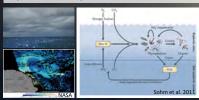
Distribution of Thiamin and Pyridoxine in the Western Tropical North

Atlantic (WTNA) Amazon River Plume

Laila Barada¹, Lynda Cutter¹, Joseph Montoya², Patricia Yager³, Douglas Capone¹, Sergio Sañudo-Wilhelmy¹
University of Southern California¹, Georgia Institute of Technology², The University of Georgia³



Introduction

The WTNA Amazon River Plume:

USC University of Southern California

- Largest discharge 18% of all riverine input into the oceans
- Can cover up to 20% of the WTNA
- CO₂ sequestered 2.3 Tmol C yr⁻¹ (Subramaniam et al. 2008)

B vitamins

- Limit or Co-limit biomass (Panzeca et al. 2006)
- Influence species succession
- Vitamin auxotrophy (Croft et. al 2006, Tang et. al 2010)
- Essential co-enzymes

Thiamin (B₁)

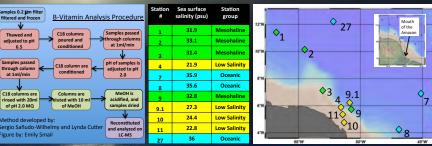
- Pivotal role in carbon metabolism
- Acetohydroxy acid synthase: Branch chain amino acid biosynthesis
- Transketolase: Calvin cycle

Pyridoxine (B₆)

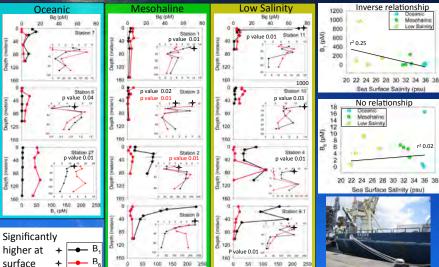
- Catalyze a wide variety of biochemical reactions with over 160 distinct catalytic functions (Percudani and Peracchi, 2009)
- Transamination: breaks down amino
- Transulfuration: methionine -> cystine

Table 1 Genomic characteristics	Dupont et al. 2011					
	7	Nagibertonce	SARW clade			
	HTCC1002	тости	HTCC1002	Α.		
Vhamis its factor hiosynthesis						
Se .	No	No	No	No	No	
B1Z	No	No	No	No	Yes	
Thiamine	No	No	No	No	No	
Carotene/retinal/estinal	Yes	Yes	Yes	No	No	
Folate	Ven	Yes	Yes	Vec	Yes	
Blotin	No	No	No	No	No	
Pantothopate	No	No	No	No	No	

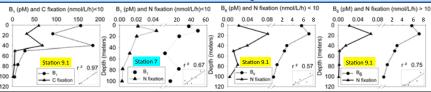
Objectives

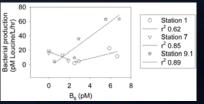

- First vitamin profiles in Amazon Plume
- Investigate riverine sources of vitamins to WTNA ocean
- Influence of vitamins B₁ and B₆ on carbon and nitrogen cycling

Acknowledgements
National Science Foundation Grant OCE-0934095
Captain Seamans and the R/V Knorr crew
Patricia Yager chief scientist
Capone and Sañudo-Wilhelmy labs


Hypotheses

- 1) The Amazon River Plume provides a source of vitamins to the WTNA
 - 2) Bacterial community provides a secondary source of vitamins
 3) B vitamins limit carbon and nitrogen fixation


Methods Stations


Results

Relation to carbon and nitrogen fixation

Conclusions

 Vitamin B₁ and B₆ are highly variable in the upper 80 meters of the water column, which corresponds to the area of high biological productivity

		Concentration range (pM)		Relation to C fixation	Relation to N fixation	Relation to bacterial production
	B ₁	5 - 1000	Inverse	Positive	Positive	Positive
П	B ₆	N/D - 70	Neutral	Neutral	Positive	Positive

B.

The lowest half-saturation constant for vitamin B_1 dependent growth rates is 5.94 pM $_{(Tang\,et\,al.\,2010]}$, which is at the lower range of concentrations measured in the WTNA suggesting B_1 may be a limiting factor for growth

Subsurface maximums observed at depths between 20 and 70 meters

Take home message

- Highly variable
 Environment distribution
 B₁ and B₆ vitamins
- Vitamins play a role in C and N cycling

References

Croft, M. T. et al. Algae Need Their Vitamins. Eukaryotic Cell 5, 1175–1183 (2006).

Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage.
1–14 (2011).

Gobler, C. et al. Effect of B-vitamins (81, 812) and inorganic nutrients on algal bloom dynamics in a coastal ecosystem. Aquat. Microb. Ecol. 49, 181–194 (2007). Panzeca, C. et al. 8 vitamins as regulators of phytoplankton dynamics. Eos Trans. AGU 87, (2006). Percudani, R. & Peracchi, A. The 86 database: a tool for the description and classification of vitamin 86-

(2009).
Sohm, J. A. et al. Emerging patterns of marine nitrogen fixation. 1–10 (2011).
Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the trop

Tang, Y. Z. et al. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proceeding the National Academy of Sciences 107, 20756 (2010).