon
River to the ocean is lowest [e.g., Richey et al., 1989;
Zakharova et al., 2006]. Since the average bulk DON d15N

on MP1, 4.5‰, is similar to bulk DON d15N from the Sar-
gasso Sea, ∼4.0‰, the lower bulk DON d15N observed on
MP3, 3.1‰, may be due to the incorporation of low‐d15N
material from Amazon River‐influenced waters [e.g., Hedges
et al., 2000; Brandes and Devol, 2002] into oceanic surface
water samples. Moreover, these bulk DON d15N values
from MP1 are similar to HMW DON d15N values reported
by Meador et al. [2007] for samples collected in the same
region.

4. Discussion

4.1. Explaining the High d15N of Bulk DON

[24] While definitive constraints are methodologically
limited, previous studies have indicated that bulk DON has
a residence time in the upper ocean of many months to
years. For example, at both the Bermuda Atlantic Time‐
series Study (BATS) and Hawaii Ocean Time‐series (HOT)
sites, surface ocean [DON] changes ≤1 mM over the year
[Hansell and Carlson, 2001; Knapp et al., 2005; Fujiki et al.,
2008]. Moreover, during winter mixing events at both the
BATS and HOT sites, the majority of surface ocean DON,
i.e., ≥3 mM, persists after mixing and exposure to sub-
surface microbes that remineralize a portion of the surface
DON pool, demonstrating that on average, the bulk surface
ocean DON pool persists for timescales longer than a year.
In addition, the lack of significant gradients in [DON] across
subtropical gyres also indicates that rates of turnover of
the surface ocean DON pool are slow [e.g., Hansell and
Waterhouse, 1997; Bates and Hansell, 1999].
[25] The DON d15N results reported here and previously

[Knapp et al., 2005] support the view that the majority of
the DON pool is long‐lived in the surface ocean. First, while
the d15N of PNsusp varies with time at BATS [Altabet, 1988;
Altabet et al., 1991], comparatively small gradients in the
d15N of DON are observed both with depth and over the
course of a year [Knapp et al., 2005]. Second, in the sub-
tropical surface waters of both the North Atlantic and North
Pacific, the d15N of DON is ∼4‰ higher than the mean d15N
of the PNsusp pool. While this finding does not require a
slow exchange between the two pools, it indicates that the
input and/or loss processes are not the same for DON as for
the more isotopically variable PNsusp pool. Finally, the lack
of evidence for a direct link between in situ N2 fixation
rate and either [DON] or the d15N of DON is consistent
with a DON pool that does not rapidly absorb N from the
other upper ocean pools, in this case, the euphotic zone
diazotrophs.
[26] However, a second important finding from this study

indicates that surface ocean DON is impacted by primary
productivity occurring within a given gyre. Specifically, the
∼0.8‰ difference in the average bulk euphotic zone DON
d15N between the North Atlantic and North Pacific basins
corresponds to a similar isotopic difference in the d15N of
subsurface NO3

− in the two regions (Figure 2 and Table 1),
and subsurface NO3

− has previously been shown to be the
dominant source of new N to surface waters in both sub-
tropical gyres [Altabet, 1988; Knapp et al., 2005; Casciotti
et al., 2008; Johnson et al., 2010]. These bulk DON d15N
data also parallel a similar isotopic offset between the d15N
of HMW DON observed in the North Atlantic and North
Pacific, which represents ∼30% of the bulk DON pool
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[Benner et al., 2005; Meador et al., 2007], suggesting that
the interbasin difference is not specific to a given molecular
weight fraction.
[27] The accumulated data suggest that, while DON has a

residence time adequately long to make it seem unrespon-
sive in surface waters, it is actively involved in the N cycling
of subtropical gyres. Here we propose a conceptual model
(Figure 6) that considers previously recognized processes
capable of producing and consuming DON, and the likeli-
hood for these processes to cause changes in the isotopic
composition of DON consistent with our observations.
The conceptual model explains: 1) the difference in d15N
between the larger, slowly responding bulk DON pool and
the smaller, more rapidly cycling PNsusp pool in the surface
ocean, and 2) the connection between the d15N of surface
ocean DON and the d15N of NO3

