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Abstract 14 

Earthquakes are clustered in space and time, with individual sequences comprised of events 15 

linked by stress transfer and triggering mechanisms. At a global scale, variations in the 16 

productivity of earthquake sequences – a normalized measure of the number of triggered events 17 

– have been observed and associated with regional variations in tectonic setting. Here we focus 18 

on resolving systematic variations in the productivity of crustal earthquake sequences in 19 

California and Nevada, the two most seismically active states in the western US. We apply a 20 

well-tested nearest-neighbor algorithm to automatically extract earthquake sequence statistics 21 

from a unified 40-year compilation of regional earthquake catalogs that is complete to ~M2.5. 22 

We then compare earthquake sequence productivity to geophysical parameters that may 23 

influence earthquake processes, including heat flow, temperature at seismogenic depth, 24 

complexity of quaternary faulting, geodetic strain rates, depth to crystalline basement, and 25 

faulting style. We observe coherent spatial variations in sequence productivity, with higher 26 

values in the Walker Lane of eastern California and Nevada than along the San Andreas Fault 27 

system in western California. The results illuminate significant correlations between productivity 28 

and heat flow, temperature, and faulting that contribute to the understanding and ability to 29 

forecast crustal earthquake sequences in the area. 30 

Introduction 31 

One of the most universal observations of earthquakes is their statistical tendency to cluster in 32 

space and time, organizing into sequences of events connected via stress transfer mechanisms 33 

(e.g., Ben-Zion, 2008). Earthquake sequences occur in many styles, from classical mainshock-34 

aftershock sequences where a prominent large earthquake triggers a burst of seismic activity that 35 

decays in space and time (e.g., Omori, 1894), to swarm-like sequences with extended duration 36 

and no dominant mainshock (e.g., Hill, 1977). This intrinsic variability in earthquake clustering 37 

reflects the heterogeneous environments where earthquakes occur combined with the inherently 38 

complex nature of earthquake sequence dynamics, and it has important implications for hazard. 39 

What causes some earthquake sequences to be highly productive including thousands of 40 

triggered events, while other sequences to have low event rates and rapid cessations of 41 
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seismicity? This question has been long studied using a variety of techniques and datasets, but 42 

few definitive answers have been formalized. Singh and Suárez (1988) identified substantial 43 

variations in aftershock activity between circum-Pacific subduction zones, while Davis and 44 

Frohlich (1991) noted the relative paucity of aftershocks in oceanic ridge-transform systems. 45 

Zaliapin et al. (2008) developed a nearest-neighbor algorithm to automatically extract earthquake 46 

sequences from catalog data, a method that has since been applied to study clustering statistics in 47 

southern California (Zaliapin and Ben-Zion, 2013a, 2013b), in areas of induced seismicity 48 

(Goebel et al., 2019), and globally (Zaliapin and Ben-Zion, 2016).  49 

Dascher-Cousineau et al. (2020) systematically analyzed aftershock event counts derived from a 50 

global dataset of large earthquakes. Examining correlations of the results with source- and 51 

location-specific parameters, they developed a conceptual model in which aftershock 52 

productivity is driven primarily by the availability of nearby faults to activate within the brittle 53 

crust, rather than due to source or rupture characteristics, or properties such as temperature and 54 

fluid content of the deforming medium. Similarly, Hardebeck (2022) demonstrated that the 55 

spatial patterns of aftershocks from select large earthquakes in southern California varies 56 

systematically with features derived from stress-change tensors, faulting, and crustal geophysical 57 

parameters.  58 

The purpose of this article is to develop improved quantification and understanding of crustal 59 

earthquake sequences across California and Nevada, where large variations in productivity are 60 

widely appreciated (e.g., Hardebeck et al., 2018), yet both states fall within a single tectonic 61 

region for global-scale aftershock forecasting models (Page et al., 2016). This work extends 62 

earlier studies centered primarily in southern California by including also northern California and 63 

