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SARS struck Taiwan in 2003, causing a national crisis. Many people feared that SARS would spread through the
health care system, and outpatient visits fell by more than 30% in the course of a few weeks. We examine how
both public information and the behavior and opinions of peers contributed to this reaction. We identify a
peer effect through a difference-in-difference comparison of longtime residents and recent arrivals, who are
less socially connected. Although several forms of social interactionmay contribute to this pattern, social learning
is a plausible explanation for our finding. We find that people respond to both public information and to their
peers. In a dynamic simulation based on the regressions, social interactions substantially magnify the response
to SARS.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The public periodically confronts a novel and unfamiliar threat, such
as a terrorist attack or new disease outbreak. These situations typically
spur people to take extreme protective actions such as avoiding public
places, putting down livestock, or curtailing air travel. In a crisis, a per-
sonmust assess a new risk and decide how aggressively to protect him-
self. However, it is unclear how people make these decisions given the
scarcity of information about the severity or prevalence of the threat.

The 2003 SARS epidemic in Taiwan allows us to study the response
to an unfamiliar risk. SARS (severe acute respiratory syndrome) is a re-
spiratory illness that resembles severe pneumonia and is transmitted
through close interpersonal contact. SARS reached Taiwan from main-
land China in March of 2003. 312 people were confirmed to be infected
and 82 people died before the epidemic disappeared in July of that year.
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Despite the low prevalence of SARS in the general population, the public
strongly eschewed restaurants, shopping centers, and other public
places (Chou et al., 2004; Siu and Wong, 2004). The high infection rate
in hospitals also caused people to avoid the health care system: outpa-
tient visits fell by 31% in April and May of 2003 (Hsieh et al., 2004).
This drop occurred both in locations with and without SARS, and
persisted for months after the epidemic had passed.

Health care avoidance during SARS is an example of a “prevalence re-
sponse”which is a familiar topic in the literature on economic epidemiol-
ogy (Ahituv et al., 1996; Gersovitz and Hammer, 2003; Lakdawalla et al.,
2006). Facing an increase in disease risk, people protect themselves and
thereby limit the spread of infection. With few exceptions (de Paula
et al., 2011; Gong, forthcoming), this literature has assumed that decision
makers possess complete information,which is an unrealistic assumption
in a disease outbreak. In even the most saturated media environment,
public announcements only weakly indicate a person's idiosyncratic in-
fection risk. Without a precise public signal, people may rely on private
signals such as the opinions and actions of their peers. This mechanism
may cause an “information cascade” thatmagnifies the response to anun-
familiar threat (Banerjee, 1992; Bikchandani et al., 1992;Welch, 1992). If
social learning is an important determinant of behavior in this setting, it
may determine the effectiveness of public policies to address a crisis.

This papermeasures the contributions of public risk information and
signals from peers to the SARS response. Reports of local and national
SARS incidence provide public risk signals. We proxy for the risk signal
of peers using the change in health care utilization among peers from a
pre-SARSbaseline,whichderives froma simplemodel of health care de-
mand. A regression of individual medical visits on these variables
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2 An examination of mortality data shows that the epidemic coincides with a spike of
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distinguishes between the contributions of public information and peer
signals. Our analysis uses a nationally representative panel of medical
claims of 1 million people (4.3% of Taiwan's population). This source al-
lows us to quantify the number of outpatient visits by patient, provider
and two-week period from 2001 to 2003 for a 16% subsample of this
data set.We proxy for peer groups,which the claimsdata do not directly
measure, using cohorts of patients who visit a common physician and
facility.

Identifying a peer effect through a regression of individual outcomes
on group outcomes is challenging because commonunobservables joint-
ly determine both variables (Manski, 2000). Patients may sort into peer
groups because of common risk or health preferences. Heterogeneous
supply shocks, such as office closures by some doctors, may also induce
a spurious correlation. Patients in the same peer group may receive cor-
related signals of SARS risk if they obtain news from the same media
sources. We address these concerns through a difference-in-difference
design that compares the response of longtime community residents
(“non-movers”) to the response of recent arrivals (“movers”). Although
these groups face a similar (vanishingly small) risk of contracting SARS,
non-movers have stronger social ties to their communities. We find
that non-movers respond more to their peers than to local SARS inci-
dence but less than to national SARS incidence. This identification strat-
egy places a lower bound on the peer effect because it is based on a
differential response.

