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a b s t r a c t 

Speech-in-noise perception, the ability to hear a relevant voice within a noisy background, is important 

for successful communication. Musicians have been reported to perform better than non-musicians on 

speech-in-noise tasks. This meta-analysis uses a multi-level design to assess the claim that musicians 

have superior speech-in-noise abilities compared to non-musicians. Across 31 studies and 62 effect sizes, 

the overall effect of musician status on speech-in-noise ability is significant, with a moderate effect size 

( g = 0.58), 95% CI [0.42, 0.74]. The overall effect of musician status was not moderated by within-study IQ 

equivalence, target stimulus, target contextual information, type of background noise, or age. We conclude 

that musicians show superior speech-in-noise abilities compared to non-musicians, not modified by age, 

IQ, or speech task parameters. These effects may reflect changes due to music training or predisposed 

auditory advantages that encourage musicianship. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Speech-in-noise (SIN) perception refers to the ability to hear a 

elevant voice in the context of a noisy background (e.g., a loud 

estaurant or gathering). Understanding speech in noisy environ- 

ents is vital to successful communication. Deficits in SIN abil- 

ties are associated with reduced school performance in children 

 de Carvalho et al., 2017 ), and increased emotional and social lone- 

iness in older adults ( Stam et al., 2016 ). Speech-in-noise abilities 

ecline with age ( Pronk et al., 2013a ) and are difficult to remedy

ith assistive technology ( Chung, 2004 ; Killion, 1997 ). Important 

o our understanding of human auditory processing is untangling 

ow speech-in-noise abilities vary across individuals and can be 

mproved across the lifespan. 

One group of individuals that is reported to have better SIN 

bilities in some studies is lifelong musicians (for review, see 

offey et al., 2017 ). Music training may improve auditory process- 

ng through repetitive practice of fine-tuned pitch discrimination 

nd enhanced attendance to changes in acoustic features such as 

imbre and rhythm. According to the OPERA (overlap, precision, 

motion, repetition, attention) hypothesis ( Patel, 2011 , 2014 ), mu- 

ic training may influence speech processing specifically because it 

laces demands on shared sensory or cognitive processes and in- 

olves repetition, attentional focus, and is emotionally rewarding. 
∗ Corresponding author. 
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atel (2014) suggests that music training may drive neural plas- 

icity by placing a higher demand on overlapping brain networks 

hat process music and speech than in everyday speech commu- 

ication. It may also be the case that individuals who choose to 

ecome musicians have pre-existing advantages in perceptual abil- 

ties (including, but not limited to speech-in-noise perception) that 

ay help them to excel at music playing and thus continue to 

articipate in musical activities. Thus, musicians may have bet- 

er speech-in-noise abilities than non-musicians as a function of 

redisposed auditory advantages that encourage continued music 

raining, rather than as a result of music training. 

Several cross-sectional studies have reported differences 

n speech-in-noise performance between musicians and non- 

usicians ( Parbery-Clark et al., 2009; Zendel et al., 2015 ), while 

thers have observed no differences (e.g., Boebinger et al., 2015 ; 

adsen et al., 2017 , 2019 ). Discrepancies between studies may 

e due to differences in task selection; there is great variety in 

asks used to assess speech-in-noise abilities – for example, many 

esearchers (e.g., Zendel and Alain, 2012 ) have used QuickSIN 

Etymotic Research, 2001 ; Killion et al., 2004 ) while others (e.g., 

arbery-Clark et al., 2013 ) use Hearing In Noise Test (HINT) 

 Neff and Green, 1987 ), or Words in Noise (WIN) (e.g.: Slater and 

raus, 2016 ). Many studies report results from multiple tasks (e.g., 

idelman and Yoo, 2020 ; Escobar et al., 2019 ). Each task measures 

peech-in-noise perception in slightly different ways; QuickSIN 

 Killion et al., 2004 ), for example, assesses perception of full- 

ength meaningful and grammatical sentences that are embedded 

https://doi.org/10.1016/j.heares.2022.108442
http://www.ScienceDirect.com
http://www.elsevier.com/locate/heares
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heares.2022.108442&domain=pdf
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n 4-talker speech babble that gradually increases in volume, while 

INT ( Nilsson et al., 1994 ) has similar, yet more highly predictable, 

entences embedded in speech-shaped noise where the target 

olume is adaptive relative to participant performance. In contrast, 

IN ( Wilson, 2003 ) consists of monosyllabic words embedded in 

daptive babble, without any grammatical or semantic context. 

t has been reported that some speech-in-noise tasks may be 

ore sensitive than others. For example, HINT, because most 

sers achieve higher overall performance (at ceiling), is poorer 

t discriminating between individuals with and without hearing 

oss than is QuickSIN and the WIN ( Wilson et al., 2007 ). Relatedly, 

ifferences between studies may be due to target speech type, 

here some studies use tasks where the target speech is a sen- 

ence (e.g., Anaya et al., 2016 ; Ba ̧s kent and Gaudrain, 2016 ), while

thers choose syllables (e.g., Du and Zatorre, 2017 ) or words (e.g., 

ostick, 2019 ) as the target. These stimuli may be processed differ- 

ntly, relying on different encoding cues and cognitive resources. 

entences often contain semantic and grammatical information 

hat allows the listener to make predictions and fill in gaps about 

issed information and words. Words, while not always embed- 

ed in contextual cues, follow predictable patterns of consonant 

nd vowel combinations. In contrast, syllables and made-up words 

o not contain predictable information, and thus perception is less 

ble to depend on top-down mechanisms. Type of background 

oise also varies across studies, as some researchers choose a 

ingle voice masking paradigm (e.g., Ba ̧s kent and Gaudrain, 2016 ), 

hile others use babble (e.g., Escobar et al., 2019 ), or speech- 

haped noise (e.g., Fuller et al., 2014 ). SIN perception outside of 

he laboratory is supported by contextual cues and syntactical 

nformation and is typically in the presence of speech-related 

ackground noise, and thus the choice of speech target type, 

ontextual information available, or background noise may lead to 

ritical differences in performance in a measurement setting. 

Lastly, in a recent meta-analysis, speech-in-noise abilities were 

ound to be positively associated with cognitive abilities, includ- 

ng working memory and IQ ( Dryden et al., 2017 ). This was sug-

ested to be due to a cognitively-related ability to effectively 

se contextual cues, as this association was particularly strong in 

ontextually-rich tasks. Musicians, as compared to non-musicians, 

ave been reported to have higher auditory working memory 

 Chan et al., 1998 ; Moreno et al., 2011 ; Talamini et al., 2016 ) and

erbal and nonverbal IQ ( Schellenberg, 2011 ), although differences 

n intelligence may be simply due to differences in music aptitude 

ather than a result of training ( Swaminathan et al., 2017 ). Thus, 

o assess whether musicians have superior speech-in-noise abili- 

ies compared to non-musicians independent of cognitive ability, it 

ay be important to control for IQ and auditory working memory 

easures. While several studies have explored this idea and con- 

rolled for cognitive ability (e.g., Boebinger et al., 2015 ), many have 

ot. 

In this meta-analysis, we assess the hypothesis that musicians 

ave superior speech-in-noise ability compared to non-musicians. 

e restrict our analysis to cross-sectional studies due to insuffi- 

ient longitudinal studies and randomized control trials that would 

e necessary to conduct this analysis. To our knowledge, this is 

he first meta-analysis to explore this question. We explore four 

ain questions: 1) do adult musicians perform better than non- 

usicians in tasks measuring speech-in-noise?, 2) how much vari- 

nce can be attributed to within-study effects (specifically in stud- 

es with multiple SIN tasks) as compared to between-study ef- 

ects?, 3) are observed effects dependent on the type of speech 

arget (e.g., sentences vs. words), 4) are observed effects dependent 

n whether participants were explicitly identified as equivalent in 

ognitive ability? Given that speech-in-noise abilities decline with 

ge ( Pronk et al., 2013b ) and that many studies have investigated 

IN perception specifically in older adult participants, we addition- 
2 
lly explore a fifth question: 5) are observed effects dependent on 

he age group assessed (e.g., older adults vs. younger adults)? 