Nevada and by explicit consideration of faulting and crustal property metrics for comparison 64 

with sequence productivity. We adopt a more inclusive definition of earthquake sequence 65 

productivity (described in detail below) that encompasses all events within a sequence, instead of 66 

just direct aftershocks of a prominent mainshock. This allows us to assess earthquake swarms, 67 

which are common in California and Nevada, alongside the traditional mainshock-aftershock 68 
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sequences. The results provide new insights into the characteristics of crustal earthquake 69 

sequences in the western US. 70 

Data and Methods 71 

We analyze seismicity catalogs compiled by regional seismic networks in California and 72 

Nevada, where there are three authoritative monitoring regions: Southern California, Northern 73 

California, and Nevada. We combine earthquake catalogs available from each regional data 74 

center (see Data and Resources), removing duplicate events in overlapping regions by 75 

prioritizing the origin information of the authoritative agency for the region in which each 76 

earthquake occurs. The resulting catalog spans more than 40 years (January 1980 through 77 

September 2023) and is complete to ~ M2.5 over its duration (Figure S1), with improvements to 78 

completeness in more recent years. For this reason, we focus our analysis primarily on M ≥ 2.5 79 

earthquakes recorded during this time period. It is important to recognize that the magnitude 80 

scales adopted by each regional network are different, which may cause some inconsistencies for 81 

smaller earthquakes. We therefore also repeat and confirm the general findings of the analysis 82 

described below with only subset of earthquakes with M ≥ 3, where network magnitude 83 

estimates are broadly consistent with each other and with available moment magnitude estimates 84 

(Figure S2).  85 

We isolate earthquake sequences from the unified California-Nevada catalog using the nearest 86 

neighbor algorithm defined by Zaliapin et al. (2008) and developed further in subsequent studies 87 

(Zaliapin and Ben-Zion, 2013a, 2013b, 2016). In this method, each earthquake j is initially 88 

associated with a parent earthquake I that is its nearest neighbor in space and time, with a 89 

distance metric of the form: 90 

𝜼𝒊𝒋 𝟏𝟎 𝒃𝑴𝒊  𝑻𝒊𝒋 𝑹𝒊𝒋
𝒅  ,    (1) 91 

where 𝑴𝒊 is the magnitude of the parent event, and 𝑻𝒊𝒋 and 𝑹𝒊𝒋 are the temporal offset and 92 

epicentral distances between parent and daughter events. We set the b-value to 1.0 and fractal 93 

dimension d to 1.6, which are representative values for seismicity in this region (Zaliapin and 94 

Ben-Zion, 2013b, see also Figure S2). Linked events are partitioned into clusters by imposing a 95 

threshold distance 𝜼𝟎 beyond which neighboring events are separated as in a random process and 96 



 

 5 

are referred to as background earthquakes. The choice of this threshold is somewhat subjective; 97 

we use a catalog shuffling approach that preserves the magnitude distribution of the input catalog 98 

to determine an appropriate value (Goebel et al., 2019, Figure S3). While the precise value of 99 

𝜼𝟎 may influence the classification of individual events, the relative variations in sequence 100 

summary statistics are insensitive to 𝜼𝟎 (Zaliapin and Ben-Zion, 2013a). We focus on a subset of 101 

341 crustal earthquake sequences that have mainshock (i.e., largest event) with M ≥ 4.5 (Figure 102 

1a), which ensures a bandwidth of at least 2 magnitude units between the largest event and the 103 

completeness magnitude of 2.5. These sequences only include mainshocks occurring at least six 104 

months before the end of our catalog, to prevent artificial truncation of sequences in progress. 105 

The separation of the analyzed events into background and clustered earthquakes is shown in 106 

Figure 1b.  107 

For each earthquake sequence, we track the faulting style based on the normalized rake angle of 108 

the sequence mainshock (Figure 1a). The physical environment in which earthquakes occur is 109 

known to influence seismicity and aftershock triggering (e.g., Hauksson, 2011; Hardebeck, 110 

