PTGER3 regulates Tumor Treating Fields resistance in glioblastoma cells

Michelle Nguyen, Dongjiang Chen, Adam O’Dell, David Tran
Tran Lab, Dept of Neurological Surgery, Bridge Institute, University of Southern California, Los Angeles, CA, USA

Abstract
Glioblastoma Multiforme (GBM) stands as the primary deadliest brain cancer, with more than 13,400 people in 2022 diagnosed with the disease in the US alone. With temozolomide (TMZ) as the only chemotherapy treatment, diagnosed patients have a progression-free survival (PFS) span of 15 months. However, a novel treatment, Tumor Treating Fields (TTFields), uses noninvasive, low intensity alternating electric fields to rupture the cell’s nuclear envelope and hinder the mitotic growth by stimulating cell death. This cancer treatment has been clinically proven to be a successful way to counter multiple cancer types and increase GBM PFS to 21 months. Unfortunately, a recent discovery shows that close to 100% of patients given TTFields developed a resistance in treated cells that decreases efficacy of the treatment. This has been characterized by an alteration of the cell tumor microenvironment by translocation of prostatolgin F receptor 3 (PTGER3), or EP3, a Gai-protein-coupled cell surface receptor, to the nucleus to bind to zinc finger protein 488 (ZNF488), a transcription factor. Through computational algorithms and experimental procedures, we found that EP3 is rapidly upregulated when exposed to TTFields, leading to new resistance in sensitive GBM cells to the treatment. These results identify EP3 as a major factor in GBM cell resistance and establish the receptor as a potential target for enhancing therapeutic efficacy of TTFields. Furthermore, as patients are usually given TMZ for chemotherapy and TTFields as a secondary treatment, we explored combination of both treatments and found EP3 to increase in dual treatment. This finding will allow us to jumpstart our exploration of treatment combinations to ensure the best results for anti-cancer therapy.

Background

Glioblastoma cell developed resistance to TTFields leads us to focus on understanding the mechanisms of TTFields resistance in the immunity aspect. With the help of computational and experimental biology techniques, we can identify responsible regulating networks and potential targets of resistance and determine the efficacy of combining different anti-cancer drugs. This way, we can understand how GBM cells develop resistance to the cytotoxic effects of TTFields over time and the extent of using TMZ and TTFields together to improve therapeutic efficacy of TTFields treatment.

Figure 1: Generation and characterization of TTFields-resistant GBM cells. (A) Treated cells from 3 human GBM cell lines (LN428, LN827, and U87) with TTFields at a frequency of 200 kHz until day 35 of the fifth cycle, when the cells have fully remodelled. A 2-day break in between replating dates for recovery before treatment resumed. (B) GBM cell lines were grown to sub-confluence and TTFields treatment and eventually developed similarities in cell growth rates to the control groups not treated with TTFields in a span of 4-5 weeks.

Figure 2: EP3 is the master regulator of cellular resistance to TTFields. (A) GBM cell lines LN428, LN827, and U87 analyzed with heatmaps using NETZEN platform nSCORE at three time points: NT control group, day 7 of first cycle, and day 35 of the fifth cycle, when the cells have fully acquired resistance. Compared to NT control, day 7 and day 35 contained remarkably different global patterns in gene upregulation and downregulation, making it evident that gene signature changes began as early as day 7. (B) We used a regulatory network to rank a list of genes based on importance as a master regulator responsible for the cell’s remodeling in response to TTFields through comparison of NT and day-7-35 time points. EP3 is shown to have consistently higher rankings across all cell lines, with its ranking rising as resistance develops from day 7 to day 35. (C) To determine whether resistant cells were selected or evolved to adapt to TTFields treatment and investigate EP3’s role as master regulator, we observed a rapid increase in EP3 levels and ranking from 6 hours to 24 hours in LN428 and U87 cell lines. These findings suggest that resistance was developed through network remodeling and not selected.

Figure 3: ZNF488 contributes to resistance and stemness in cells. (A) Used computational analysis to find EP3 and ZNF488, a stemness transcription factor, tightly connected to regulate resist TTFields treatment. (B) To back up our findings, we treated cells with TTFields and found that cell lines sensitive to TTFields have lower levels of ZNF488 mRNA and protein than resistant cell lines. ZNF488 is shown to play a role in GBM cell resistance to TTFields.

Figure 4: Combined treatment of TMZ and TTFields increases levels of EP3. (A) My workflow in executing this experiment to address the question regarding combined treatment efficacy. A cell plate split into 4 different plates undergoes RNA extraction, reverse transcription, and qPCR to achieve the data in Figure 4B. (B) After 5 days of TTFields treatment, we found mRNA levels of EP3 to be a significant increase with TMZ+TTFields combination treatment. Levels of ZNF488 and PRDM8, the secondary regulators of resistance, stayed relatively the same. Combination treatment only increases (E3).

Conclusion

• EP3 is the top master regulator responsible for TTFields resistance
• EP3 recruits ZNF488 in the nucleus to counter TTFields treatment
• ZNF488, a transcription factor, contributes to cell resistance of TTFields
• EP3 and ZNF488 are potential targets for improving therapeutic efficacy of TTFields anti-cancer treatment
• The combination of TMZ+TTFields increases levels of EP3, possibly with more resistance from cells; however, further experiments are needed to be done to confirm this finding.

Will TMZ improve TTFields treatment or suppress it?

CONTACT US
bridge.usc.edu/bugs  David.Tran@med.usc.edu