Large Language Models (LLMs) in STEM Education

Gavin Huang, Prof. Andrea Belz
Daniel J. Epstein Department of Industrial and Systems Engineering and Bridge Institute, University of Southern California, Los Angeles, CA, USA

Using Large Language Models to Solve Problems

- Chain-of-Thought (CoT)[1]
 - Going step by step increases accuracy
 - Limited to LLMs with large size
- Few-shot Learning (FSL)
 - Use of similar problems improves accuracy
 - Trains LLM on example problems
- Tool-augmented LLMs[2]
 - Outside APIs improve LLMs
 - Giving ChatGPT a "calculator"
- Self-verification[3]
 - Uses LLM to check its own answer
 - Higher cost

Using Large Language Models to Create Math Problems

Advantages
- Fast
- Adaptable

Disadvantages
- Disconnected from the curriculum
- May be plagiarized
- Solutions it gives may be incorrect
- Generates only text (no diagrams or graphs)

Vision
- Use LLMs to improve math education
- Improve cognition and math skills
- Create math education that attracts a diverse workforce

How can we help teachers partner with LLMs?

References

Relevance

- Math is required in life sciences to:
 - Analyze data
 - Create models of biological systems
- Project contributes to cognition research: Understanding teaching is to understand how a human learns
- Research Question: How can we conduct prompt engineering to generate meaningful problems?

Our Work

- Surveyed literature on solving and generating math problems
- Composed guidelines for teachers on using LLMs
- Experimented with one LLM (ChatGPT) in generating problems

Next Steps Toward LLMs in the Classroom

- Guide teachers to use and understand LLMs
- LLMs are the sidekick, not the superhero

CONTACT US
bridge.usc.edu/bugs, belz@usc.edu