2022). With this in mind, we also compile several geophysical datasets that can be represented as 111 

spatial fields that cover our study region (Figure 2). These datasets include: (i) a smoothed 112 

representation of surface heat flow in the western US (Mordensky and DeAngelo, 2023), (ii) 113 

estimates of subsurface temperature at the median hypocentral depth of each sequence, derived 114 

following the method of Shinevar et al. (2018), (iii) the second invariant of the strain rate tensor 115 

inverted from GNSS data (Kreemer et al., 2014), (iv) depth-to-basement maps, which provide 116 

estimates of sedimentary basement thickness (Shah and Boyd, 2018), and (v) the US Geological 117 

Survey Quaternary Fault database (see Data and Resources), from which we calculate two 118 

surface trace fault complexity metrics (Chu et al., 2021): fault misalignment, a normalized 119 

measure of the variability of fault orientations within a geographic region, and fault density, a 120 

normalized measure of spatial density of mapped faults within a geographic region. Most of 121 

these datasets are motivated primarily by earlier studies of aftershock productivity in southern 122 

California (e.g., Yang and Ben-Zion, 2009; Hardebeck, 2022). The fault complexity metrics are 123 

new in this context and motivated by the fact that the background stress field and stress changes 124 

produced by earthquakes, affecting triggering potential, may depend on both the density and 125 
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variability in orientation of nearby faults. Recent laboratory experiments, for example, have 126 

demonstrated that fault roughness promotes aftershock productivity (Goebel et al., 2023). 127 

Results 128 

To characterize variations in earthquake sequence productivity across California and Nevada, we 129 

first count the total number of events in each sequence above the completeness magnitude of 2.5. 130 

We then correct for the fact that the total count increases with magnitude ~ 10M (Figure 3a), and 131 

define the “sequence productivity factor”. This measures, on a log scale, how productive an 132 

earthquake sequence is compared to a typical sequence with the same mainshock magnitude. 133 

Sequence productivity factors of ~ 0 indicate typical productivity, while factors of +/-1 indicate 134 

10 times more or fewer events produced than expected for a given mainshock magnitude. This is 135 

similar to the productivity measure of Dascher-Cousineau et al. (2020), except that it 136 

encompasses all events in the sequence rather than just the early aftershocks, to be inclusive of 137 

earthquake swarm activity without dominant mainshocks. To improve the robustness and 138 

generality of our results, we also consider two alternative productivity metrics: the rate of 139 

aftershocks in the first 10 days following the sequence mainshock, and estimates of Omori 140 

productivity parameter obtained using the technique of Yang and Ben-Zion (2009). These 141 

alternative metrics more directly measure the seismicity rates in the early part of aftershock 142 

sequence and productivity of classical aftershock sequences, which have been the focus of 143 

previous studies. Since all three metrics are well-correlated (Figure S4), we focus here primarily 144 

on the sequence productivity factor. 145 

We observe systematic spatial variations in sequence productivity across California and Nevada 146 

(Figure 3b; see Figure S5 for comparable results using the M ≥ 3 event subset). As noted by 147 

Hardebeck et al. (2018), offshore earthquakes near the Mendocino Triple Junction exhibit 148 

unusually low productivity, while events in areas of hydrothermal activity like Coso and the 149 

Salton trough exhibit unusually high productivity. Our analysis, which includes several recent 150 

prominent earthquake sequences in eastern California and Nevada (e.g., 2019 Ridgecrest, 2020 151 

Monte Cristo, 2021 Antelope Valley), newly highlights the enhanced earthquake productivity of 152 

the Walker Lane, the tectonic province that strikes along the California-Nevada border (e.g., 153 

Wesnousky, 2005). Previous studies noted the discrepancy between aftershock productivity of 154 
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northern and southern California (e.g., Reasenberg and Jones, 1989). Including Nevada within a 155 

unified analysis framework underscores the difference between the comparatively unproductive 156 

sequences along the plate boundary faults in western California and the incipient structures of 157 

eastern California and western Nevada. The most productive sequence in our dataset is the 2014-158 