. Methods 

.1. Literature search 

A literature search using PubMed and ProQuest was conducted. 

he first author designed the search method, and terms used in 

ach search are listed in (Supplementary Table 1). The search was 

onducted once in April 2020 and updated again in February 2021. 

fter removal of duplicates, we retrieved 3011 records. 

.2. Inclusion criteria 

Articles that met the following criteria were included in the 

eta-analysis: 

1 Participants were adults with normal hearing thresholds de- 

fined as less than 20 dB HL from 250 to 40 0 0 Hz. 

2 The study was cross-sectional and included a long-term 

musically-trained ( > 6 years of training) group and a musically- 

untrained control group (i.e., music training as a categorical, not 

continuous, variable). 

3 The study was a peer-reviewed publication, published in En- 

glish. Dissertations, theses, conference proceedings, abstracts, 

unpublished manuscripts, and case studies were not included. 

4 The study reported behavioral outcomes of speech-in-noise (i.e., 

sentences, words, or syllables in noise). Studies that reported 

auditory stimuli unrelated to speech (i.e., tones) in noise were 

not included. 

5 The study reported sufficient data to compute effect sizes. 

Excluded studies were those that did not meet all five inclu- 

ion criteria. Records were evaluated by the first author for eligi- 

ility based on inclusion criteria (see Fig. 1 ), resulting in 31 studies 

nd 62 effect sizes included in the meta-analysis. We conducted a 

isk-of-Bias assessment using criteria from the ROBINS-I tool for 

on-randomized studies ( Sterne et al., 2016 ), which was visualized 

sing the robvis package (McGuinness, 2019) in R (Supplementary 

igure 1). Specifically, we assessed: 1) bias due to confounding (are 

here confounding factors (e.g.: IQ differences, age, pure-tone aver- 

ge) present that may have influenced outcomes, and did authors 

ontrol for such factors?), 2) bias in classification of groups (were 

usic and control groups clearly defined at the beginning of the 

tudy?), 3) bias due to missing data (were outcome data avail- 

ble for all, or nearly all participants? Were participants excluded 

ue to missing data?), 4) bias in measurement of outcomes (Were 

ethods of outcome assessment comparable across groups?) 5) 

ias in selection of reported result (is the effect estimate likely to 

e selected from multiple analyses of the group-outcome relation- 

hip or different subgroups?). It should be noted that Risk-of-Bias 

ssessments are not infallible assessments of a study’s quality, as 

hey do not provide information on the relative impact of one bias 

s. another, or the magnitude or direction of a bias ( Savitz et al.,

019 ). 

.3. Outcome measures 

Multiple outcome measures of SIN perception were allowed 

or each study. Outcome variables were coded as the name (e.g., 

Hearing in Noise Task”) and category (e.g., “masked speech”) of 

he task performed. See Table 1 for a complete list of outcome vari- 

bles for each included study, and Table 2 for a brief description of 

ommon outcome variables. 
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Table 1 

Studies included in meta-analysis. 

Study, Journal 

Number of 

Effect 

Sizes 

included Outcome Measure 

Speech Target/ Noise Type/ 

Context 

Duration of Music Training 

and Age of Onset in the 

Musician Group 

Duration of Music Training and Age of Onset in 

the Non-musician Group 

Mean Age, total 

N (musician N) 

IQ 

Measures 

Anaya et al., 2016 , The Journal of 

the Acoustical Society of America 

1 HINT and PRESTO 

composite 

Sentences/ speech-shaped 

noise / semantic 

15.45, onset age 4.9 1.7 years, not currently playing instrument 20.7, N = 22 

(11) 

Nonverbal ∗

Ba ̧s kent and Gaudrain, 2016 , The 

Journal of the Acoustical Society of 

America 

1 Masked sentences Sentences/ single speaker/ 

semantic 

At least 10 years, onset age 

< 7 

< 10 years, no training within the past 7 years 22.3, N = 38 

(18) 

none 

Bidelman and Yoo, 2020 , Frontiers 

in Psychology 

2 Masked sentences Sentences /babble / none 15.1, onset age 7.2 0.89 years 24.2, N = 28 

(14) 

Nonverbal ∗ , 

AWM 

∗QuickSIN Sentences/ babble/ 

syntactic 

Boebinger et al., 2015 , The Journal 

of the Acoustical Society of America 

4 Masked BKB sentences Sentences/ single speaker, 

speech-shaped noise, 

fluctuating speech-shaped 

noise/ semantic 

22.7, onset age 5.9 0.2 years, onset age 12.8 27.2, N = 50 

(25) 

Verbal, 

Nonverbal, 

AWM 

Clayton et al., 2016 , PloS ONE 2 Masked sentences, 

co-located, separated 

Sentences/ single speaker/ 

syntactic 

14.4 < 3 years, no current instrument playing 21.5, N = 34 

(17) 

Nonverbal, 

AWM 

∗

Du and Zatorre, 2017 , PNAS 1 Syllable in Noise Syllables/ white noise/ 

none 

16.3, onset age 5.1 < 1 year, no training in the past year 21.8, N = 30 

(15) 

Verbal, 

AWM 

Escobar et al., 2019 , Ear and 

Hearing 

3 QuickSIN Sentences/ babble / 

syntactic 

13.4, onset age 8.2 < 3 years, no training in the past 7 years 21.4, N = 49 

(27) 

AWM 

HINT Sentences, speech-shaped 

noise, semantic 

SPIN-R Sentences, babble, 

semantic 

Fostick, 2019 , European Journal of 

Ageing 

2 AB- words task in speech 

noise 

Words/ speech-shaped 

noise, white noise/ none 

7 hrs/week with 3 h in 

orchestral rehearsal 

No training, no current instrument playing 65.6 † , N = 46 

(23) 

Nonverbal, 

AWM 

Fuller et al., 2014 , Frontiers in 

Neuroscience 

2 Sentences in noise Sentences/ speech-shaped 

noise/ semantic 

14.6, onset age 5.8 1.6, onset age 9.1 22.7, N = 50 

(25) 

none 

Words in noise Words/ speech-shaped 

noise/ none 

Kaplan et al., 2021 , Frontiers in 

Psychology 

1 Masked sentences Sentences/ 2-talker 

maskers/ semantic 

13.1, onset age 6.2 2.05 years, onset age 14.4 26.7, N = 33 

(16) 

none 

Madsen et al., 2017 , Scientific 

Reports 

2 Masked HINT sentences Sentences/ babble, 

speech-shaped noise/ 

semantic 

14.6, onset age 6.1 < 2 years, no training in the past 7 years 21.0, N = 60 

(30) 

Verbal, 

nonverbal 

Madsen et al., 2019 , Scientific 

Reports 

2 Closed and open 

speech-on-speech task 

(Dantale II sentences), 

separated, co-located 

Sentences/ babble/ 

semantic 

15.3, onset age 5.4 < 2 years, no training in the past 7 years 22.9, N = 64 

(32) 

Verbal, 

nonverbal 

Mankel and Bidelman, 2018 , PNAS 1 QuickSIN, Sentences/ babble/ 

syntactic 

16, onset age 7.14 < 3 years, no training in the past 5 years 22.2, N = 28 

(14) 

none 

Meha-Bettison et al., 2018 , 

International Journal of Audiology 

4 LiSN-S, low and high cue, 

co-located and separated 

Sentences/ single speaker/ 

semantic 

39.7, onset age 7.2 No training 45.9, N = 20 

(10) 

none 

Morse-Fortier et al., 2017 , Trends in 

Hearing 

4 Masked words (natural, 

vocoded, spatial, 

nonspatial) 

Words/ babble, fluctuating 

speech-shaped noise/ none 

11.5 No training 21.3, N = 40 

(20) 

none 

( continued on next page ) 
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Table 1 ( continued ) 

