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Abstract

With the development of next-generation sequencing technologies, many large scale

experimental efforts aim to map genotypic variability among individuals. This natural

variability in populations fuels many fundamental biological processes, ranging from

evolutionary adaptation and speciation to the spread of genetic diseases and drug resistance.

An interesting and important component of this variability is present within the regulatory

regions of genes. As these regions evolve, accumulated mutations lead to modulation of gene

expression, which may have consequences for the phenotype. A simple model system where

the link between genetic variability, gene regulation and function can be studied in detail is

missing. In this article we develop a model to explore how the sequence of the wild-type lac

promoter dictates the fold-change in gene expression. The model combines single-base pair

resolution maps of transcription factor and RNA polymerase binding energies with a

comprehensive thermodynamic model of gene regulation. The model was validated by

predicting and then measuring the variability of lac operon regulation in a collection of natural

isolates. We then implement the model to analyze the sensitivity of the promoter sequence to

the regulatory output, and predict the potential for regulation to evolve due to point mutations

in the promoter region.

Keywords: thermodynamic models, lac operon, evolutionary potential, transcriptional

regulation, natural variability
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1. Introduction

Despite efforts to understand genotypic variability within

natural populations [1] and recent interest in fine-tuning

genetic circuits for synthetic biology [2], it still remains

unclear how, with base pair resolution, the sequence of a

gene regulatory region can be translated into output levels of

gene expression [3]. Generally, classical population genetics

has treated regulatory architectures as changeless parameters,

rather than potential evolutionary variables, focusing on

changes in protein structure rather than gene regulation.

However, genetic regulatory architecture can also determine

the variation of traits, and thus the evolutionary potential of
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these genes [4]. After all, the structure of bacterial promoters

dictates interactions among the transcriptional apparatus, and

through the modification of this structure, regulatory circuits

can be modified to potentially allow cells to occupy different

niches [5, 6].

Thermodynamic models of gene regulation have been

widely used as a theoretical framework to dissect and

understand genetic architectures [7–11]. Such dissections have

led to a quantitative understanding of how parameters such

as binding energies, transcription factor copy numbers, and

the mechanical properties of the DNA dictate expression

levels. Recently the development of experimental techniques

combining these types of models with cell sorting and high-

throughput sequencing have made it possible to understand

gene regulation at single-base pair resolution [12–14], as

well as to deliberately design promoter architectures with

desired input–output functions [15]. These models connect

the sequence of a promoter to the output phenotype, making

it possible to predict variability and evolutionary potential of

gene regulatory circuits.

The lac operon has served as a paradigm of a genetic

regulatory system for more than 60 years [16, 17]. This operon

contains the molecular machinery that some bacterial species,

including the model organism E. coli, use to import and

consume lactose. Extensive quantitative characterization of

the regulation of this genetic circuit [18, 19], as well as of

the link between fitness and expression of the operon [20–24]

make it an ideal system for exploring the evolutionary potential

of a regulatory circuit. With previous exhaustive description

and quantification of the parameters controlling the expression

level of this genetic circuit [19, 25–27] we now have what we

think is a nearly complete picture of the regulatory knobs

that can modify the expression level, shown schematically in

figure 1(a). In this article we build upon this understanding by

directly linking the sequence of the promoter region with these

control parameters, thereby creating a map from genotype to

transcriptional output.

Within a collection of E. coli isolated from different host

organisms we observe significant variability for the regulation

of the lac operon, as shown in figure 1(b). By characterizing

the variability of the regulatory control parameters shown in

figure 1(a) within these strains, we identified evolutionary

trends in which certain parameters or subsets of parameters

are seen to vary more often than others within this collection

of natural isolates. Using the map of promoter sequence to

transcriptional output, we demonstrated that the regulatory

input–output function for the lac promoter could account for

most of the natural variability in regulation we observed. We

then implement the map to explore the theoretical potential for

this regulatory region to evolve. This level of analysis gives us

clues as to how selection could fine tune gene expression levels

according to the environmental conditions to which cells are

exposed.

2. Results

2.1. Quantitative model of the natural parameters that

regulate gene expression

Thermodynamic models of gene regulation have become a

widely used theoretical tool to understand and dissect different

regulatory architectures [3, 12, 19, 26, 27, 31]. The lac

promoter is one such regulatory architecture that has been

studied in detail [32]. Models have been constructed and

experimentally validated for both the wild-type lac promoter

and synthetic promoter regions built up from the lac operon’s

regulatory components [12, 15, 19, 26, 27, 32–37].