2018 Sheldon earthquake sequence in northwest Nevada (Trugman et al., 2023), which was 159 

approximately 100x more productive than a typical sequence with mainshock magnitude 4.8 160 

(Figure 3a).  161 

The spatial pattern of sequence productivity bears some visual relations with the compiled 162 

geophysical parameters, particularly heat flow and the two fault complexity metrics: 163 

misalignment and density. We can quantify this more formally by computing the statistical 164 

correlations between sequence productivity factor and our set of geophysical parameters, 165 

spatially interpolated at the sequence locations. For this, we use the Spearman rank correlation 166 

coefficient to measure the strength of the relation without assuming a linear correspondence. 167 

This analysis (Figure 4) supports the qualitative comparisons in map view: heat flow, fault 168 

misalignment, and fault density are all positively correlated with sequence productivity. 169 

Temperature and mechanism type show weak negative correlations with productivity, while the 170 

correlation of productivity with strain rate and depth-to-basement are negligible.  171 

An important question for hazard assessment is whether there is a relation between sequence 172 

productivity and the background rate of earthquake activity. We address this question with our 173 

dataset by estimating the background seismicity rate on a spatial grid using the mainshock events 174 

identified by the nearest-neighbor method. We find a weak positive correlation between 175 

background rate and sequence productivity (Figure S6), but this relation can only account for a 176 

small fraction of the observed variance in productivity. Indeed, some locations with the highest 177 

rates of background seismicity, like Mendocino and near Los Angeles, have anomalously low 178 

productivity.   179 

Discussion 180 

Our analysis newly reveals spatially coherent variations in earthquake sequence productivity 181 

across California and Nevada that are correlated with several geophysical parameters, notably 182 

surface heat flow, temperature at seismogenic depth, and fault complexity. It is important to 183 
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recognize that these correlations do not necessarily imply causation; it is possible that there are 184 

other factors not considered in this study that control productivity, some of which may correlate 185 

with the more readily measurable parameters we examine. Mechanical models can be used to 186 

suggest causal relations between properties of the crust and seismicity (e.g., Ben-Zion and 187 

Lyakhovsky, 2006), but a definitive demonstration of causality is in general a difficult task.  188 

Nevertheless, we can gain additional insight by developing a statistical model in which different 189 

geophysical parameters of interest are used in combination as feature variables to predict 190 

sequence productivity as a target variable. Because we do not anticipate these relations to be 191 

linear, we use the explicit machine learning algorithm XGBoost (Chen and Guestrin, 2016), 192 

which is adept at capturing nonlinear relations but uses a simple enough, tree-based 193 

computational framework that permits full model interpretability and is insensitive to the 194 

normalization of the input features. To prevent overfitting, we tune model hyperparameters using 195 

a Bayesian optimization approach applied to a cross-validation score (Rouet-Leduc et al., 2019). 196 

In this approach, the dataset is repeatedly divided into training and testing folds, and the mean-197 

squared error is assessed on data from the testing folds, which the trained model has not seen. 198 

The final XGBoost model used in our analysis is trained with the hyperparameters identified 199 

from the top-performing models in the cross-validation step. 200 

The performance of the XGBoost model (Figure 5a) is significantly better than is possible 201 

through multivariate linear regression applied to the same (normalized) feature variables (Figure 202 

S7), with the XGBoost model achieving an R2 value (i.e., the fraction of data variance explained) 203 

of 0.70 compared to 0.29 for multivariate regression. While the XGBoost model predictions are 204 

not perfect and tend to be slightly conservative – e.g., underpredicting the productivity of 205 

extreme sequences like Sheldon –  the model appears to capture sufficiently the statistical 206 

relations that we can confidently assess feature importance: i.e., input variables most useful in 207 

predicting sequence productivity.  208 

We use for this purpose the SHAP technique (Lundberg and Lee, 2017), which applies a game-209 

theoretical framework to attribute importance scores to the input features of explicit machine 210 

