Comparison of Extracellular Vesicle Subpopulations Among Congenital and Adult Glaucoma via Aqueous Humor

Eric Li1, Chen-Ching Peng PhD2, Benjamin Xu MD, PhD2, Bibiana Reiser MD3, Liya Xu PhD1,2,3,4

1USC Michelson Center Convergent Science Institute in Cancer, Bridge Institute, University of Southern California, Los Angeles, CA; 2The Vision Center, Children’s Hospital Los Angeles, Los Angeles, CA; 3USC Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, CA; 4The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA

Background
Aqueous humor (AH), the clear liquid in the front of the eye, maintains ocular pressure and provides nutrition. The fluid can be accessed through the clear cornea, and extracellular vesicles (EVs) and small extracellular vesicles (sEVs) can be detected within it. These properties allow AH to be used as a liquid biopsy source of biomarkers for intraocular disease. Such an approach is especially relevant for patients with glaucoma (GLC), as the disease creates a buildup of ocular pressure by blocking AH drainage. Thus, AH extraction serves as treatment as well as sample collection. While both pediatric and adult GLC patients’ AH have been explored independently, comparison between the two groups has not been extended to EV analysis. In this study, we use Nanoparticle Tracking Analysis (NTA) and Single Particle-Interferometric Reflectance Imaging Sensor (SP-IRIS) analysis to compare the EV populations of congenital and adult GLC.

Methods
AH samples were taken from 5 pediatric GLC eyes and 5 adult GLC eyes, totaling to 10 processing-free AH samples from 8 GLC patients overall.

10μl unprocessed AH samples underwent Nanoparticle Tracking Analysis using NanoSight. Results were displayed as particle count per size distribution, which also provides particle count per size distribution, which also provides Quantification of EVs. Another 10 μl of unprocessed AH underwent Single Particle-Interferometric Reflectance Imaging Sensing by Exoview R100. This analysis was performed using the ExoView Human Tetraspanin Kit. The data was then analyzed using ExoView Analyzer 3.0 to obtain antigen expression profiles on each individual exosome.

Figure 1. Particle concentration shown by EV size (a). Adult GLC AH exhibits smaller mean EV size than pediatric GLC AH (b), as well as higher mean EV concentration (c). Error bars represent +/- 1 SD.

Conclusions and Relevance
• NTA and SP-IRIS analysis were used to compare the EV subpopulations in AH from pediatric and adult GLC patients.

• NTA revealed that mean EV size in pediatric GLC is significantly larger than mean EV size in adult GLC (p < 0.001). However, the difference in average EV concentration between pediatric and adult GLC was not significant (p = 0.146) (Fig. 1).

• SP-IRIS shows that CD63 is the predominant tetraspanin, consistent with prior findings. It also indicates that the EV population demographics in adult and pediatric GLC are significantly different (p < 0.001), with tetranspan coexpression being more prevalent in adult GLC AH than in pediatric GLC AH (Fig. 2).

• Some variation in EV demographics exists between the patients of the same group. There is one notable outlier: adult patient BX GLC003, with much less mono-CD63 than any other patient in either group. This could be a major contributor to the discrepancy in average EV population between adults and children described previously (Fig. 3).

• Overall, this study indicates variation in glaucoma’s expression in pediatric and adult patients at the EV level. Future studies of this sort with larger sample sizes could better illuminate differences, refining our understanding of GLC’s AH EV characteristics. Ultimately, they could further increase the potential of EVs as biomarkers for diagnosis and prognosis.

References

CONTACT US
bridge.usc.edu/bugs