In a simple dynamical model of transcription the number

of messenger RNA (mRNA) is proportional to the transcription

rate and the degradation rate of the mRNA,

dm

dt
= −γ · m +

∑

i

ri · pi, (1)

where γ is the mRNA degradation rate and m is the

number of transcripts of the gene per cell; ri and pi are the

transcription rate and the probability of state i respectively.

We can think of pi as a measure of the time spent in

the different transcriptionally active states. Thermodynamic

models assume that the gene expression level is dictated by

the probability of finding the RNA polymerase (RNAP) bound

to the promoter region of interest [7–9]. With a further quasi-

equilibrium assumption for the relevant processes leading

to transcription initiation, we derive a statistical mechanics

description of how parameters such as transcription factor

copy number and their relevant binding energies, encoded

in the DNA binding site sequence, affect this probability

[10]. Quantitative experimental tests of predictions derived

from equilibrium models have suggested the reasonableness

of the assumption [15, 19, 26, 27], although caution should

be used as the equilibrium assumption is not necessarily valid

in all cases. The validity of this equilibrium assumption relies

on the different time-scales of the processes involved in the

transcription of a gene. Specifically the rate of binding and

unbinding of the transcription factors and the RNAP from

the promoter region should be faster than the open complex

formation rate; if so, the probability of finding the RNAP

bound to the promoter is given by its equilibrium value [9, 38].

For the case of the Lac repressor, the rate of unbinding from the

operator is 0.022 s−1 [39], and the binding of an unoccupied

operator with ten repressors per cell occurs at a similar rate

[40]. Open complex formation, a rate limiting step in promoter

escape, has been measured at a rate of 2 × 10−3 s−1 [41].

Promoter escape is about an order to magnitude slower than the

binding and unbinding of the Lac repressor, and this separation

of time-scales supports the equilibrium assumption for this

particular case. We enumerate the possible states of the system

and assign statistical weights according to the Boltzmann

distribution as shown in figure 2.

From these states and weights we derive an equation

describing the probability of finding the system in a

transcriptionally active state, and therefore the production term

from equation (1),
∑

i

ri pi =
∑

i

ri

Wi

Ztot

, (2)
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Figure 1. (a) Regulatory knobs that control the expression of the lac operon and the symbols used to characterize these knobs in the
thermodynamic model. The activator CRP increases expression, the Lac repressor binds to the three operators to decreases expression, and
looping can lock the repressor onto O1 leading to increased repression. The interaction energy between RNAP and CRP reflects the
stabilization of the open complex formation due to the presence of the activator [28], and the interaction between the Lac repressor and CRP
stabilizes the formation of the upstream loop [29]. (b) Variability in the repression level of E. coli natural isolates and the lab control strain
MG1655. Strains are named after the host organism from which they were originally isolated [30]. Error bars represent the standard
deviation from at least three independent measurements. (c) Schematic representation of the repression level, in which the role of the
repressor in gene regulation is experimentally measured by comparing the ratio of LacZ proteins in cells grown in the presence of 1 mM
IPTG to cells grown in the absence of IPTG. LacZ protein concentrations were measured using a colorimetric assay.

where Wi is the statistical weight of states in which the

polymerase is bound, which are assumed to lead to the

transcription of the operon (shaded blue in figure 2), and

Ztot =
∑

All states Wstate is the partition function, or the sum

of the statistical weights of all states. We connect this model to

experimental measurements of repression, that is the ratio of

gene expression in the absence of the active repressor to gene

expression in the presence of active repressor, using:

repression =
gene expression(R = 0)

gene expression(R 6= 0)
, (3)
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Figure 2. Thermodynamic model of gene regulation. The table shows all states permitted within the model and their respective statistical
weights as obtained using statistical mechanics. In these weights P = number of RNAP per cell, R = number of repressor molecules per
cell, A = number of activator molecules per cell, 1εOi

r = binding energy of Lac repressor to the ith operator, 1εp = binding energy of
RNAP to the promoter, 1εa = activator binding energy, 1Floop(li j) = looping free energy between operator Oi and O j, NNS = number of
nonspecific binding sites on the genome, 1εap = interaction energy between the activator and the RNAP, 1εar = interaction energy between
the activator and the repressor, and β = inverse of the Boltzmann constant times the temperature (see supplemental material, available from
stacks.iop.org/PhysBio/11/026005/mmedia). States with blue background are assumed to lead to transcription of the operon.

where R is the number of repressor molecules per cell. The

experimental equivalent of repression is depicted in figure

1(c). In experiments, isopropyl β-D-1-thiogalactopyranoside

(IPTG) is used to inactivate the Lac repressor, preventing it

from binding to the genome with high affinity [19]. Repression,

as defined in equation (3), has been a standard metric for the

role of transcription factors, including the Lac repressor, on

gene expression [7, 42]. By measuring the ratio of steady-state

levels of a gene reporter protein, here LacZ, we are able to

isolate the role of the repressor in gene regulation, as described

further in section S8 of the supplemental material (available

from stacks.iop.org/PhysBio/11/026005/mmedia).