learning models like XGBoost. The advantage of SHAP over analogous techniques is its capacity 211 

to consistently disentangle effects of multiple input variables that may be mutually correlated. 212 
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The attribution scores provided by SHAP are additive, meaning that the sum of the SHAP values 213 

for any set of inputs is equal to the target prediction. Averaged across the dataset, larger SHAP 214 

values indicate variables that are more important to the model’s prediction. For our target 215 

variable of sequence productivity that is centered at zero, positive or negative SHAP values 216 

imply that the feature value is associated with higher or lower than average productivity, 217 

respectively.  218 

The results of this analysis are presented graphically in Figure 5b, where input features are 219 

ranked by importance, with the distribution of SHAP values displayed as color-coded points that 220 

denote the corresponding feature value. Heat flow is the most important predictive variable, with 221 

the clear gradient from blue to red indicating a consistent positive relation with productivity. 222 

Temperature, closely followed by fault misalignment and fault density, are ranked next in 223 

importance. Temperature has a negative correlation with productivity (colder sequences are more 224 

productive), while fault misalignment and fault density have a positive correlation with 225 

productivity. The relations between productivity and strain rate, mechanism type, and depth to 226 

basement are comparatively weak. The distributions of SHAP values for each feature variable 227 

are displayed in Figure 5c, where the nonlinearity of these relationships becomes apparent. For 228 

example, the values of highest misalignment are most clearly associated with increased 229 

productivity. Likewise, while productivity appears to increase monotonically with heat flow, the 230 

extreme values on both the low and high exhibit the strongest relations.  231 

Previous studies in California considered the relation between aftershock statistics and surface 232 

heat flow, with somewhat conflicting results. Enescu et al. (2009) and Yang and Ben-Zion 233 

(2009) present evidence that more productive earthquake sequences occur in regions with lower 234 

surface heat flow, while Nandan et al. (2017) observe a positive correlation between productivity 235 

and heat flow. This discrepancy may arise in part due to data availability – the dataset of Nandan 236 

et al. (2017) is both more recent and more spatially extensive than those considered by Enescu et 237 

al. (2009) and Yang and Ben-Zion (2009) – but also may be influenced by modeling 238 

assumptions. In particular, Yang and Ben-Zion (2009) measure productivity by estimating Omori 239 

parameters from stacked aftershock sequences, Enescu et al. (2009) estimated the magnitude-240 

dependent productivity parameter derived from Epidemic Type Aftershock Sequence (ETAS) 241 

models, and Nandan et al. (2017) solve for spatially-varying ETAS coefficients for their entire 242 
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study region. The swarm-type sequences may be at the core of the problem, since the Omori 243 

parameters are not well-defined for swarms and the ETAS model is also not well-suited to model 244 

swarms (Zaliapin and Ben-Zion, 2013b).  245 

Our study uses a productivity metric that avoids the need to assume a particular triggering model 246 

like Omori or ETAS, and includes several other geophysical parameters of potential interest. We 247 

find a positive correlation between productivity and heat flow, in agreement with Nandan et al. 248 

(2017), but also demonstrate that the temperature condition in the seismogenic zone, which 249 

depends both on the surface heat flow and the depth of the triggered events, is negatively 250 

correlated with productivity. This observation is compatible with the damage rheology model of 251 

Ben-Zion and Lyakhovsky (2006) and the results of Yang and Ben-Zion (2009) in which the 252 

effective viscosity of the crust controls aftershock statistics. Moreover, we newly identify the 253 

importance of faulting complexity with productivity, with more productive earthquake sequences 254 

tending to occur in areas with complex and dense networks of mapped Quaternary faults.  255 