Study, Journal Number of 

Effect 

Sizes 

included 

Outcome Measure Speech Target/ Noise Type/ 

Context 

Duration of Music Training 

and Age of Onset in the 

Musician Group 

Duration of Music Training and Age of Onset in 

the Non-musician Group 

Mean Age, total 

N (musician N) 

IQ 

Measures 

Parbery-Clark et al., 2009 , Ear and 

Hearing 

2 QuickSIN Sentences/ babble/ 

syntactic 

16, onset age 4.7 2 years, onset age 10.8 23, N = 31 (16) Nonverbal, 

AWM 

∗

HINT Sentences/ speech-shaped 

noise/ semantic 

Parbery-Clark et al., 2011 , PLoS 

ONE 

3 QuickSIN, Sentences, / babble/ 

syntactic 

50, onset age 5.6 < 3 years training 54.5 † , N = 37 

(18) 

Verbal, 

Nonverbal, 

AWM 

∗HINT Sentences/ speech-shaped 

noise/ semantic 

WIN Words/ babble/ none 

Parbery-Clark et al., 2011 , 

Neuropsychologia 

1 HINT Sentences/ speech-shaped 

noise/ semantic 

16.4, onset age 5.1 < 3 years training 22.4, N = 31 

(16) 

Nonverbal 

Parbery-Clark et al., 2012 , Front. 

Aging Neurosci. 

1 HINT Sentences/ speech-shaped 

noise/ semantic 

49, onset age 6.5 < 4 years training 56 † , N = 48 

(23) 

Nonverbal 

Parbery-Clark et al., 2012 , 

Neuroscience 

1 QuickSIN Sentences/ babble/ 

syntactic 

17.3, onset age 5.4 2.1 years, onset age 11.4 22, N = 50 (23) Nonverbal 

Parbery-Clark et al., 2013 , Journal 

of Neuroscience 

1 HINT Sentences/ speech-shaped 

noise/ semantic 

16.2, onset age 5.1 0.7 years, onset age 12.2 20, N = 30 (15) Nonverbal 

Ruggles et al., 2014 , PloS ONE 2 QuickSIN, Sentences/ babble/ 

syntactic 

At least 10 years, onset age 

6.9 

< 2 years training, not currently playing 

instrument 

21.2, N = 33 

(16) 

none 

HINT Sentences/ speech-shaped 

noise/ semantic 

Slater and Kraus, 2016 , Cognitive 

Processing 

2 QuickSIN Sentences/ babble/ 

syntactic 

15.7 < 3 years music experience, no active music 

making within the last 3 years 

23.9, N = 54 

(37) 

Nonverbal 

WIN Words/ babble/ none 

Swaminathan et al., 2015 , Scientific 

Reports 

4 Masked speech 

(forwards, reversed, 

co-located, separated) 

Sentences/ babble/ 

syntactic 

13.8, onset age 8.5 No formal training, not currently playing music 21.7, N = 24 

(12) 

none 

Vanden Bosch der Nederlanden 

et al., 2020 , Psychological Research 

2 SPIN-R high 

predictability 

Sentences/babble/semantic 11.6, onset age 9.1 1.24 years of training, onset age 11.09 21, N = 60 (30) Verbal, 

Nonverbal, 

AWM SPIN-R low predictability Sentences/babble/syntactic 

Varnet et al., 2015 , Scientific 

Reports 

3 Nonwords in noise 

(correct, sensitivity, SNR) 

Nonwords/white 

noise/none 

15.8, onset age < 13 No musical practice 22.8, N = 38 

(19) 

none 

Yoo and Bidelman, 2019 , Hearing 

Research 

3 QuickSIN Sentences, Words/ babble/ 

syntactic 

15.8, onset age 7 ≤ 3 years training 25.4, N = 31 

(16) 

Nonverbal ∗ , 

AWM 

∗

WIN Words/ babble/ none 

HINT Sentences/ speech-shaped 

noise/ semantic 

Zendel and Alain, 2012 , Psychology 

and Aging 

2 (younger 

adults; 

older 

adults) 

QuickSIN Sentences/babble/syntactic At least 6, onset age < 16 < 2 years formal or self-directed lessons, not 

currently playing instrument 

66.3 † (older), 

N = 83 (35); 

28.0 (younger), 

N = 75 (37) 

none 

Zendel et al., 2015 , Journal of 

Cognitive Neuroscience 

1 Words in babble Words/ babble/ none 15.5, onset age 7.8 < 1 year training, not regularly playing 

instrument 

22.7, N = 26 

(13) 

none 

Zendel and Alexander, 2020 , 

Frontiers in Neuroscience 

1 QuickSIN Sentences/ babble/ 

syntactic 

23.5, onset age 11.4 Not currently playing an instrument, little to no 

previous training 

32.0, N = 37 

(19) 

none 

Zhang et al., 2019 , International 

Journal of Audiology 

1 QuickSIN Sentences/ babble/ 

syntactic 

At least 10 years, onset age 

< 7 

< 3 years training, no training in the last 5 years 24, N = 34 (17) none 

∗ musicians significantly outperformed non-musicians on IQ measure (marked as “nonequivalent”). 
† marked as “older adults” in sub-group analysis. 
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Fig. 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram, indicating records identified through database searching, screened, 

excluded, and final studies included in meta-analysis. 
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.4. Data extraction 

Study characteristics and outcome data were extracted manu- 

lly from each study, first by the first author and then by two 

ndependent researchers using a spreadsheet form. During data 

xtraction, researchers were blind to information extracted by 

ther researchers. After finishing extraction, in the case of dis- 

greement between researchers, the first author reviewed the dis- 

greement and paper in question. Disagreements occurred 4 to- 

al times and, in all cases, numbers had been extracted incor- 

ectly (e.g., researcher A mistyped a mean, researcher B correctly 

yped the mean, first author reviewed the disagreement by return- 

ng to the study and verifying the correct number). If a study in- 

luded additional groups, only the data from the formally trained 

usician and non-musician control groups were extracted. If a 

tudy contained insufficient data to calculate effect size or to at- 

ain descriptive statistics, the authors were contacted via email 

p to two times by the first author (7 authors contacted). For 

ach article, the following data points were extracted: publica- 

ion details, speech-in-noise task description, n for each group, 

ears of music training in the musician group, mean participant 

ge, target speech type and context, whether the two groups 

ere evaluated for equivalence on IQ, outcome means and stan- 

ard deviations or standard errors for each group, and F or t 

tatistics. 
5 
.5. Power analysis 

All analyses for this manuscript were conducted using R 

tatistics ( R Core, 2021 ) version 4.0.5 “Shake and Throw”. Pack- 

ges used for data import, wrangling, and plotting include 

eadxl ( Wickham and Bryan, 2019 ), dplyr ( Wickham et al., 2021 ) ,

gplot2 ( Wickham, 2016 ) , sjplot ( Lüdecke, 2020 ), and ggrepel 

 Slowikowski, 2021 ). 

We conducted an a priori power analysis using the dmetar pack- 

ge ( Harrer et al., 2019b ) in R. To achieve 80% power, assum- 

ng moderate heterogeneity among studies and an alpha level of 

.05, at least 20 studies with an average of 15 participants in each 

roup were necessary to detect a Cohen’s d effect size of 0.30. This 

edium effect size was chosen given the limited number of papers 

vailable in this subject to estimate an a priori effect size estimate. 

e additionally conducted a power analysis of subgroups using the 

metar package ( Harrer et al., 2019b ) in R, which indicated that an

ffect size difference of 0.40, assuming standard errors of 0.10 for 

ach effect, was necessary to achieve power of 80% for moderator 

nalyses. 

.6. Effect size calculation 

Effect sizes were calculated for each outcome measure using 

he esc package ( Lüdecke, 2019 ) in R ( R Core, 2021 ). Hedge’s g , an



S. Hennessy, W.J. Mack and A. Habibi Hearing Research 416 (2022) 108442 

Table 2 

Description of common outcome variables included in meta-analysis. 