Various models of the wild-type lac promoter have been

reported in the past using this simple structure. Our work

builds upon the work by Kinney et al [12]. Kinney and

collaborators combined a thermodynamic model of regulation

with high-throughput sequencing to predict gene expression

from statistical sequence information of the cAMP-receptor

protein (CRP) and the RNAP binding sites. To predict how the

sequence of the entire regulatory region influences expression,

we adapted this model to account for how the binding site

sequence and copy number of the Lac repressor modulate

gene expression. Our model also takes into account growth

rate effects, captured in the RNAP copy number [43, 44].

Based on previous work done on the lac operon [12, 19],

we assumed that the presence of the activator does not affect

the rate of transcription (ri from equation (1)), but instead

influences the probability of recruiting the polymerase to

the promoter (pi from equation (1)). Previous experimental

characterization of the repressor binding energy to the different

operators [26], the looping free energy for the upstream

loop between O1 − O3 [27], activator concentration and its

interaction energy with RNAP [19], RNAP binding energy

[15] and RNAP copy number as a function of the growth

rate [44], left us only with three unknown parameters for

the model. One of these missing parameters, a decrease in

the looping free energy when CRP and Lac repressor are

bound at the same time, is a consequence of the experimental

observation that the presence of CRP stabilizes the formation

of the loop between O1 − O3 [29, 45]. The remaining two

parameters, the looping energies for the O1 − O2 and O3 − O2

loops are not well characterized. These looping energies

may differ from upstream loops due to the absence of the

RNAP binding site which modifies the mechanical properties

of the loop [46]. We fit these parameters for our model

using Oehler et al repression measurements on lac operon

constructs with partially mutagenized or swapped binding

sites [42, 47] (see section S5 of the supplemental material
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Figure 3. Sensitivity of phenotype to the parameters controlling the gene expression level. Each graph shows how a specific model
parameter changes the level of gene expression. The log10 ratio of repression is calculated with respect to the predicted repression for the lab
strain MG1655. The vertical axis spans between 1000 fold decrease to 1000 fold increase in repression with respect to this strain. The gray
dotted line indicates the reference value for the lab strain MG1655. Values above this line indicate the operon is more tightly repressed and
values below this line have a leakier expression profile (see table S1, available from stacks.iop.org/PhysBio/11/026005/mmedia for further
detail on the reference parameters).

(available from stacks.iop.org/PhysBio/11/026005/mmedia)

for further details). Using these parameters the model

is consistent with previous measurements (figure S4,

available from stacks.iop.org/PhysBio/11/026005/mmedia).

We emphasize that having the 14 parameters of

the model characterized (see table S1, available from

stacks.iop.org/PhysBio/11/026005/mmedia) provides testable

predictions without free parameters that we compare with our

experimental results.

2.2. Sensitivity of expression to model parameters

As an exploratory tool, the model can predict the change in

regulation due to modifications in the promoter architecture.

Figure 3 shows the fold-change in the repression level as

a function of each of the parameters, using the lab strain

MG1655 as a reference state (see supplemental material,

available from stacks.iop.org/PhysBio/11/026005/mmedia for

further detail on these reference parameters). We have reported

parameters using strain MG1655 as a reference strain because

this strain served as the basis for which most parameter values

were determined and the gene expression model was derived.

From this figure we see that within the confines of this

model, modifications in the O1 binding energy have the most

drastic effect on the repression of the operon. For the case of

O2 we see that increasing its affinity for the repressor does not

translate into an increased ability to turn off the operon; but by

decreasing this operator affinity the model predicts a reduction

in the repression with respect to the reference strain.

Surprisingly the repression level is predicted to be

insensitive to activator copy number. The same cannot be said

about the affinity of the activator, since decreasing the activator

binding energy greatly influences the repression level.