− supplied from the shallow
subsurface.
[28] In this model, DON is produced by exudation, cell

lysis or particle solubilization [Bronk and Steinberg, 2008,
and references therein]. Direct exudation of DON by pri-
mary producers could occur with fractionation; whether this
happens is not currently known. However, DON production
by cell lysis or the solubilization of particulate organic
matter is unlikely to occur with significant fractionation.
Cell lysis is necessarily indiscriminate with respect to stable
isotopes, except to the degree that the soluble versus
insoluble N‐bearing compounds have different d15N. The
solubilization of particulate organic matter is also unlikely to
involve substantial N isotope fractionation since the break-

ing of N‐bearing bonds most likely plays a minor role in this
process. Even with respect to the stable isotopes of carbon,
the bonds of which are much more likely to be involved in
the solubilization process, there is likely to be minimal net
fractionation [e.g.,Druffel et al., 1992;McArthur et al., 1992;
Hayes, 1993]. Thus, we expect DON to be produced with a
d15N similar to the particulate N from which it derives.
[29] In contrast, the release of biologically active N from

DON in surface waters likely occurs with isotope fraction-
ation. Hydrolysis reactions breaking common C‐N bonds,
converting amide to amine (e.g., peptide hydrolysis) and
amine to ammonia (deamination) have been shown to have
significant isotope effects (" of 3 to 10‰) [O’Leary and
Kluetz, 1972; Macko et al., 1986; Bada et al., 1989; Silfer
et al., 1992] (where the isotope effect " = (14k/15k − 1)*1000,
where 14k and 15k are the rate coefficients for the 14N‐ and
15N‐bearing forms of DON, respectively). Within most
marine heterotrophs, the average " of N metabolism and
release appears to be ∼3‰, leading to the rule of thumb, “you
are what you eat plus 3‰” [e.g., DeNiro and Epstein, 1981;
Minagawa andWada, 1984;Wada et al., 1987;Checkley and
Miller, 1989]. This fractionation upon N release from DON
will elevate the d15N of residual DON relative to the d15N
at which it was produced, consistent with our observations.
Peptide hydrolysis may produce simple organic N com-
pounds (i.e., amino acids or short peptides) that are directly
and rapidly consumed by phytoplankton. However, NH4

+ is
likely the dominant form of N released and is, of course,
also rapidly assimilated.

Figure 6. Schematic representation of oligotrophic surface ocean partitioning of nitrogen isotopes. Red
arrows indicate processes with substantial N isotope discrimination that are important to euphotic zone N
isotope distribution (i.e., NO3

− assimilation is not red because the imported NO3
− pool is completely con-

sumed). In the model proposed here, DON breakdown and deamination leave DON higher in d15N and pro-
duce low‐d15N NH4

+ and other simple N compounds that are assimilated into the PON pool, lowering
its d15N. Our concentration and isotope data indicate that the net accumulation of high‐d15N DON in
the euphotic zone is adequate to explain the 15N‐depletion of the PNsusp pool (see text). The traditional
zooplankton excretion model involves effectively the same dynamic, with zooplankton N metabolism
and excretion releasing low‐d15N NH4

+. While zooplankton biomass is a small fraction of the fixed N in
the surface ocean, this model posits that their production of sinking fecal pellets leads to the preferential
export of 15N from the euphotic zone, explaining how PNsusp d

15N evolves to much lower d15N than the
NO3

− supply from below. However, as indicated by the “??,” it is not clear if the export of fecal pellets is
sufficient to generate the high d15N of sinking matter that is observed and required by this model (see text).
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[30] This model also helps to explain the reduced vari-
ability in the concentration and isotopic composition of DON
relative to PNsusp, even in the case where N is persistently
cycling between the two N pools. Typical concentrations
of PNsusp in the surface ocean are ∼0.3 mM [Altabet, 1988;
Michaels and Knap, 1996; Fujiki et al., 2008], whereas
[DON] is typically >4 mM. Thus, a net transfer of DON from
PNsusp would cause a relative concentration change in the
DON pool that is >10‐fold smaller than those in the PNsusp

