

Monofluoromethylation of Acyl Chlorides: Direct Synthesis of Monofluoromethylketones (MFMK) with Fluorobis(phenylsulfonyl)methane (FBSM)

Prabodh Rao, Alexander Knieb, Christopher J. Koch, and G. K. Surya Prakash* Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States

Bridge UnderGrad Science (BUGS) Summer Research Program

Reaction Optimization

BSM eq.)	Base (eq.)	Acyl Chloride (eq.)	Solvent [M]	Temp. (°C)	Yield (%) ^[a]
1.0	Cs ₂ CO ₃ (1.2)	2.0	MeCN [1M]	r.t.	10%
1.0	Pyridine (1.2)	2.0	MeCN [1M]	60°C	0%
1.0	LiHMDS (1.2)	2.0	MeCN [1M]	r.t.	13%
1.0	K ₂ CO ₃ (1.2)	2.0	MeCN [1M]	r.t. and 60°C	0%
1.0	Cs ₂ CO ₃ (1.2)	2.0	MeCN [1M]	r.t.	38% ^[b]
1.0	Cs ₂ CO ₃ (1.2)	2.0	THF [1M]	r.t.	0% ^[b]
1.0	Cs ₂ CO ₃ (1.2)	2.0	DCM [1M]	r.t.	0% ^[b]
1.0	Cs ₂ CO ₃ (2.4)	2.0	MeCN [1M]	r.t.	80% ^[b]
1.0	Cs ₂ CO ₃ (3.6)	2.0	MeCN [1M]	r.t.	90% ^[b]

^[a]Yields were determined by ¹⁹F-NMR using fluorobenzene as an internal standard. ^[b]Pre-stirring of FBSM and Cs₂CO₃ for 15 minutes at room temperature, followed by the addition of the acyl chloride

Characterization of MFMKs

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Conclusion

• Synthesis of 14 monofluoromethylketones in good to excellent yields, under mild conditions in 1 hour at room temperature

• 4 crystal structures were obtained (2b, 2f, 2k, and 2i) • Developed approach tolerates EDG (2d, 2e, 2g, and 2l) and EWG (2b, 2c,

• Method can be applied to synthesize bioactive molecules (Aspirin Analogue) • Future Application can include the medicinally relevant testing of the unique properties of the synthesized fluorinated compounds (e.g. bioavailability,

Acknowledgements

Loker Hydrocarbon Research Institute, USC

References

(2) Advanced Synthesis & Catalysis 2010, 352 (16), 2767-2772