2.3. Mapping from sequence space to level of regulation

Recent developments of an experimental technique called sort-

seq, involving cell sorting and high-throughput sequencing,

have proved to be very successful in revealing how regulatory

information is encoded in the genome with base pair resolution

[12]. This technique generates energy matrices that make it

possible to map from a given binding site sequence to its

corresponding binding energy for a collection of different

proteins and binding sites. Combining these energy matrices

with thermodynamic models enables us to convert promoter

sequence to the output level of gene expression. Recently

these energy matrices have been used to deliberately design

promoters with a desired expression level, demonstrating

the validity of these matrices as a design tool for synthetic

constructs [15]. We use the matrices for CRP and RNAP

published previously [12]. We experimentally determined

the matrix for the LacI operator using previously published

methods [12], as discussed in section 4. Figure 4(a) shows

a schematic representation of the relevant protein binding

sites involved in the regulation of the lac operon and their

respective energy matrices. Implementing these matrices into

the thermodynamic model gives us a map from genotype to

phenotype. We use this map to calculate the fold-change in

repression relative to MG1655 for all possible point mutations

5
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Figure 4. Mapping from promoter sequence to regulatory level. (a) Energy matrices for the relevant transcription factors (blue—RNAP,
green—CRP, red—Lac repressor). These matrices allow us to map from sequence space to the corresponding binding energy. The
contribution of each base pair to the total binding energy is color coded. The total binding energy for a given sequence is obtained by adding
together the contribution of each individual base pair. (b) Using the energy matrices from (a) and the model whose states are depicted in
figure 2, the log10 repression change was calculated for all possible single point mutations of the promoter region. The height of the bars
represents the biggest possible changes in the repression level (gray bars for biggest predicted decrease in repression, orange bar for biggest
predicted increase in repression) given that the corresponding base pair is mutated with respect to the reference sequence (lac promoter
region of the lab strain MG1655). The black arrows indicate the transcription start site.

in this region. Figure 4(b) shows the fold-changes in repression

levels for the two base pair substitutions at each position

that result in the largest predicted increase or decrease in

repression.

Again we see that mutations in the O1 binding site have

the largest effect on regulation since a single-base pair change

can lower the ability of the cell to repress the operon by a

factor of ≈ 20. With only two relevant mutation that could

significantly increase the repression level, this map reveals

how this operator and its corresponding transcription factor

diverged in a coordinated fashion; the wild-type sequence has

nearly maximum affinity for the repressor [48]. It is known

that the non-natural operator Oid binds more strongly than O1

[42]. Oid is one base pair shorter than O1 and current maps

made with sort-seq cannot predict changes in binding affinity

for binding sites of differing length, although accounting

for length differences in binding sites is not a fundamental

limitation of this method.

For the auxiliary binding sites, the effect discussed in

section 2.2 is reflected in this map: increasing the Lac repressor

affinity for the O2 binding site does not increase repression.

Mutations in almost all positions can decrease repression, and

no base pair substitutions significantly increase the repression

level. Mutations in the O3 binding site have the potential to

either increase or decrease the repression level. With respect to

the RNAP binding site, we can see that, as expected, the most

influential base pairs surround the well characterized −35 and

−10 boxes. The CRP binding site overlaps three base pairs

with the upstream Lac repressor auxiliary operator. As the

heat-map reveals, the binding energy is relatively insensitive

to changes in those base pairs, so we assume independence

when calculating the binding energy and capture the synergy

between the Lac repressor bound to O3 and CRP with an

interaction energy term.

The construction of the sequence to phenotype map

enables us to predict the evolvability of the lac promoter

region. We calculated the effect that all possible double

mutations would have in the regulation of the operon, again

with respect to the predicted repression level of the reference

strain MG1655. Figure 5 shows what we call the ‘phenotype

change distribution’ obtained by mutating one or two base

pairs from the reference sequence, under the assumption of

same growth rate and transcription factor copy numbers as the

reference strain. The distribution peaks at zero for both cases,

meaning that the majority of mutations are predicted not to

change the repression level with respect to the reference strain,

6
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Figure 5. Phenotype change distribution. Relative frequency of the
predicted changes in repression level by mutating one (solid blue
line) or two (dashed red line) base pairs from the reference sequence
(MG1655 promoter region).

and would result in genetic drift. However it is interesting

to note that the range of repression values predicted by the

model with only one mutation varied between 30 times lower

and 4.6 times higher than the reference value, and with two

mutations the repression varied between 345 times lower and

15 times higher than the reference value. This suggests that

regulation of this operon could rapidly adapt and fine tune

regulation given appropriate selection.