Task Name Description Outcome Measure 

HINT Participants are asked to 

repeat sentences 

(Bamford-Kowal-Bench 

sentences) that are 

presented against 

speech-shaped noise. 

Sentence level is adaptive 

to participant 

performance. 

SNR-50: 

Signal-to-noise-ratio (SNR) 

required to correctly 

repeat 50% of target 

sentences. 

QuickSIN Participants are asked to 

repeat sentences (Institute 

of Electrical and Electronic 

Engineers sentences) that 

are presented against 

4-talker babble at 

increasing noise level. 

SNR loss: SNR required to 

repeat 50% of sentences 

(measured by accuracy of 

5 key words per sentence) 

SPIN-R Participants are asked to 

repeat the last word of a 

sentence presented against 

12-talker babble at 

multiple SNRs. Half of 

sentences have a 

high-predictable final 

word, and half of 

sentences have a 

low-predictable final word. 

Percent correct: Percent of 

final words repeated 

correctly. 

LiSN-S Participants are asked to 

repeat sentences 

(Bamford-Kowal-Bench) 

presented against a 

distractor voice that is 

either 0 ° or −90 °
azimuth in relation to 

target sentence. Target 

sentence level is adaptive 

to participant 

performance. 

SNR required to repeat at 

least 50% of words in 

target sentence. 

WIN Participants are asked to 

repeat monosyllabic words 

presented in 4-talker 

babble at decreasing SNR. 

SNR score: SNR required 

to repeat 50% of words. 
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ffect size measure that accounts for small study bias ( Hedges and 

lkin, 1985 ), was computed using the following formula, where d 

s Cohen’s d, n 1 is the sample size of group 1 and n 2 is the sample

ize of group 2: 

 � d ×
(

1 − 3 

4 ( n 1 + n 2 ) − 9 

)

A positive effect size indicated an advantage in the music com- 

ared to the control group. 

.7. Three-Level model 

Given studies reported more than one SIN outcome, a three- 

evel model ( Assink and Wibbelink, 2016 ; Cheung, 2014 ; 

ox, 2010 ) was employed using the metafor package 

 Viechtbauer, 2010 ) using guidelines from M. Harrer et al. (2019) . 

hree-level models have been shown to perform well in 

eta-analyses involving multiple effect sizes within one study 

 Cheung, 2014 ). Here, meta-analysis variances are assessed across 

hree levels: Level 1) sampling variance, Level 2) variance between 

ffect sizes within a single study (i.e., different outcome mea- 

ures), and Level 3) variance between studies. Model equations, 

s presented by (M M. Harrer et al., 2019 ) are as follows, where

 is an individual effect size from study j. θ ij and 

ˆ θ ij, are the true 

nd estimated effect sizes i from study j , and εij is the Level 1

rror, ζ(2) i j is the Level 2 error, ζ(3) j is the Level 3 error, κ j is 
6 
he average effect size of study j , and β0 is the effect size at the

opulation level. 

Level 1: ˆ θi j = θi j + εi j 

Level 2: θi j = κ j + ζ(2) i j 

Level 3: κ j = β0 + ζ(3) j 

The combined equation is, therefore: ˆ θi j = β0 + ζ(2) i j + ζ(3) j + 

i j 

Heterogeneity measures ( I 2 ) across model levels were calcu- 

ated using the dmetar package in R ( Harrer et al., 2019b ) 

.8. Moderators 

Five moderators (subgroups) were assessed: 

1 Type of target stimulus coded the type of speech stimulus par- 

ticipants were asked to identify within noise (i.e., words, sen- 

tences, or syllables). 

2 Type of background noise was coded as the type of noise in 

which speech targets were embedded (i.e., competing speaker, 

babble (more than one speaker), speech-shaped noise, fluctu- 

ating speech-shaped noise (speech-shaped noise that matched 

temporal envelope of speech noise), or white noise). 

3 Type of context was coded as the type of contextual or syntac- 

tical cues within which a target stimulus was embedded, as a 

measure of target predictability. For example, if the target was a 

meaningful, syntactically correct sentence, it was coded as “se- 

mantic”, but if the target was a meaningless but syntactically 

correct sentence, it was coded as “syntactic”. Stimuli that con- 

tained no contextual cues were coded as “none”. 

4 Age group of participants. Effect sizes were coded as “younger 

adults” (mean age < 45) or “older adults” (mean age ≥ 45). 

5 IQ equivalence. Studies were coded as to whether the musically- 

trained group and the musically-untrained group were tested 

for and determined to be equivalent in Verbal IQ, Non-verbal 

IQ, or Auditory Working Memory (AWM). Specifically, if IQ was 

measured and there were no IQ differences between groups, 

studies were coded as “equivalent”. If IQ was measured and 

there were differences between groups, or if IQ was not mea- 

sured at all, studies were coded as “not equivalent”. This infor- 

mation for each study is shown in Table 1 . 

A separate three-level model was fitted for each modera- 

or variable, as the inclusion of multiple moderators has been 

hown to increase Type-II error of the moderator estimate 

 Raudenbush and Bryk, 2002 ). To correct for multiple comparisons, 

e used the Bonferroni adjustment, multiplying p values by the 

umber of models assessed (8; target stimulus, background noise, 

ontext, age group, any IQ, Verbal IQ, Non-verbal IQ, AWM). If 

oderators were significant, they were included in the full model. 

.9. Publication bias 

Research has shown that studies reporting statistically signifi- 

ant findings are published more often than studies reporting null 

esults ( Viechtbauer, 2007 ). Methods of assessing this publication 

ias in multi-level meta-analyses show inconsistent performance 

 Fernández-Castilla et al., 2020 ). Traditional methods of publica- 

ion bias analysis include Egger’s Test of the Intercept, a method 

f assessing the asymmetry of a funnel plot, which is a visual rep- 

esentation of individual study effect estimates as a function of 

tandard error. In an unbiased meta-analysis, a funnel plot will 

orm the shape of a roughly symmetrical upside-down funnel cen- 

ered around a midline at the pooled effect size, with studies at 

he top of the plot (those with low standard errors) lying close 

o the pooled effect size, and studies at the bottom (those with 
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ncreasing standard errors) scattered increasingly away from the 

ooled effect to both the left and right. If Egger’s Test of the In-

ercept reveals significant asymmetry, Duval and Tweedie’s Trim & 

ill method may be used to identify outliers (trim), and to add 

 mirrored effect size to the other side of the funnel (fill), and 

o recalculate pooled effect size until symmetry is achieved. How- 

ver, these methods show inflated Type I error rates when depen- 

ent effect sizes are ignored (for example, collapsing multiple ef- 

ect sizes of one study into a single number, or randomly sampling 

ne effect size from each study) ( Rodgers and Pustejovsky, 2020 ). 

herefore, we opted for a multi-level method of assessing fun- 

el plot asymmetry, the Egger MLMA test, originally proposed by 

 Van den Noortgate et al., 2013 ), which demonstrates sufficient 

ower to detect asymmetry (in which 80% power is obtained with 

oderate effect size and moderate heterogeneity when the prob- 

bility of censoring non-significant effects is 0.8) ( Rodgers and 

ustejovsky, 2020 ) and does not inflate Type I error ( Fernández- 

astilla et al., 2020 ; Rodgers and Pustejovsky, 2020 ). This test re- 

resses effect size precision on effect size, with slope estimated 

sing weighted least-squares and intercept significance testing us- 

ng a multi-level model approach ( Fernández-Castilla et al., 2020 ). 

f the publication-bias effects related slope (effect size precision) 

s significant, the intercept of the model is interpreted as the ad- 

usted pooled effect size after adjusting for asymmetry. It should 

e noted that, while the source of funnel plot asymmetry may be 

elective reporting, or publication bias, asymmetry may also result 

rom a “small-study effect” ( Rodgers and Pustejovsky, 2020 ), re- 

erring to the phenomenon that studies with small sample sizes 

ften have large effect sizes ( Ioannidis, 2008 ). While we refer to 

his analysis as a “publication bias analysis”, we acknowledge that 

he source of asymmetry may derive from either scenario. The Eg- 

er MLMA test was performed in R using the metafor package and 

ode adapted from Rodgers and Pustejovsky ( Rodgers and Puste- 

ovsky, 2020 ). 

