
Enhancing Development Image Analysis Tools with GPT-4

 CONTACT US

Cayden Chang, Jason Junge, Scott E. Fraser, Francesco Cutrale
Translational Imaging Center, Bridge Institute, University of Southern California, Los Angeles, CA , USA

Experimental Process

• GPT-4 can quickly generate rough translations of code from one
language to another, significantly reducing the time spent on
manual translation. Its strengths are in converting shorter pieces
of code, as it usually handles them excellently.

• GPT-4 can debug code if error messages are reported or if
logical mistakes are specifically pointed out, reducing the time
spent on troubleshooting and debugging.

• GPT-4 can handle vague prompts, making it a useful tool for
individuals who lack experience in programming languages or
computer science, saving them the time of learning the
intricacies of a new programming language

• Prompt-engineering is critical in the success of the task
requested to the AI.

In Fluorescent Lifetime Imaging (FLIM), pixels contain information about the
fluorescent lifetimes of the imaged fluorophores, rather than the typical qualities
of intensity or color.
Because of this difference, imaging analysis tools are used very frequently in FLIM,
as they are necessary for extracting quantitative data and creating useful
visualizations. Exploiting these imaging analysis tools furthers discovery and our
understanding of novel biological processes.
The focus of this project is centered around image analysis tools, specifically FLIM
filtering and segmentation techniques developed at the Translational Imaging Center
at USC. Despite its excellent functionality, the existing software tool is significantly
limited by its choice of programming language: Matlab. Several reasons including
high costs, a lack of community support, and OS and Version dependencies have
prompted an effort to translate this code to Python for its ease of use and superior
functionalities.
However, translating code to a new programming language is a tedious process, as
significant time is invested in searching for equivalent functions between the old and
new language. Generally, porting code between languages requires proper
understanding of both the topic and the code itself, as well as both programming
languages. In this project, we harness the power of GPT-4 in order to speed up the
process of translating code significantly, using it to expedite learning of both the
software and foundational knowledge, achieving faster deliverables.

Abstract

Summary

Bridge UnderGrad Science (BUGS) Summer Research Program

ResultsMethods

bridge.usc.edu/bugs Caaaayden@gmail.com; Cutrale@usc.edu

Objectives
• Test the capabilities of GPT-4.0 for the task of translating image analysis code

from Matlab to Python.
• Test GPT-4's ability to handle prompts that are vaguer and in layman terms,

originating from someone who lacks experience in imaging and programming
languages.

• Create a proof of concept for GPT-4's potential to save significant amounts of
time in coding tasks.

BUGS Jr powered by GPT 4.0

Standard learningStudent A

Programming
Image analysis

Expedite learningStudent
 B

Programming
Image analysis

GPT

Time

Step 1: Copy

 PromptStep 2: Step 3: Debugging

Untested

Nlmfiltphasor.m

MaskPhasorStruct.m MedfiltPhasor.m

PlotPhasorFast.m

Required
troubleshooting but
eventually functional

LinearRegression_Analysis.m

 LineExtensionMetabolism.m

Converted successfully
ThreshPhasorStruct.m WavefiltPhasor.m

StandardPhase.m PlotUnitCircle.m

 As GPT-4 cannot directly access the user's terminal, users must handle independently the creation of folders for the translation. Thus,
a corresponding file structure was created in PyCharm to simplify the code evaluation and progress visualization. The main file,
analysistemplate.m, contains the analysis algorithm, calling Functions, a folder with 26 different files. After recreating the file
organization of the Matlab code in a PyCharm virtual environment, all the .m files are copied into GPT-4.

Prompts are instructions that users provide to GPT-4 to respond to. Proper
prompt-engineering is essential achieve proper translation of programming code. For the
initial prompt, GPT-4 was asked to assume a persona of an expert in software porting.
Sample inputs and expected outputs were additionally told when available. The increased
specificity of instructions and inputs greatly increased GPT-4's success rate. However,
porting of long portions of code (e.g. >200 lines), necessitated an approach by-parts, as it
overcame local boundaries of GPT-4 messages or inadequately translated the code. A
successful approach in this scenario was to a unique prompt that ordered it translate
batches line separately, recomposing the whole code at the end.

Data Functions

PlotUnitCircle.m StandardPhase.m2 3

.tif images.tif images

Debugging with GPT-4 was
performed by of copy and
pasting error codes and asking
it to provide a revised version
of the code. On some
occasions, manual intervention
was required to further correct
GPT-4 conversion.

Figure 3: Screenshot of code for the function, LinearRegressionAnalysis.m

Figure 4: Screenshot of initial prompt used for roughly translating
every <200 lines .m file. Components of the prompt include persona,
and instructions to report difficulties or limitations.

Figure 5 : Screenshot of additional prompt instructions provide more specific information
about the Inputs to GPT-4. This prompt is specific to LinearRegressionAnalysis.m

Figure 7: Screenshot of specific prompting utilized to inform GPT-4 of its
erroneous assumption. Note that specifying its error in the prompt is
crucial, as GPT-4 would typically experience "confident incorrectness",
continually producing outputs that would not carry out the desired
function.

Figure 8: Screenshot of GPT-4's final working output in PyCharm.

Results for code porting of the 10 functions called in the Matlab code
analysistemplate.m to Python. The ported code has been segmented into three
divisions in accordance with their distinct functions. However, certain directories have not
been tested, primarily due to the ongoing troubleshooting of the main file, delaying the
some of the testing.

Figure 1 : Project Overview. Top, diagram illustrating the software conversion scope of
this project from Matlab to Python. Bottom, illustration of the rationale behind a GPT-4
approach. A code conversion performed by conventional means requires in depth learning
of both programming languages, resulting in an extended time to completion. By contrast,
a GPT-4 powered approach has the potential to shorten the process and facilitate learning
of the coding language.

Figure 2:The file
organization of the code

Figure 6: Screenshot of an example erroneous output. When the GPT4
generated program is run, it returns a different value than the Matlab
function. Note that in the line where b1 is defined, it mistakenly
confuses a backslash, used in Matlab for matrix left division, for a
forward slash prompting the use numPy "divide” function.