 It is important to recognize that all the geophysical datasets we consider have spatial limitations, 256 

areas of incompleteness, and various forms of uncertainty. For example, heat flow maps are 257 

spatially smoothed and may not precisely represent the heat flow observed at any geographic 258 

point, while the faulting and strain measurements are derived (primarily) from onshore 259 

observations with finite spatial resolution and variable completeness. The Quaternary fault 260 

database, while exceptionally detailed in California and Nevada, tracks only surficial features 261 

and not the geometry at hypocentral depth. The true strength of the statistical connections 262 

between these parameters and productivity are likely to be muted by these limitations, and other 263 

parameters not considered in this work, like fluids and local geology, may provide additional 264 

insight and could be studied in detail in future work.  265 

We demonstrate that earthquake sequences in the Walker Lane, an incipient zone of deformation 266 

along the California-Nevada, are significantly more productive compared to their counterparts 267 

along the San Andreas fault system that comprises the present Pacific-North American plate 268 

boundary. Across the Walker Lane, earthquake swarms with high seismicity rates are particularly 269 

common, where productivity is perhaps further enhanced by the presence of structurally complex 270 

and dense networks of active faults. In addition to the geophysical parameters considered in our 271 
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analysis, this difference may also reflect the anomalously low resolved shear stress on faults of 272 

the San Andreas system implied by the lack of observable frictional heat and other evidence 273 

summarized by Ben-Zion (2001). Whether or not the obtained relations on earthquake sequence 274 

productivity generalize beyond California and Nevada to other crustal faults will need to be 275 

assessed in future work. But even within the context of the western United States, the results 276 

have important implications for our physical understanding of earthquake triggering and seismic 277 

hazard. Developing improved physical or statistical models that accurately capture such 278 

systematic regional variations in productivity is an important frontier in earthquake dynamics. 279 

Data and Resources 280 

Earthquake catalog data for this study were obtained from the Southern California Earthquake 281 

Data Center (https://service.scedc.caltech.edu/eq-catalogs/date_mag_loc.php), Northern 282 

California Earthquake Data Center (https://www.ncedc.org/ncedc/catalog-search.html), and the 283 

Nevada Seismological Laboratory (http://www.seismo.unr.edu/Earthquake). The compiled 284 

earthquake catalog spanning these monitoring jurisdictions is available on Zenodo 285 

(https://doi.org/10.5281/zenodo.8411208). Data processing was performed in Python and Julia, 286 

with geographic figures produced using PyGMT (https://www.pygmt.org/dev/overview.html). 287 

Quaternary faults and fold data were obtained from the USGS database 288 

(https://www.sciencebase.gov/catalog/item/589097b1e4b072a7ac0cae23). 289 
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Figures 403 

 404 

Figure 1. (a) Overview map of the study region with M ≥ 4.5 sequences analyzed in this study 405 

denoted by their mainshock mechanism and color-coded by mechanism type, where values of -1, 406 

0 and 1 correspond to normal, strike-slip, and reverse faulting, respectively. (b) Graphical 407 

representation of the distribution of nearest-neighbor rescaled distance 10 .  𝑅   versus 408 

rescaled time 10 .  𝑇 , plotted on a log-log with the cutoff threshold used in this study 409 

marked as a solid line. 410 

 411 
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Figure 2. Map view representations of geophysical parameters in the western US: (a) surface 413 

heat flow, (b) temperature at the seismogenic depth of each sequence, (c) second invariant of the 414 

strain rate tensor, (d) depth to crystalline basement, (e) fault misalignment, (f) fault density. 415 

 416 

417 

Figure 3. (a) Scaling of total sequence productivity with magnitude, with individual sequences 418 

marked in green and binned data marked in red. The sequence productivity factor metric used in 419 

this study corrects for this trend and measures the deviation from expected productivity at a 420 

given mainshock magnitude (red line), on a logarithmic scale. (b) Map view representations of 421 

sequence productivity factors. Productivity is higher in eastern California and the Walker Lane 422 

than in western California and offshore Mendocino. 423 

  424 
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 425 

 426 

Figure 4. Correlation matrix between geophysical parameters (columns) and sequence 427 

productivity factor (top row) as well as alternative productivity metrics: aftershock rate and 428 

Omori parameter (middle and bottom rows). Warm and cool colors indicate positive and 429 

negative rank correlations, respectively. 430 

 431 
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432 

Figure 5. Machine learning analysis of earthquake sequence productivity. (a) Performance of the 433 