2.4. Promoter sequence variability of natural isolates and

available sequenced genomes

In order to explore the natural variability of this regulatory

circuit, we analyzed the lac promoter region of 22 wild-type

E. coli strains which were isolated from different organisms

[30], along with 69 fully sequenced E. coli strains (including

MG1655) available online (http://ncbi.nlm.nih.gov/genomes/

MICROBES/microbial_taxtree.html). Figure 6 summarizes

the sequencing results; for comparison, we plot the ‘genotype

to phenotype map’ from figure 4(b) to gain insight into how

the sequence variability influences regulation in these strains.

Figure 6(b) shows the relative frequency of single nucleotide

polymorphisms with respect to the consensus sequence.

Qualitatively we can appreciate that the mutations found in

these strains fell mostly within base pairs which according

to the model weakly regulated expression. To quantify this

observation we mapped the sequences to their corresponding

binding energies. As shown in figure 6(c) the distribution

of parameters is such that the observed mutations result in

relatively small changes to the binding energies, less than 1 kBT

relative to the reference sequence, except for the O3 binding

energy that is predicted to increase >1 kBT in 16 strains.

Table 1. Lac repressor copy number as measured with the
immunodot blots and doubling time of the eight strains with
measured repression level shown in figure 1(b). The errors represent
the standard error of three independent experiments.

Strain Repressor/cell Doubling time (min)

Lab strain 21 ± 4 29.1 ± 0.2
Bat 12 ± 1 27.5 ± 0.2
Human-MA 20 ± 4 35.6 ± 0.6
Human-NY 23 ± 4 41.5 ± 0.4
Human-Sweden 28 ± 1 34.2 ± 0.3
Jaguar 21 ± 3 32.0 ± 0.2
Opossum 26 ± 2 33.5 ± 0.2
Perching bird 24 ± 4 30.2 ± 0.3

2.5. Does the model account for variability in the natural

isolates?

Next we further characterized the eight strains from figure 1(b)

in order to determine if the observed variability in regulation

could be accounted for in the model (see section S2, available

from stacks.iop.org/PhysBio/11/026005/mmedia for details on

the 16S rRNA of this subset of strains). In particular, we

measured the in vivo repressor copy number with quantitative

immunoblots (see section 4) and the growth rate. Table 1 shows

the measured repressor copy number and the doubling time for

these strains.

Using the thermodynamic model by taking into account

the repressor copy number, the promoter sequence and the

growth rate, we predict the repression level for each of the

isolates measured in figure 1(b). In figure 7 we plot these

predicted values versus the experimental measurements. We

find that the model accounts for the overall trends observed

in the isolates, with the predictions for six of eight strains

falling within two standard deviations of the measurements.

A few of the measured repression values fall outside of the

prediction, suggesting that the model may not capture the full

set of control parameters operating in all of the strains.

2.6. Exploring the variability among different species

We extended our analysis to different microbial species with

similar lac promoter architectures. After identifying bacterial

species containing the lac repressor, we used the sort-seq

derived energy matrices shown in figure 4(a) to identify the

positions of the transcription factor binding sites in each of

these candidate strains. We identified a set of eight species

whose lac promoter architecture was similar to E. coli. Figure 8

shows the 16S rRNA phylogenetic tree for these strains. The

predicted change in regulation was calculated for these strains

using the model whose states are shown in figure 2, the energy

matrices in figure 4(a), and assuming all strains have the same

growth rate and transcription factor copy numbers as the lab

strain MG1655. The repression level relative to E. coli among

these species is predicted to increase as much as a factor

of ≈20 and decrease as much as a factor of ≈4. Regulation of

the operon seems to follow phylogenetic patterns in the 16S

rRNA tree, with E. coli relatives having a similar predicted

repression level, Citrobacter evolved to increase repression,

and Salmonella evolved to decrease repression.
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Figure 6. Mutational landscape of the regulatory region of the lac operon. (a) The genotype to phenotype map is reproduced from figure 4(b)
in order to show how each base pair in the region influences gene regulation. (b) Comparing the sequence of the lac promoter from 91
E. coli strains identifies which base pairs were mutated in this region. The height of the bars represent the relative frequency of a mutation
with respect to the consensus sequence. The red part of each bar represents the 22 natural isolates from different hosts [30] and the light blue
part of these bars represents the 69 fully sequenced genomes (http://ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html). Color
coding of the binding sites and the transcription start site is as in figure 4. (c) Using the energy matrices of figure 4(a), we calculate the
variability of protein binding energies for all sequences. The red arrow indicates reference binding energies for control strain MG1655.