.10. Influence analysis 

An influence analysis was conducted to identify and remove 

everage effect sizes. Leverage effect sizes are study effect sizes 

hat unduly influence the pooled effect size; for example, a very 

arge effect size drawn from a study that has a large sample size 

in comparison to other included studies in the meta-analysis) will 

ave a large influence on the pooled effect size estimate, distort- 

ng meta-analytic results. To identify and remove such leverage 

ffect sizes, influence analysis was conducted using the dmetar 

 Harrer et al., 2019b ) and metafor ( Vietchbauer, 2010 ) packages. 

e conducted analysis using all effect sizes treated independently 

sing the meta package ( Balduzzi et al., 2019 ), as done in pre-

ious multi-level meta-analyses ( Castillo-Eito et al., 2020; Parry 

t al., 2021 ). Effect sizes exerting high influence were detected 

sing a leave-one-out method, as suggested by Viechtbauer and 

heung (2010) . In the leave-one-out method, meta-analysis re- 

ults are calculated K times (where K is the number of effect 

izes included), leaving out one effect size on each iteration. This 

ethod can then assess if one effect size exerts influence on meta- 

nalytic results such that, when removed, results differ substan- 

ially from when it is included. The quantified “influence” value 

s the standardized difference between the overall effect with the 

ffect size com pared to the pooled effect without the effect size. 

esults of the influence analysis were visualized using a Baujat 

lot ( Baujat et al., 2002 ), a diagnostic plot used to detect stud-

es that contribute unequally to the meta-analysis by plotting con- 

ribution of the study to between-study heterogeneity against the 

influence” value, determined by the leave-one-out method. In a 

aujat plot, studies falling to the right of the plot exert high het- 

rogeneity contribution, studies in the upper portion of the plot 
7 
xert high “influence”, and studies in the upper right-hand corner 

re considered leverage points as they have a large impact on both 

eterogeneity and pooled effect size. Between-study heterogeneity 

n the Baujat plot is measured by Cochran’s Q, a metric based on 

he deviation of each effect from the pooled effect, weighted by 

he inverse of the study variance. 

. Results 

.1. Study characteristics 

Study characteristics, including mean age, outcome measures, 

nd IQ equivalence (whether groups were explicitly tested for and 

emonstrated to be equivalent on IQ) are presented in Table 1 . 

he mean participant age was 28.5 and the mean participant age, 

hen weighted for the number of effect sizes included, was 28.7. 

f the 62 effect sizes included, 11 were from studies whose par- 

icipants were “older adults” ( > age 45), while 51 had participants 

ho were considered “younger adults”. 13 effect sizes were from 

tudies that showed equivalence between groups for verbal IQ, 

7 showed equivalence between groups for nonverbal IQ, and 12 

howed equivalence between groups for auditory working memory. 

0 effect sizes were from studies that showed equivalence between 

roups for any of the 3 IQ measures. Length of music training was 

pecified in 26 of the 31 studies, with an average of 19.2 years 

f training in the musician group. In the remaining studies, mu- 

ic training length was described as at least 10 years ( Baskent and 

audrain, 2016 ; Ruggles et al., 2014 ), at least 6 years ( Zendel and

lain, 2012 ), and practicing at least 7 h per week regularly with 

 h in orchestral rehearsal ( Fostick, 2019 ). Although not explicitly 

eeting more than 6 years of training criteria, the authors de- 

ermined to include this study because an individual playing mu- 

ic for at least 7 h per week regularly is likely to be considered a

musician”. Musician participants across studies were largely re- 

ruited from University-level music programs, were mostly classi- 

ally trained, engaged in both private lessons and ensemble, and 

layed instruments such as piano, violin, cello, oboe, french horn, 

assoon, guitar, and voice. 

.2. Three-level model analysis 

The first three-level model, without moderators and before as- 

essing influence or publication bias, resulted in a pooled effect 

ize ( g) of 0.58 ( p < 0.0 0 01), with a 95% confidence interval of

0.42, 0.74]. 47.35% of the total model variance was attributed 

o Level 1 (sampling variance). I 2 Level 2 was ∼0%, indicating no 

ithin-study heterogeneity. I 2 Level 3 was 52.65%, indicating moder- 

te between-study heterogeneity. I 2 Total, indicating the amount of 

eterogeneity not attributable to sampling error, was 52.65%. Effect 

izes for each outcome variable and study are presented in Fig. 2 . 

We then assessed whether our three-level model was superior 

o a two-level model by removing one of the levels and comparing 

t. When removing only Level 2 (within-study heterogeneity), the 

esulting model had a slightly lower AIC (77.44) and BIC (81.66) 

han the full model (79.44, 85.77), but this difference was not sig- 

ificantly different ( p = 1.00), suggesting that including Level 2 

as not necessary, and that within-study heterogeneity was not 

ignificant. When removing Level 3 (between-study heterogeneity), 

he resulting model had a higher AIC (89.74) and BIC (93.96) when 

ompared to the full model and was significantly different ( p < 

.001). This suggests that Level 3 was necessary to include in the 

ull model for this analysis (and that between-study heterogene- 

ty was significant). Given the model comparisons, our final model 

xcluded Level 2. The resulting estimate effect size and level het- 

rogeneity, however, did not differ from the full model, as the re- 

oved Level 2 variance was originally at 0%. 
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Fig. 2. Forest plot depicting all effect sizes and 95% CIs across studies and measures. The horizontal axis represents effect size (Hedge’s g ), where a positive effect size 

indicates a musician advantage. The vertical axis indicates each study, in alphabetical order, included in the meta-analysis, with a separate entry for each effect size included. 

For each effect size, speech target type is indicated by color and background noise type is indicated by shape. Line length indicates 95% confidence interval surrounding each 

effect size, and shape size indicates effect size weight (as determined by the inverse of the variance) . Pooled effect size is shown as a black dashed line ( g = 0.58) with a 

gray bar indicating 95% CI [0.42, 0.74]. 
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.2.1. Type of speech target 

A test of moderation by speech target was conducted to com- 

are effect sizes where the target stimulus was a sentence versus a 

ord. Syllables and nonwords were excluded from this analysis as 

hey did not contain at least 3 effect sizes. The test of moderators 

ndicated that type of speech target was not a significant modera- 

or (F(1, 56) = 0.13, p = 0.72, Bonferroni-adjusted p = 1.00). 

.2.2. Type of background noise 

A test of moderation on type of background noise was con- 

ucted to compare effect sizes where the background noise was 

ulti-talker babble, a single speaker, speech-shaped noise, fluctu- 

ting speech-shaped noise, or white noise. The test of moderators 

ndicated that type of background noise was not a significant mod- 

rator (F(4, 57) = 1.21, p = 0.31, Bonferroni-adjusted p = 1.00). 

.2.3. Type of context 

A test of moderation on type of contextual cues available to the 

istener was conducted to compare effect sizes where stimuli were 

laced within the context of semantic, syntactic, or no cues. The 

est of moderators indicated that type of context was not a sig- 

ificant moderator (F(2, 59) = 0.23, p = 0.79, Bonferroni-adjusted 

 = 1.00). 
8 
.2.4. IQ equivalence 

We conducted 4 separate models to assess the impact of IQ 

quivalence on effect size: non-verbal IQ, verbal IQ, auditory work- 

ng memory, any IQ measure. Methods of assessing IQ equivalence 

ere assessed independently, rather than in one model to account 

or the fact that IQ assessment methods were not mutually exclu- 

ive within a study (a single study could include multiple meth- 

ds). IQ equivalence did not moderate effect size in any of these 

ests of moderation (any IQ p = 0.26, Bonferroni-adjusted p = 1.00; 

onverbal IQ p = 0.05, Bonferroni-adjusted p = 0.45; verbal IQ 

 = 0.37, Bonferroni-adjusted p = 1.00, AWM p = 0.30, Bonferroni- 

djusted p = 1.00). 