pool, and the same argument yields that the d15N of the
DON pool will be similarly buffered from large changes.
[31] Some of our North Pacific (MP9) data suggest

modest but measurable gradients in DON d15N that are
consistent with this explanation for the high d15N of DON.
These data indicate that the highest DON d15N is found in
the surface mixed layer, with ∼0.6‰ lower DON d15N near
the deep chlorophyll maximum (Figures 2b and S2). This
could indicate net production of DON at the deep chloro-
phyll maximum, with the d15N of the total DON pool being
pulled toward the PNsusp source for the new DON, and net
breakdown of DON with isotopic fractionation in the more
nutrient‐deplete surface mixed layer.
[32] Focusing on the BVAL 32 data set, a number of

stations have samples collected at 40 m depth that have
∼0.5 mM higher [DON] relative to most of the euphotic
zone data, and the d15N of DON is ∼0.5‰ higher in these
samples (Figures 4 and S1). This positive correlation does
not obviously support our model, but it is not inconsistent
with it, either. For example, excess DON may have been
produced previously and/or advected in from another region
and was undergoing net degradation at the time of sampling.
In this case, the d15N of DON will be higher than at steady
state. Obviously, other scenarios are possible, that speak
neither for nor against our basic model.
[33] Our explanation for the high d15N of DON also has

implications for the d15N of PNsusp. PNsusp d
15N is ∼0‰ in

the subtropical gyres (−1 to 0‰ at BATS [Altabet, 1988] and
0 to 1‰ near Hawaii [Casciotti et al., 2008]), apparently
lower than the d15N of the total fixed N input to the surface
ocean, much of which is probably NO3

− imported from the
subsurface with a d15N of ∼2.6‰ in the Sargasso Sea [Knapp
et al., 2005] and 4.0‰ near Hawaii [Casciotti et al., 2008]
(Table 1).
[34] Although N2 fixation has been proposed as a mecha-

nism for lowering the d15N of PNsusp [e.g., Saino and Hattori,
1987; Montoya et al., 2002; Mahaffey et al., 2003], the
conventional explanation for the low‐d15N of PNsusp invokes
the evidence for excretion of low‐d15N NH4

+ by zooplankton
[Altabet, 1988; Checkley and Miller, 1989]. From the sim-
plest perspective, just as the excretion of this low‐d15N NH4

+

works to raise the d15N of zooplankton relative to their food
source, the reassimilation of this low‐d15N NH4

+ by phyto-
plankton should cause the d15N of PNsusp to gradually
decrease [Minagawa and Wada, 1984; Wada et al., 1987;
Fry, 1988; Montoya et al., 2002]. At the level of generic
N fluxes, this is the same explanation that we have applied
to DON and its relationship to PNsusp: DON is produced by
processes with minor isotope fractionation and becomes
elevated in 15N by substantial fractionation during the
release of low‐ d15N ammonium, which is reassimilated by
the PNsusp pool.

[35] Still, there are problems with this zooplankton‐based
explanation for the low‐d15N of PNsusp. Zooplankton bio-
mass is a very small fraction of PNsusp in the euphotic zone
[Madin et al., 2001], so that its elevation in d15N will cause
a much smaller d15N depression in the much larger PNsusp

pool. However, the d15N of zooplankton is more similar to
the d15N of the NO3

− supply from below than is PNsusp,
indicating a disproportionate depression of PNsusp d15N
compared to the elevation of zooplankton d15N by upper
ocean recycling. The PNsusp d15N depression could be
caused by the preferential export of zooplankton‐related
organic material from the upper ocean, and zooplankton
fecal pellets are indeed an important mechanism of N export.
However, zooplankton fecal pellets are typically only mod-
estly elevated in d15N relative to their food source [Altabet
and Small, 1990; Montoya et al., 1992; Tamelander et al.,
2006], which derives from PNsusp in the case of herbivo-
rous zooplankton. The fecal pellets needed to efficiently
export high‐d15N organic matter from the euphotic zone
might originate from carnivorous zooplankton. Yet, based on
trophic structure and associated energy flow, these zoo-
plankton must be far more rare than herbivorous zooplankton
and produce a small fraction of the fecal pellet export.
Thus, it is unclear how zooplankton can preferentially
export 15N to the degree necessary to explain the very low
d15N of surface ocean PNsusp.
[36] The isotope fractionation associated with DON

breakdown to simple, phytoplankton‐accessible forms of N
(most importantly, NH4

+) provides an alternative mechanism
to explain the low d15N of PNsusp. We have demonstrated
above that the d15N of DON added to the background DON
pool in the surface ocean is similar to or higher than the NO3