3. Discussion

The approach presented here combines thermodynamic

models of gene regulation with energy matrices generated

with sort-seq to produce a single-base pair resolution picture

of the role that each position of the promoter region has

in regulation. These types of models based on equilibrium

statistical mechanics have been used previously for the lac

operon [19, 25], here we expanded the model to account for

important cellular parameters such as growth rate, the binding

site strengths of all transcription factors, and the binding site

strength of RNAP. Thermodynamic models are functions of

the natural variables of the system as opposed to the widely

used phenomenological Hill functions [49], where it is less

straightforward how changes to a promoter region translate

to changes in regulatory parameters such as KM , the half

saturation constant, and n, the Hill coefficient. Currently our

model assumes that protein–protein interactions and DNA

looping energies are kept constant, but these variables could

also be a function of the promoter sequence, affecting the

positioning of the transcription factors and therefore their

interactions with the other molecules involved.

The underlying framework developed here can be applied

to any type of architecture. Here we use the lac operon because

it is well characterized. There is no reason to believe that this

approach could not be extended to other regulatory regions,

however such an effort would require extensive quantitative

characterization of the control parameters of each genetic

circuit, such as protein copy numbers, interaction energies,

and binding affinities. Although this level of characterization

requires additional experimental effort, we believe that

developing such predictive, single-base pair models of gene

regulation can lead to significant insights into how genetic

circuits function, interact with each other, and evolve.

The majority of the natural variability found among the

sequenced promoters tended to fall in bases predicted to have

low impact on overall regulation, as shown in figure 6. As an

example the highly conserved mutation in the CRP binding

energy or the mutations along the RNAP binding site are

predicted to change the binding energy by less than 1 kBT ,

having a very low impact on the repression level. With respect

to the repressor binding sites, among the sequenced natural

isolates only one mutation was found in the O2 binding site.

Unlike the O1 and O3 operators, the evolution of O2 may

be constrained given that its sequence encodes both gene

regulatory information and is part of the coding region of

the β-galactosidase gene.
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Model Prediction
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Figure 7. Comparison of model predictions with experimental
measurements. Error bars represent the standard deviation of at least
three independent measurements each with three replicates. The
dotted line plots x = y.

As shown in figure 7, after taking into account the

variability in the promoter sequence, changes in the repressor

copy number, and changes in the growth rate the model

accounts for most of the variability in regulation for the

majority of the isolates. Linear regression of the entire

experimental dataset weighted by the inverse of their standard

deviation gives a slope of 1.26 with an R2 of 0.24. It can be

seen that many of the points fall close to or on the x = y line,

indicating that the poor fit is a result of a few outliers within

the dataset. Removing the outliers (Perching bird, Human-

MA, and Human-NY) results in a best fit line of slope 1.05

with R2 0.74, reiterating that the model is consistent with

the phenotype of five of eight isolates. It is interesting that

the three isolates whose regulatory outputs were predicted

poorly by the model (Perching bird, Human-MA, and Human-

NY in figure 7) all have identical promoter sequences, which

is the consensus promoter sequence as shown in figure S1

(available from stacks.iop.org/PhysBio/11/026005/mmedia).

Although these three strains have identical sequences, two

strains repressed more than predicted and the other strain

repressed less. This indicates there are likely other cellular

(a)

(b)

Figure 8. Predicted variability among different microbial species based on genome sequences and our model for regulation derived for
E. coli. (a) On the left a 16S rRNA phylogenetic tree of diverse species with a similar lac promoter architecture done with the
neighbor-joining algorithm. Vibrio cholerae was used as an outgroup species. The scale bar represents the relative number of substitutions
per sequence. On the right the predicted log10 fold-change in repression with respect to E. coli MG1655 assuming the same growth rate and
transcription factor copy numbers. The outgroup species fold-change was not calculated. (b) Parameter distribution calculated using the
promoter region sequence and the energy matrices. The red arrow indicates the MG1655 reference value. Strains lacking a binding site were
binned as zero.
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parameters that influence gene expression levels that are not

included in the model. Currently the model cannot take into

account variation in the protein structure of the transcription

factors or the RNAP and its sigma factors. Changes in these

proteins could account for some of the discrepancies between

the model and the observed levels of regulation. It is likely

that some global parameters that modulate transcriptional

outputs which are not accounted for in the model also

contribute to the disagreement with model predictions. We

note that repression is a measurement of expression relative

to expression in the absence of the repressor. This definition

enables us to isolate the role of a particular transcription

factor in regulation. Therefore, as discussed in section S8

(available from stacks.iop.org/PhysBio/11/026005/mmedia),

some global regulatory parameters such as ribosomal binding

sites of the relevant genes and variables such as the ribosome

copy number should not impact repression levels.