.2.5. Age group 

The test of moderators including age group showed a signif- 

cant difference between older adults and younger adults (F (1, 

0) = 5.95, p < 0.05), indicating that studies with older adults 

ad overall higher effect sizes than those with younger adults. A 

ollow-up three-level model of only studies with younger adults in- 

icated an overall effect size of ( g = 0.50, p < 0.001, 95% CI: [0.36,

.65]), whereas studies with older adults indicated an overall ef- 

ect size of ( g = 1.04, p < 0.01, 95% CI: [0.53, 1.56]). However, the

est for age group differences was not significant after correcting 

or multiple comparisons (Bonferroni-adjusted p = 0.14). 
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Fig. 3. Baujat plot depicting influence analysis results across all effect sizes. The horizontal axis represents the contribution of each study to overall heterogeneity (Cochran’s 

Q ). The vertical axis represents the “influence” value of a given effect size, calculated during leave-on-out analysis as the standardized difference between the overall meta- 

analysis effect with the effect size compared to without the effect size. Dot size represents inverse of the standard error of the study from which each effect size was taken. 

Labels indicate the specific study from which the effect size is taken (when shown; not all labels are included to maintain visibility of data points). 
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.3. Influence analysis 

Influence analysis indicated no leverage effect sizes, indicating 

o single effect size contributed disproportionately to the overall 

ooled effect size or heterogeneity (see Fig. 3 ). 

.4. Publication bias analysis 

The Egger MLMA test for asymmetry on the intercept was not 

ignificant, indicating no significant funnel plot asymmetry due to 

elective reporting or small-study effects ( β (SE) = 2.69 (1.42), 

 = 0.063), (see Fig. 4 ). This result indicates that meta-analytic re- 

ults likely reflect a true pooled effect size and are not biased due 

o selective reporting or over-influence of studies with small sam- 

le sizes. We note, however, this effect did approach significance. 

f using a conservative significance cut-off, taken at the 0.1 level 

if the alpha level was set to 0.1 rather than the traditional 0.05), 

he pooled effect size after adjusting for publication bias or small 

tudy effects, would be non-significant ( g = −0.29, 95% CI [ −1.22, 

.64], p = 0.53). 

. Discussion 

In this multi-level meta-analysis, we investigated speech-in- 

oise perception abilities in adult musicians and non-musicians 

cross 31 studies and 62 effect sizes. Results indicated a moder- 

te effect size indicating a musician benefit for the ability to per- 

eive speech in noisy environments, with moderate heterogeneity 

erived from between-study effects and virtually no heterogeneity 

erived from within-study effects. Age was initially identified as 

 significant moderator of effect size, suggesting that older adults, 

ith more years of music training, showed greater advantages in 
9 
peech-in-noise perception when compared to controls with po- 

ential age-related decrease in speech-in-noise perception; how- 

ver, this was not significant after correcting for multiple compar- 

sons among the 8 subgroup analyses conducted and should be in- 

erpreted with caution given the small number of studies includ- 

ng older adults. We additionally found that the overall musician 

enefit for SIN ability was not impacted by whether groups were 

ssessed for and determined to have IQ-equivalence, the type of 

arget stimulus, contextual cues, or the type of background noise. 

verall, results from this meta-analysis indicate that a musician 

enefit for SIN abilities remains robust across studies independent 

f whether IQ was matched, age, and qualitative aspects of the 

peech task. While no statistically significant evidence of publica- 

ion bias or small study effects were observed, these assessments 

pproached significance, indicating a need for additional studies 

ith larger sample sizes and reporting of non-significant effects. 

We note that, while the observed pooled effect size is de- 

cribed as “moderate” based on the statistical effect size and nam- 

ng conventions suggested by Cohen (1962) , this may not neces- 

arily translate to clinically relevant differences in speech-in-noise 

erception between musicians and non-musicians. For example, 

ifferences in SNR-50 between musicians and non-musicians in the 

uickSIN and HINT tasks among included studies ranged from 0.19 

o 1.2 dB, and the roughly estimated pooled mean difference be- 

ween groups of these two tasks (calculated as the overall pooled 

ffect size multiplied by the available pooled standard deviation 

or QuickSIN and HINT) was 0.40 dB. This is markedly lower than 

he just-meaningful difference in SNR reported by McShefferty and 

olleagues ( McShefferty et al., 2016 ), where a 6 dB improvement 

as necessary for participants to seek hearing intervention. The es- 

imated pooled mean difference between groups in two SIN tasks 

0.40 dB) constitutes approximately half of the smallest detectable 
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Fig. 4. Funnel plot to assess publication bias. The horizontal axis represents effect size (Hedge’s g), where a positive effect size indicates a musician advantage. The vertical 

axis represents standard error of the effect size. Each dot on the plot represents a different effect size. Parallel vertical dotted lines indicate observed pooled effect size 95% 

CI ([0.42, 0.74]), and dotted and dashed slanted lines indicate 95% and 99% confidence intervals, respectively, for expected effect estimates. 
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ifference (1 dB difference), which may not translate to meaningful 

hange for individuals even without clinical hearing deficits. The 

resent analysis provides evidence for a statistically , but not clini- 

ally or necessarily detectable, moderate effect of musician status 

n speech-in-noise perception for two of the most common SIN 

asks included in this analysis. 

.1. Moderators of musician advantage for SIN perception 

The type of target, context cues, and background noise used 

o assess SIN perception varied considerably across studies. Yet, 

espite these differences, neither speech target, background noise 

ype, or contextual cues significantly moderated effect size be- 

ween or within studies, indicating that the musician advantage 

or SIN perception is global, rather than specific to the semantic 

r syntactical richness of a speech cue (corresponding to its pre- 

ictability) or the complexity of the background. This finding dif- 

ers from observations made in individual studies included in this 

nalysis; specifically, others have observed a musician advantage 

or perceiving speech specifically in informational, as opposed to 

nergetic masking settings (e.g.: Morse-Fortier et al., 2017 ). We 

id not, however, observe a moderating effect of type of back- 

round noise on pooled effect size, indicating that the distinction 
10 
etween informational and energetic masking may not result in ro- 

ust differences in effects among musicians and non-musicians af- 

er aggregating across studies. Yet, simply equating ‘informational 

asking’ to any speech-related background noise may be an overly 

road generalization, as the amount of informational masking sub- 

tantially differs between noise contexts of 1, 2, or 5 background 

peakers, for example. Given the scarcity of studies that aimed 

o explore informational masking explicitly (and thus, included a 

reater range of complexity), the present analysis was unable to 

ssess differences between energetic and informational masking at 

his level. To adequately explore this concept in more detail, more 

tudies are needed that include varying noise contexts, particularly 

hose with solely informational masking. 