−

supply from the subsurface. Given that N2 fixation provides
some quantity of new N to the subtropical gyres (perhaps as
much as 25% at HOT [Casciotti et al., 2008]), this suggests
that the N incorporated into the surface ocean DON pool is
higher in d15N than the d15N of the combined sources of
new N to surface waters. This increase in the d15N of the
comparatively large surface ocean DON pool relative to the
d15N of the sources of new N to surface waters needs to be
balanced by the accumulation of another surface ocean N
pool with a d15N lower than the d15N of new N supplied to
surface waters; PNsusp would appear to be just such a pool.
[37] Despite substantial uncertainties, it is worth quanti-

tatively exploring the potential of DON cycling proposed in
Figure 6 to explain the d15N of PNsusp. As described above,
[DON] increases by ∼0.75 mM from the shallow thermocline
into the euphotic zone, while [PNsusp] increases by ∼0.25 mM,
one third as much. Thus, given the DON/PNsusp isotope
relationship described above, the d15N depression of PNsusp

added to the surface ocean relative to the d15N of the new N
supplied to the euphotic zone should be three times greater
than the DON d15N elevation relative to that N supply.
Taking our North Atlantic data as a case in point, the DON
added to the surface ocean appears to have a d15N of ∼3.9‰,
about ∼1.3‰ greater than the d15N of the thermocline NO3

−

supply (∼2.6‰). Let us assume for the sake of simplicity
that the NO3

− supply dominates the new N supply in this
region (i.e., N2 fixation is very small relative to it). Following
our conceptual model, we predict a d15N depression for
euphotic zone PNsusp relative to the NO3

− supply of 3*1.3‰ =
3.9‰, or a PNsusp d15N of 2.6‰ − 3.9‰ = −1.3‰. While this
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prediction matches PNsusp d
15N observations [Altabet, 1988;

Montoya et al., 2002], we would not wish to overstate its
significance. The point is simply that DON cycling alone has
the capacity to explain the full d15N depression of euphotic
zone PNsusp. This leads us to propose that DON‐related N
cycling is dominantly responsible for the low‐d15N of PNsusp

of the subtropical ocean. It has been argued previously that
the low‐d15N of PNsusp indicates N2 fixation [e.g., Montoya
et al., 2002; Mahaffey et al., 2003]; the above calculation
shows that this need not be the case. More strongly, the
combined isotope data for NO3

−, DON, PNsusp, and the
sinking particulate N flux argue that N2 fixation (and other
sources of low‐d15N N) is a minor fraction of annual new
N supply in the Sargasso Sea near Bermuda [Altabet, 1988;
Knapp et al., 2005].
[38] One prediction of our model is that, over an ade-

quately broad area that integrates over the time scale of
DON‐PNsusp cycling, the difference in d15N between DON
and PNsusp should reflect the amplitude of the isotope effect
for DON breakdown. Applying this approach to data from
the Sargasso Sea near Bermuda [Altabet, 1988; Knapp et al.,
2005] yields a predicted isotope effect of 3.9‰ − −0.2‰ ≈
4.1‰. However, this value may be too great in that it does
not include regions in the Atlantic with higher PNsusp d