XGBoost model for predicting sequence productivity, plotting measured productivity factors on 434 

the x-axis versus model predictions on the y-axis. (b) SHAP value distributions (x-axis) for each 435 

input feature, ranked by importance and with individual observations color-coded by relative 436 

feature values (low to high). The spread of the SHAP value distribution along the x-axis 437 

indicates the magnitude of the feature importance, while the colorscale can be used to identify 438 

the sign of the relation between feature value and SHAP value. (c) SHAP values plotted as a 439 

function of each geophysical input feature, highlighting nonlinear relations discernable in (b). 440 

Feature values associated with negative and positive SHAP values are associated with lower or 441 

higher predicted values of sequence productivity, respectively.  442 
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Overview 
 
This document contains supplementary figures that support the results presented in the main text. 
 
Figure S1 shows the data used to infer magnitude of completeness for the combined catalogs. Figure 
S2 displays other catalog statistics, including moment/network magnitude relations, estimates of b-
value and fractal dimension to support the parameters used in this study. Figure S3 shows the nearest-
neighbor distance distribution used to determine an appropriate threshold to separate clustered from 
background seismicity. Figure S4 compares different measures of productivity. Figure S5 presents 
results for an M3+ event subset of the M2.5+ dataset focused on in the main text. Figure S6 displays 
the relation between background rate and sequence productivity. Figure S7 compares multivariate 
linear regression and XGBoost models to predict sequence productivity.  
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Figures 
 

Figure S1. Magnitude distributions of the combined California-Nevada earthquake catalog within 
different time periods. Estimates for the magnitude of completeness of each time period, obtained from 
the maximum curvature approach with a shift of 0.3 units, are marked in gold and is M2.5 or less for 
all time periods. 
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Figure S2. (a) Relation between magnitude estimate by individual seismic networks (NC=Northern 
California, CI=Southern California, NN=Nevada) and moment magnitude. For M3 and greater, the 
network magnitudes are consistent with MW and fall along the 1:1 line. (b) Estimation of (b) b-value 
using the maximum-likelihood method and bootstrap resampling to obtain uncertainties, and (c) fractal 
dimension estimation using a standard box-counting approach. These results support the parameter 
values used in the nearest neighbor analysis in this study.  
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Figure S3. Distribution of rescaled nearest neighbor distances from 100 stacked space-time shuffled 
versions of the combined California-Nevada catalog analyzed in this study. In each shuffled dataset, 
magnitudes are preserved. The selected threshold distance of -4.75 (in log unit) comes from the 2nd 
percentile of the nearest-neighbor distribution of the stacked catalogs. 
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Figure S4. Correlation matrix between three different measures of productivity: sequence productivity 
factor, aftershock rate, and Omori parameter. The sequence productivity factor is the primary focus of 
this study and correlates with aftershock rate and Omori parameter at the 0.92 and 0.85 level. 
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Figure S5. Sequence productivity measures for M3+ seismicity, analogous to Figure 3 in the main text 
which uses M2.5+ seismicity. The similarity of the spatial patterns implies that the overall findings are 
robust to the choice of minimum magnitude. 
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Figure S6. Comparison of (a) background seismicity rate, inferred from the spatial pattern of 
mainshocks identified by the nearest-neighbor analysis with (b) sequence productivity factors, as 
displayed in Figure 3 of the main text. There is a weak positive correlation (c), but much of the scatter 
in productivity is not explained by variations in background rate. 
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Figure S7. Comparison of model performance of (a) multivariate linear regression and (b) XGBoost 
regression, with hyperparameters optimized through a Bayesian cross-validation scheme. The 
XGBoost model vastly outperforms the multivariate linear model and does not require normalization 
of the input features. The R2 statistic (related to the fraction of variance explained) is listed in each 
figure panel title: 0.29 for multivariate linear regression and 0.70 for XGBoost.  
 
 
 