Additionally, equivalence in cognitive performance did not sig- 

ificantly moderate the overall observed effect across studies. That 

s, while some studies made an effort to assess equivalence be- 

ween musician and non-musician participants on verbal IQ, non- 

erbal IQ, or auditory working memory, whether a study chose 

o or was able to do so did not impact the overall difference 

bserved between musicians and non-musicians in the meta- 

nalysis. This was true for each cognitive measure independently 

verbal, nonverbal, or AWM) and for assessing any of the three 

easures. 
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Notably, several (6) studies assessed IQ or auditory working 

emory and found significant differences between musicians and 

on-musicians (see Table 1 , studies marked with asterisks). Each 

f these studies conducted follow-up analyses to explore the rela- 

ionship between cognitive abilities and SIN perception. All six of 

hese studies found significant correlations between scores on the 

ognitive assessment found to be different between musicians and 

on-musicians ( Anaya et al., 2016 : Boston Naming; Bidelman and 

oo., 2020 , Clayton et al., 2016 , Parbery-Clark et al., 2009 , Parbery-

lark et al., 2011 , Yoo and Bidelman, 2019 : Auditory Working Mem- 

ry) and at least one measure speech-in-noise perception abilities 

cross participants. This correlation was not consistent across all 

asks, however, in some studies that included multiple measures 

f speech-in-noise perception or multiple measures of IQ. Specif- 

cally, while Bidelman and Yoo (2020) found differences between 

roups in fluid IQ, auditory working memory, masked speech, and 

uickSIN, but only auditory working memory was positively asso- 

iated with performance on the masked speech task across par- 

icipants. Similarly, Parbery-Clark et al. (2011) observed that au- 

itory working memory was correlated with SIN performance on 

uickSIN and HINT, but not the WIN. Lastly, while Yoo and Bidel- 

an (2019) observed differences between musicians and nonmusi- 

ians on Raven’s Matrices and auditory working memory, only au- 

itory working memory was found to be correlated with speech- 

n-noise task performance. Additionally, several studies assessed 

he relationship between musician status and SIN abilities while 

ontrolling for cognitive abilities. Anaya et al. (2016) found that, 

hen controlling for vocabulary knowledge in the Boston Naming 

ask, no group difference between musicians and non-musicians 

as observed for speech-in-noise perception. Both Bidelman and 

oo (2020) and Yoo and Bidelman (2019) observed that, while con- 

rolling for auditory working memory, the relationship between 

usical training and QuickSIN performance remained significant, 

et, in Bidelman and Yoo (2020) the relationship between musi- 

al training and masked speech performance did not remain after 

ontrolling for auditory working memory. 

This partially mirrors findings from studies that assessed cog- 

itive ability yet did not observe a significant difference between 

usicians and non-musicians; Boebinger et al. (2015) found that 

on-verbal IQ, but not musicianship, predicted speech perception 

hresholds, Escobar et al., 2019 found that those with higher work- 

ng memory capacities had lower SNR thresholds across tasks, and 

anden Bosch der Nederlanden (2020) observed IQ was marginally 

orrelated with speech-in-noise perception across participants. Yet, 

thers in this category found no correlation between cognitive 

cores and speech-in-noise perception across participants (auditory 

orking memory: Du and Zatorre, 2017 , Slater and Kraus, 2016 ; 

ollapsed IQ: Madsen et al., 2017 ; 2019 ) 

Together, these follow-up analyses broadly demonstrate that 

ognitive ability, specifically auditory working memory, likely 

lays a role in differences between musicians and non-musicians 

n at least some tasks. If true, this would be consistent with 

ryden et al. (2017) ’s finding that cognitive abilities broadly pre- 

ict SIN perception. While results from our moderator analyses 

ere suggest that musicians’ enhanced speech-in-noise abilities 

ay be independent of any potential differences in cognitive abil- 

ty, given the findings of the six above studies and the fact that 

ot all studies in the present meta-analysis included a measure 

f cognitive ability, we interpret this finding with caution. It is 

ikely that studies that did not include an IQ assessment that were 

hus coded as “not equivalent” contained participants that were 

atched on IQ, skewing the findings of our moderator analysis 

owards a null effect. We encourage future studies on this topic 

o include and report scores from a cognitive assessment so that 

uture meta-analysts may more accurately capture the full effect 

f cognitive ability on speech-in-noise perception and may assess 
11 
hether IQ abilities specifically predict differences between musi- 

ians and non-musicians (i.e.: meta-regression methods). 

Lastly, we explored whether effect size magnitude was moder- 

ted by age group, comparing studies with younger adult partic- 

pants with those with older adult participants. We initially, be- 

ore correcting for multiple comparisons, observed that age group 

ignificantly impacted the effect of musician status on SIN per- 

eption. Specifically, while both subgroups demonstrated musician 

dvantages independently, studies with older adults had an over- 

ll higher pooled effect size estimate than studies with younger 

dults. However, this effect did not remain significant after cor- 

ecting for multiple comparisons. Additionally, only 4 of the 31 

tudies in this analysis (6 out of 62 effect sizes) included older 

dult participants. Given that the subgroups assessed in this study 

re highly uneven (there were many more studies with younger 

han older adults), it is difficult to confidently draw even trend- 

evel conclusions taken from this analysis. Additionally, older adult 

usicians in this meta-analysis had roughly twice the amount of 

usic training than did younger adults. Age differences observed 

n this analysis likely reflect simply length of training rather than 

ther factors associated with age. Significantly more studies inves- 

igating older adult musicians and non-musicians are necessary to 

raw stronger conclusions regarding musician status, aging, and 

IN perception. Additionally, given the age range available, we used 

5 as a cut-off for “older adult”. More studies with adults on the 

lder end of the age spectrum are necessary. 

We note that, based on the subgroup power analysis, the mod- 

rator analyses for this study were underpowered, which may 

ave contributed to overall null findings across moderators. How- 

ver, this subgroup power analysis was designed for a single-level 

nalysis and thus was a more conservative estimate of difference 

etween groups necessary for optimal power. We encourage re- 

earchers to include cognitive assessments and varying age groups, 

peech targets, and noise contexts so that more studies and data- 

oints may be included in future meta-analyses to reach full power 

o detect subgroup differences. 

.2. Defining “musician”

An important feature of this meta-analysis is that we included 

nly studies that defined “musicians” and “non-musicians” as a bi- 

ary variable, based on years of formal training or completion of 

onservatory degree. This decision was made to maximize compa- 

ability between studies, as at least a portion of the literature in 

his field defines musician status similarly. However, assessing dif- 

erences between musicians and non-musicians in a binary fash- 

on may exclude valuable information. Including music training as 

 continuous measure in a meta-regression analysis may provide 

 more nuanced look into the role of music training on speech- 

n-noise perception, allowing for a dose-response relationship to 

e investigated. For example, while Ruggles et al. (2014) did not 

nd a significant overall difference between musicians and non- 

usicians in SIN abilities, they did observe a significant correlation 

etween SIN perception and years of music training. Onset and du- 

ation of music training may also play an important role in speech- 

n-noise perception and examining this variable on a continuous 

cale may provide valuable insights on thresholds for a potential 

usician benefit in these abilities. Most of the included studies re- 

uired musicians to have begun their studies before age 7 (e.g.: 

u and Zatorre (2017) ; Boebinger et al. (2015) ), but many musi- 

ians, for example, those who learn their primary instrument in 

ublic school curriculum or are self-taught, begin later in adoles- 

ence. Early trained musicians have been shown to perform bet- 

er in rhythm tasks (Bailey and Penhune, 2009) and sensorimo- 

or abilities ( Watanabe et al., 2007 ), as compared to late-trained 

usicians with similar total years training. Examining age-of-onset 
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s an additional variable in future analyses may shed light on 

hether such differences exist in relation to speech-in-noise per- 

eption among musicians. Additionally, examining music training 

s a binary variable does not allow for in-depth examination on 

he diversity of experiences encompassed even within “formal mu- 

ic training”. For example, there may be differences in speech-in- 

oise perception abilities between musicians who were taught pri- 

arily by ear, versus those who were taught first to read music, 

r differences between individuals who play violin as compared to 

hose who sing. Similarly, musicians who play primarily in ensem- 

le settings may have different SIN abilities as compared to mu- 

icians who play primarily solo. Research on differences between 

raining methods, settings, and instruments may provide valuable 

nformation on the mechanism supporting SIN perception in mu- 

icians. While, currently, an insufficient number of studies exist to 

onduct a meta-regression and additional meta-analysis on these 

opics, we encourage more incorporation of continuous measures 

f music training, and comparison between methods and instru- 

ents, as a compliment for future research. 