15N
[e.g., Mahaffey et al., 2003]. Given this potential bias, the
data are roughly consistent with DON breakdown having
the same isotope effect as N metabolism by zooplankton,
∼3‰ [Minagawa and Wada, 1984; Wada et al., 1987; Fry,
1988; Checkley and Miller, 1989].
[39] The conceptual model presented above for the con-

trols on bulk surface ocean DON d15N is as yet incomplete,
as it does not address the role of the proportionally large
quantity of “background” DON imported from subsurface
waters. The low and equivalent gradient in [DON] between
the upper 100 m and at 200 m in both the North Atlantic and
North Pacific Oceans illustrates that bulk surface ocean
DON is dominated by the 3 to 4 mM subsurface (i.e., ≥200 m)
DON pool with a d15N of 4 to 5‰ (Figures 2, S1, and S2
and Table 1) that is seasonally entrained in surface waters
[e.g., Harrison et al., 1992; Hansell and Carlson, 2001;
Fujiki et al., 2008]. We currently calculate subsurface DON
d15N by subtracting NO3

− from TN, so the d15N of DON
cannot yet be studied throughout the water column, and
even the shallow subsurface DON d15N data have sig-
nificant uncertainty. Nevertheless, it is worth considering
how our conceptual model relates to the subsurface DON
pool.
[40] If NH4

+ is released from DON with substantial iso-
topic fractionation, then one might expect the d15N of DON
to increase into the subsurface. Given an isotope effect of
3‰ for this degradation and a ∼20% decrease in [DON]
from the euphotic zone to 200 m, the d15N of DON at 200 m
would be 0.6‰ higher, which is not observed (Figure 2 and
Table 1). However, the DON in the thermocline at our
sampling sites derives not only from regional downward
mixing but also by subduction in distant regions followed by
transport along isopycnals. This complicates comparisons of
surface to thermocline DON characteristics at any given site.
The data in hand may indicate that degradation of DON
within the ocean interior occurs by different mechanisms
than those operating in the warm, sunlit, biologically active

euphotic zone. However, any firm conclusions in this regard
await DON isotope measurements in samples from which
NO3

− has been removed.
[41] Quantifying the rate and isotope effect of DON

remineralization in the ocean interior is critical for progress
in the further use of N isotopes to determine rates of bio-
geochemical processes in the ocean. For example, the
remineralization of low‐d15N DON would correspond to a
flux of low‐d15N NO3

− to the thermocline. In contrast, the
eventual remineralization of the residual DON pool would
produce high‐d15N NO3

−. Such effects must be known if we
are to robustly interpret NO3

− d15N patterns (as well as
patterns of the d15N of other remineralization products) in
terms of N2 fixation, denitrification, NO3

− assimilation, and
N remineralization in the ocean.

4.2. Difference in Bulk DON d15N Between the North
Pacific and North Atlantic

[42] We have focused above on the parallel and similar
d15N elevation in the surface DON pool and shallow sub-
surface nitrate pool of the North Pacific relative to the
Sargasso Sea. However, our measurements of the d15N of
the subsurface NO3

− supply to the euphotic zone leave open
the possibility that the interbasin d15N difference is slightly
greater for nitrate than for DON. The average bulk euphotic
zone DON d15N is ∼0.8‰ higher in the North Pacific gyre
near Hawaii than in the Sargasso Sea, while the difference in
subsurface NO3

− d15N is ∼1.4‰ (Figure 2 and Table 1). That
the magnitude of the difference in DON d15N between the
North Atlantic and North Pacific may not be as great as the
difference in subsurface NO3

− d15N has several plausible
explanations.
[43] First, N2 fixation and atmospheric deposition have

been suggested to contribute a significant fraction of the
new N to the euphotic zone of both gyres [Karl et al., 1997;
Dore et al., 2002; Capone et al., 2005; Casciotti et al., 2008;
Knapp et al., 2008, 2010]. These sources of low‐d15N N
would effectively reduce the d15N difference of the total new
N input between the two gyres, an effect that the d15N of
DON should record.
[44] Second, the concentration fields for DON suggest

that DON is produced and consumed on the spatial scale of
the gyre, if not over a larger area. Much of the North Pacific
gyre likely has lower NO3

− d15N in the shallow subsurface
than where these samples were collected, especially as one
moves westward away from the denitrification zones of the
eastern tropical Pacific. There may be a similar (but oppo-
sitely signed) bias in our estimate of the subsurface NO3