From an evolutionary perspective, it is interesting that

the regulation seems to be more sensitive to changes in the

activator binding energy than to the activator protein copy

number, as shown in figure 3. This result might be attributed

to the nature of this transcription factor. CRP is known to be a

‘global’ transcription factor that regulates >50% of the E. coli

transcription units [50]. Given its important global role in the

structure of the transcriptome, changing the copy number of

CRP would have a global impact on expression whereas tuning

its binding affinity at a particular regulatory region has a local

impact on one promoter. The regulatory knob of CRP copy

number not influencing expression at the lac operon indicates

this regulatory region may have evolved to be robust against

changes in this global regulatory parameter.

The fact that the O3 operator has the possibility to change

in both directions (greater or lower affinity) as reflected in

figure 4(b) suggests plasticity of the operon, allowing it to

evolve according to environmental conditions. In fact this

parameter changed the most among the related microbial

species as shown in figure 8(b), having species such as

Citrobacter koseri with an operator predicted to be 5 kBT

stronger than the reference value, and other species such as

Salmonella bongori that completely lost this binding site.

Although we do not yet know whether these regulatory

predictions will be borne out in experimental measurements,

this analysis demonstrates the utility of our sequence-to-

phenotype map in interpreting the consequences of variability

within the regulatory regions of sequenced genomes.

To the best of our knowledge figure 5 shows the first

quantification of how easily regulation can change given one or

two point mutations along the entire promoter region. Previous

studies were limited to a subset of base pairs in the Lac

repressor operators and two amino acid substitutions in the

Lac repressor [51]. The distribution of predicted phenotypes

is very sharp close to the reference value, as a consequence the

majority of the possible mutations would not be selected on.

But given that regulation can change by an order of magnitude

or more in both directions (increased or decreased repression)

with only two mutations, changing the regulatory region of the

gene could function as a fast response strategy of adaptation.

It is known from previous work that lac operon expression

can have an impact on cell fitness [20–22, 24]. Under

laboratory conditions, high expression of the lac operon

resulted in loss of fitness due to expression of lacY,

a transporter which imports lactose into the cell. This

would suggest regulation is essential to avoid the negative

consequences of lacY overexpression, and tight regulation

would be selected. However it is possible that natural selection

would act also to modulate the magnitude of the response.

Strains exposed to environments with periodical bursts of

lactose could trigger instantly a high gene dosage, resulting

in a steeper slope on an induction curve, while strains rarely

exposed to lactose would have a moderate response, i.e. a

less steep induction curve. Our exploration and prediction of

regulatory phenotypes in sequenced genomes shows that the

biggest changes in regulation were found to increase repression

(see figure 6(c)), suggesting that lactose might not be present

regularly in the natural environment of some strains.

The combination of thermodynamic models with sort-seq

generated energy matrices presented here promises to be an

useful tool to study the evolution of gene regulation. This

theoretical framework allows us to explore the effect that the

modification of control parameters can have on the expression

levels, and to predict how point mutations in gene promoter

regions enable cells to evolve their gene regulatory circuits.

4. Materials and methods

4.1. Growth conditions

Unless otherwise indicated, all experiments started by

inoculating the strains from frozen stocks kept at −80 ◦C.

Cultures were grown overnight in Luria Broth (EMD,

Gibbstown, NJ) at 37 ◦C with shaking at 250 rpm. In all of

the experiments these cultures were used to inoculate three

replicates for each of the relevant conditions, diluting them

1:3000 into 3 mL of M9 buffer (2 mM MgSO4, 0.10 mM

CaCl2, 48 mM Na2HPO4, 22 mM KH2PO4, 8.6 mM NaCl,

19 mM NH4Cl) with 0.5% glucose and 0.2% casamino acids

(here referred to as ‘supplemented M9’). Cells were cultured

at 37 ◦C with shaking at 250 rpm and harvested at the indicated

OD600.