Taking this one step further, it should be acknowledged that, 

hile assessing formal training is a convenient way to measure 

usicianship on a binary or continuous scale, it is not representa- 

ive of the range of musical experiences present in the population 

t large. Many individuals have had experience with music mak- 

ng in some informal capacity- for example, through religious ser- 

ices or family gatherings. More recently, the availability of tools 

or creating and “playing” music electronically (e.g., GarageBand, 

ogic), and learning instruments informally online (e.g., YouTube 

utorials) has increased accessibility of music-making without for- 

al instruction. ( Zendel and Alexander, 2020 ) reported that self- 

aught musicians outperformed non-musicians and were outper- 

ormed by formally trained musicians on a melodic tone violation 

ask. However, no SIN differences were observed between groups. 

o our knowledge, this is the only study that has included a group 

f self-taught musicians in assessments of SIN perception. Future 

tudies could incorporate measures of informal music playing ex- 

erience and assessment of musical abilities (rather than length of 

raining) to further elucidate these findings. 

.3. A limitation of causality 

Perhaps the most important caveat of the present meta-analysis 

s that our findings do not indicate a causal relationship between 

usic training and improved speech-in-noise perception. Rather, 

e provide evidence for a moderate positive association between 

usicianship and SIN abilities. All studies included in the anal- 

sis were cross-sectional, and therefore it cannot be ruled out 

hat differences between musicians and non-musicians are due to 

re-existing biological traits rather than as a result of training. 

hile cognitive abilities are related to accurate speech percep- 

ion in noisy environments ( Anderson et al., 2013 ; Dryden et al., 

017 ), we were unable to directly assess the role of cognitive per- 

ormance on SIN perception. However, we did not find evidence 

hat whether or not a study explicitly identified participants as 

quivalent in cognitive abilities accounted for SIN difference. It 

as been proposed that music aptitude, rather than music train- 

ng, may account for many of the extra-musical benefits, including 

anguage abilities, observed in cross-sectional studies comparing 

usicians with non-musicians ( Swaminathan et al., 2017 ). While 

ost studies in the present meta-analysis did not assess the rela- 

ionship between music aptitude and SIN perception, several did. 

pecifically, Slater and Kraus (2016) found that performance on 

elodic competence rhythm task predicted better performance on 

peech-in-noise abilities in both musicians and non-musicians, and 

eha-Bettison et al. (2018) observed a significant correlation be- 

ween pitch discrimination abilities and SIN perception for mu- 
12 
icians, but not for non-musicians. However, Vanden Bosch der 

ederlanden et al., (2020) observed that melody, tempo, rhythm, 

nd tuning performance was not correlated with SPIN-R perfor- 

ance, and Madsen et al. (2019) observed that musical aptitude 

as not correlated with SIN perception. Including a music apti- 

ude assessment, particularly in studies with continuous measures 

f music training, may help to separate these effects in the con- 

ext of cross-sectional investigations. To address the role of training 

ndependent of pre-existing differences, several longitudinal stud- 

es have been conducted. Developmental work has demonstrated 

hat, after two years of training, musically-trained children show 

nhanced maturity of early auditory evoked potentials and better 

bility to detect changes in tonal sequences as compared to sports- 

rained and children with no training ( Habibi et al., 2016 ). Spe- 

ific to SIN perception, Slater et al. (2015) found that, in a waitlist 

ontrol study, children who received music training showed im- 

roved SIN abilities as compared to controls. Recent randomized- 

ontrol trials with older adults show that 10 weeks of choir par- 

icipation ( Dubinsky et al., 2019 ), and 6 months of piano lessons 

 Zendel et al., 2019 ), produced improved performance in speech- 

n-noise tasks. Our present results are in line with longitudinal 

ndings, suggesting that music training may induce neuroplastic- 

ty that supports speech-in-noise perception. To truly separate the 

ffects of pre-existing differences from training, however, meta- 

nalyses of longitudinal studies are needed. 

.4. Additional limitations 

Several additional limitations of the present study must be con- 

idered. First, while the Egger MLMA analysis of publication bias 

as not significant at the 0.05 level it did approach significance 

 p = 0.06) and, if we were to conservatively correct for this bias, 

he pooled effect size would no longer be significant, indicating 

o musician advantage for speech-in-noise perception. While we 

sed the traditional cut-off for significance at the 0.05 level for 

his analysis, we cannot ignore the near-significant effects of pub- 

ication bias or small study effects observed. This trend-level find- 

ng indicates that, while aggregating many small studies may result 

n a clear effect of musician status on speech-in-noise perception, 

hese differences may not reach significance when accounting for 

nflated effect sizes due to small sampling, or selective reporting. 

ith that, we strongly advocate for publication of significant and 

ull results, and accessibility to post null results on open science 

latforms to reduce effects of bias in future work. We additionally 

ncourage the inclusion of larger and more representative samples 

n this field of research to combat small-study effects. 

Additionally, we acknowledge that 7 of the 31 included stud- 

es ( Parbery-Clark et al., 2009 , 2011a , 2011b , 2012a , 2012b , 2013 ;

later and Kraus, 2016 ), corresponding to 11 of the 61 effect sizes 

ncluded in this analysis were conducted by the same research 

roup. This is not surprising given that music science is a new field 

f study and laboratories with a focus on auditory science often 

ave the expertise and necessary resources to conduct such stud- 

es. With the growth of the field however, we expect to see more 

esearch drawing from samples from different populations across 

he world that would provide additional valuable information on 

peech-in-nose perception in musicians and non-musicians. 

.5. Conclusions and future directions 

Speech-in-noise abilities are important for successful commu- 

ication, and understanding factors involved in enhanced SIN per- 

eption across the population provides insight into auditory pro- 

essing as a whole. This meta-analysis utilized a multi-level de- 

ign to assess whether musicians demonstrate superior processing 

f speech-in-noise when compared to non-musicians. A strength 
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f the current investigation is its multi-level design, allowing for 

he incorporation of multiple effect sizes within a single study. We 

rovide evidence for a moderate musician benefit for speech-in- 

oise abilities, supported by our overall effect size of g = 0 .58, 95%

I [0.42, 0.74]. This effect remained robust irrespective of speech 

arget type, background noise, context cues, whether groups were 

xplicitly identified as equivalent in cognitive ability, and age 

roup, indicating that musicians experience advantages to SIN 

erception across a variety of contexts, cognitive abilities, and 

hroughout the lifespan. We note that this musician benefit, while 

tatistically significant and “moderate” by statistical conventions, 

ay not necessarily reflect clinical or meaningful benefit in audi- 

ory perception across individuals. 

Based on our analysis, we identify six key areas to address in 

uture research. First, future studies should focus on elucidating a 

ausal link between music training and SIN perception through the 

mployment of randomized control designs. Secondly, more stud- 

es are needed that include varying age and hearing groups, in- 

luding cochlear implant users, individuals with hearing loss, and 

hildren exposed to chronic noise. For example, musicians expe- 

ience less age-related hearing decline, specifically in relation to 

peech-in-noise abilities (Zhang et al., 2020). While treatments for 

earing loss, such as hearing aids, do not focus improving speech- 

n-noise perception ( Killion, 1997 ), music training may serve as 

n option for complimentary treatment in those with age-related 

earing loss ( Dubinsky et al., 2019 ; Zendel et al., 2019 ). Third, fu-

ure studies should consider controlling for socioeconomic status, 

hich contributes to SIN abilities ( Anderson et al., 2013 ), exposure 

o noise ( Casey et al., 2017 ) (which in turn impacts SIN ( Skoe et al.,

019 )), and access to music lessons ( Elpus and Abril, 2011 ). Fourth,

ore research is needed that explores the definition of a “musi- 

ian”, by including and comparing multiple types of training, in- 

truments, onset age, and musical aptitude to assess whether dif- 

erent skill levels and training types may impact speech-in-noise 

bilities. Fifth, in light of the observed near-significant small-study 

ffect, we strongly encourage researchers to include larger sample 

izes in future studies. Finally, we believe focusing on continuous 

easures of music training years and onset age and experimental 

tudies of music training and SIN abilities is necessary for future 

eta-analyses. 
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