−

d15N in the North Atlantic gyre, given the geographic lim-
itations of our sampling to date. As a result, we may be
overestimating the difference in the d15N of the NO3

− supply
between these two gyre systems, and thus also overestimating
the expected difference in surface ocean DON d15N.
[45] Third, and related to the previous argument, the

[DON] in the shallow subsurface (i.e., at 200 m) is only
modestly lower than what is observed in the euphotic zone,
indicating that time scales greater than one year are required
for remineralization [Hansell and Carlson, 2001]. This
raises the possibility that, as with DOC, a fraction of the
DON observed in the euphotic zone is exchanged over large
spatial scales, even possibly between ocean basins. If so,
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such transport would mute isotopically distinct inputs to the
DON pool occurring in different regions. The uncertainty in
what fraction of surface ocean DON is mixed up from the
subsurface, and how the isotopic composition of that sub-
surface DON might vary both within and between ocean
basins, highlights the need for a robust method to accurately
measure both [DON] and DON d15N in waters with com-
parable or higher concentrations of NO3

− (or other forms of
inorganic nitrogen), which would reveal the d15N of the
subsurface DON moving through the ocean’s interior.
[46] Given the above potential sources of d15N decoupling

between surface DON and subsurface NO3
− as measured in a

small region, it is remarkable to observe the similarity of the
NO3

−/DON d15N relationship in the Sargasso Sea and in the
North Pacific near Hawaii. Above, we have argued that
DON d15N is higher than the d15N of the NO3

− supply and
PNsusp because of isotope fractionation during its degra-
dation. The magnitude of the few measured isotope effects
of relevant chemical reactions span a range of 7‰ (see
section 4.1 above). Thus, if DON composition and other
environmental parameters vary even slightly between the
North Atlantic and North Pacific, one might have predicted
differences in net fractionation during degradation of several
permil. However, if our conceptual model of DON d15N is
correct, the similarity of the North Atlantic and North
Pacific NO3

−/DON d15N relationship argues for a net isotope
effect of degradation that is similar (to within ∼1‰ or less)
in the two regions. One potential explanation is that a single
specific biochemical reaction (i.e., deamination), occurring
with a conserved isotope effect, is responsible for most N
release from DON. Alternatively, the conditions for DON
breakdown in both regions, including the DON composi-
tion, may be very similar, leading to the same association of
biochemical reactions, carried out with the same isotope
effects, in these two regions.

4.3. Lack of a Signal of N2 Fixation Events in Bulk
DON d15N
[47] While a signal of N2 fixation events might have been

observed in the DON pool, the lack of such a signal is not
surprising when seen in the context of the proposed con-
ceptual model. The potential dynamism of surface ocean
[DON] and DON d15N is inherently dampened by the large
fraction of the surface ocean DON pool that appears to
persist in the shallow subsurface and thus appears to have a
long time constant for production and degradation [e.g.,
Hansell and Carlson, 2001].
[48] In calculations above (section 3.3), we have attemp-

ted to identify isotopic changes in the 1 mM DON accu-
mulating in the euphotic zone, but we again find no
evidence of a N input with the d15N characteristic of newly
fixed N. However, even this ∼1 mM pool of “fresh” surface
ocean DON is large in comparison to the amount of N added
by a week‐long event of rapid N2 fixation. Again, this result
is neither surprising nor very enlightening as to the imme-
diate fate of the newly fixed N. The highest in situ N2 fix-
ation rate observed in the North Pacific in this data set,
∼300 mmol N m−2 d−1, represents ∼0.003 mM d−1 of added
N if it is distributed over a ∼100 m deep euphotic zone. Over
a week, this would lead to the accumulation of ∼0.02 mM N,
roughly 2% of the ∼1 mM DON added to the euphotic zone.