4.2. Gene expression measurements

To perform the LacZ assay we followed the protocol used by

Garcia and Phillips [26]. Strains were grown in supplemented

M9 for approximately ten generations and harvested at an

OD600 around 0.4. A volume of the cells was added to Z-

buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl,

1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) for a total

volume of 1 mL. For fully induced cells we used 50 µL and for

uninduced cultures we concentrated the cells by spinning down

1 mL of culture and resuspending in Z-buffer. The cells were

lysed by adding 25 µL of 0.1% SDS and 50 µL of chloroform

and vortexing for 15 s. To obtain the readout, we added 200 µL

of 4 mg mL−1 2-nitrophenyl β-D-galactopiranoside (ONPG).

Once the solution became noticeably yellow, we stopped the

reaction by adding 200 µL of 2.5 M Na2CO3.

To remove cell debris we spun down the tubes at 13000×g

for 3 min. 200 µL of the supernatant were read at OD420 and
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OD550 on a microplate reader (Tecan Safire2). The absolute

activity of LacZ was measured in Miller units as

MU = 1000 ×
OD420 − 1.75 × OD550

t × v × OD600

× 0.826, (4)

where t is the time we let the reaction run and v is the

volume of cells used in mL. The factor of 0.826 adjusts for the

concentration of ONP relative to the standard LacZ assay.

4.3. Measuring in vivo lac repressor copy number

To measure the repressor copy number of the natural isolates

we followed the same procedure reported by Garcia and

Phillips [26]. Strains were grown in 3 mL of supplemented

M9 until they reached an OD600 ≈ 0.4 − 0.6. Then they were

transferred into 47 mL of warm media and grown at 37 ◦C

to an OD600 of 0.4–0.6. 45 mL of culture were spun down

at 6000 × g and resuspended into 900 µL of breaking buffer

(0.2 M Tris-HCl, 0.2 M KCl, 0.01 M Magnesium acetate, 5%

glucose, 0.3 mM DTT, 50 mg/100 mL lysozyme, 50 µg L−1

phenylmethanesulfonyl fluoride , pH 7.6).

Cells were lysed by performing four freeze-thaw cycles,

adding 4 µL of a 2000 Kunitz/mL DNase solution and 40 µL

of a 1 M MgCl2 solution and incubating at 4 ◦C with mixing for

4 h after the first cycle. After the final cycle, cells were spun

down at 13 000 × g for 45 min at 4 ◦C. We then obtained

the supernatant and measured its volume. The pellet was

resuspended in 900 µL of breaking buffer and again spun

down at 15 000 × g for 45 min at 4 ◦C. In order to review the

quality of the lysing process, 2 µL of this resuspended pellet

was used as a control to ensure the luminescent signal of the

resuspension was <30% of the sample.

To perform the immunoblot we pre-wet a nitrocellulose

membrane (0.2 µM, Bio-Rad) in TBS buffer (20 mM Tris −

HCl, 500 mM NaCl) and left it to air dry. For the standard

curve a purified stock of Lac repressor tetramer [46] was

serially diluted into HG105 (1lacI strain) lysate. 2 µL were

spotted for each of the references and each of the samples.

After the samples were visibly dried the membrane was

blocked using TBST (20 mM Tris Base, 140 mM NaCl, 0.1%

Tween 20, pH 7.6) +2% BSA +5% dry milk for 1 h at room

temperature with mixing. We then incubated the membrane

in a 1:1000 dilution of anti-LacI monoclonal antibody (from

mouse; Millipore) in blocking solution for 1.5 h at room

temperature with mixing. The membrane was gently washed

with TBS ≈ five times. To obtain the luminescent signal

the membrane was incubated in a 1:2000 dilution of HRP-

linked anti-mouse secondary antibody (GE Healthcare) for

1.5 h at room temperature with mixing and washed again

≈5 times with TBS. The membrane was dried and developed

with Thermo Scientific Super-Signal West Femto Substrate

and imaged in a Bio-Rad VersaDoc 3000 system.

4.4. Constructing the in vivo lac repressor energy matrix

The energy matrix was inferred from sort-seq data in a manner

analogous to methods described in Kinney PNAS 2010 [12].

Briefly, a library of mutant lac promoters was constructed

in which the region [−100 : 25] (where coordinates are

with respect to the transcription start site) was mutagenized

with a 3% mutation rate. The transcriptional activity of each

mutant promoter was measured by flow cytometry using

a GFP reporter. To fit the LacI energy matrix, we used

a Markov chain Monte Carlo algorithm to fit an energy

matrix to the LacI O1 binding site by maximizing the mutual

information between energies predicted by the matrix and flow

cytometry measurements. The justification for maximizing

mutual information is described in detail in [12, 52].
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