Such a fractionally minute input would be unrecognizable
in our DON d15N measurements.
[49] Moreover, our conceptual model for the isotopic

elevation of DON predicts that N2 fixation events will not
have an immediate impact on the d15N of DON. In this
model, the d15N of newly fixed N is similar to that of
recycled ammonium returned to the euphotic zone by DON
breakdown for subsequent consumption by bacteria and
phytoplankton (Figure 6). Of course, N2 fixation does have
a d15N lower than that of the subsurface NO3

− supply. The
isotopic evidence for this low‐d15N input would only emerge
in the DON pool as the d15N of all the N reservoirs in the
surface ocean shift downward in response to the decrease in
the d15N of the total new N input to the surface ocean.
[50] While this is one potential explanation for the dif-

ference in surface ocean DON d15N between the North
Atlantic and North Pacific, we again note that this inter-
pretation is limited by the present geographic coverage of
subsurface NO3

− d15N and surface ocean DON d15N mea-
surements. As stable isotope techniques are improved and
applied to the low latitude marine N cycle, our attention
should focus on recognizing the N2 fixation inputs on sea-
sonal and longer time scales, periods which are adequately
long for them to contribute significantly to upper ocean N
pools. Finally, in this type of analysis to quantify the sig-
nificance of N2 fixation as a source of new N to a region, we
cannot focus on only a single N pool but rather must
characterize the d15N of all of the resident fixed N pools as
well as the measurable fluxes into and out of the euphotic
zone [Altabet, 1988; Knapp et al., 2005; Casciotti et al.,
2008].

5. Conclusion

[51] Reported here is a survey of bulk oligotrophic surface
ocean [DON] and DON d15N from the North Atlantic and
North Pacific Oceans, as well as above the North Australian
shelf, and a comparison to shallow subsurface NO3

− d15N
when the samples were available. A conceptual model
(Figure 6) is proposed to explain the d15N of DON, which is
high relative to other oligotrophic surface ocean N pools and
fluxes and yet appears responsive to the d15N of the nitrate
supply within a given region. In this model, DON is pro-
duced in the surface ocean by the solubilization of PNsusp

without isotope fractionation, while subsequent breakdown
and deamination of DON involves substantial fractionation
(roughly 3 to 5‰), producing DON with an elevated d15N
and supplying low‐ d15N regenerated N (most prominently
NH4

+) back into the euphotic zone. The deamination of
DON is similar to and complements the previously proposed
mechanism of low‐d15N NH4

+ excretion by zooplankton
[Checkley and Miller, 1989]. As a mechanism to generate
the observed low‐d15N PNsusp in the low‐latitude surface
ocean, we argue that DON breakdown is quantitatively more
important than zooplankton excretion, based on the relative
mass of the surface ocean DON and zooplankton pools. This
proposed model of DON deamination effectively incorpo-
rates the “microbial loop” into our understanding of surface
ocean N isotope dynamics.
[52] While [DON] is similar between the two ocean

basins, the d15N of DON in the surface ocean is different,
with North Atlantic DON d15N ∼4‰, and North Pacific
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DON d15N ∼5‰. This difference is likely due to the dif-
ference in the d15N of subsurface NO3

− in each region, which
indicates that NO3

− is the dominant source of new N to the
low latitude surface ocean. This is not surprising, especially
since DON produced in the upwelling and deep mixing
zones adjacent to the gyres may contribute a portion of the
DON found in highly stratified, oligotrophic surface waters.
At the same time, the similar NO3

−‐to‐DON d15N relation-
ship in the North Atlantic and North Pacific, in the context
of our conceptual model, requires a remarkably similar
amplitude for isotope fractionation during DON breakdown
in these two regions.
[53] Neither surface ocean [DON] nor DON d15N covar-

ied with N2 fixation rates as measured by others in seawater
incubations at the time of sample collection. This too is not
surprising, as previous work has suggested that DON inte-
grates over long time scales in surface waters and thus does
not respond greatly to short time scale N cycling events (of
hours to days) [Hansell and Carlson, 2001; Knapp et al.,
2005]. This inertia is reflected in and results from the
large component of “background” DON that is mixed up
from the shallow thermocline into the surface ocean,
obscuring the isotopic signature of recently generated sur-
face ocean DON. A better understanding of the response of
newly produced surface ocean DON concentration and d15N
to the sources of new N to surface waters awaits methods
that can more precisely determine marine [DON] and DON
d15N in the presence of NO3

− and other forms of inorganic
nitrogen.
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