Our identifying assumption is that unobservable shocks to visits
do not differentially affect non-movers during the SARS period. We
evaluate this assumption through a complementary approach in
which we address common unobservables by controlling for current
peer visits. This strategy relies on variation in lagged peer visits for iden-
tification. Fixing current visits, a peer groupwhose visits were previous-
ly high conveys a stronger signal of SARS risk than a group whose visits
were previously low. By specifically controlling for the visits of non-
mover peers, we deal with the concern that shocks specific to non-
movers confound the difference-in-difference regressions. In a final fal-
sification test, we apply our methodology to the annual drop in visits
that occurs during Chinese New Year and find that peer effects do not
explain this phenomenon.

Social learning is a plausible channel through which social interac-
tions increased during SARS. The severity of SARS creates a demand
for information about SARS risk. Information is scarce during a novel
epidemic, as even experts lack basic facts about the disease. In the ab-
sence of more reliable signals, people may learn from the behaviors
and perceptions of their peers. Several mechanisms other than social
learning may contribute to our peer effect estimate. In principle, SARS
contagion among peers may cause a positive correlation in peer visits
during the SARS period. This mechanism is not a serious confound in
practice because SARS prevalence is very low, even in the highest-risk
townships.1 Alternatively, people may imitate rather than learn from
their peers. We cannot distinguish learning from imitation without
richer data. Finally, the visits of peers may be negatively correlated
through congestion at health care facilities, which also causes our esti-
mates to be a lower bound.

This paper contributes to the literature on economic epidemiology
by analyzing the “prevalence response” to disease risk. We consider
the context of health care utilization, which is intrinsically interesting
because it directly affects health (e.g. Card et al., 2009; Currie and
Gruber, 1996). To date, this literature has focused on HIV and has iden-
tified responses to both public and private signals (de Paula et al., 2011;
Delavande and Kohler, 2012; Philipson and Posner, 1995; Thornton,
2008). Our study complements these papers by providing the first as-
sessment of how peer effects influence the response to disease risk.

The paper also contributes to the literature on social learning.
Studies have demonstrated social learning in the context of technology
1 Visits due to SARS make up 0.029% of national outpatient visits during Period 10 of
2003, in which SARS incidence peaked. We discuss this mechanism further in Section 6.
adoption and consumption (e.g. Conley and Udry, 2010; Foster and
Rosenzweig, 1995; Moretti, 2011; Munshi, 2004). Studies of learning
andmedical utilization (Deri, 2005; Oster and Thornton, 2011) consider
day-to-day decisions rather than behavior during a medical crisis.
Because of the dearth of objective information during an emergency,
the nature and magnitude of social learning may be different than
under ordinary circumstances. Randomization is not available as a tool
to study social interactions during a crisis. We build upon attempts to
identify peer effects in observational data by defining a subset of people
who are less exposed to peers. As with other non-experimental peer ef-
fect studies, it is difficult to rule out omitted variable bias definitively.

Finally, the paper contributes to the literature on crisis response. A
key question is why negligible changes in objective risk substantially
alter individual choices. For instance, objectively small terrorism and
health risks have large impacts on commerce (Abadie and Gardeazabal,
2003; Blunk et al., 2006; Kraipornsak, 2010). Becker and Rubinstein
(2011) find that Israeli tourists respond more strongly to terrorism risk
than local residents, and suggest that people who regularly confront
risk may invest in the ability to surmount an emotional response. Social
interactionsmay also explainwhy people adoptmistaken beliefs and re-
spond in extremeways to a crisis. Themagnitude of this private response
determines the impact of a crisis. Just as air travel reductions after 9/11
caused more people to die in traffic accidents than in the attacks them-
selves (Blalock et al., 2009), health care avoidance during SARS may
have caused more deaths than the epidemic itself.2

We proceed in Section 2 to motivate and justify our empirical
approach. This section shows the assumptions under which our empir-
ical strategy identifies a peer effect. Section 3 describes the health care
setting in Taiwan, the SARS epidemic, and the data set. Regression re-
sults appear in Section 4. Section 5 describes a dynamic simulation of
the aggregate response to SARS. Section 6 discusses the interpretation
of our findings and Section 7 concludes.

2. Empirical overview

In this section,we offer a theoreticalmotivation for our empirical ap-
proach.We regress the change in individual visits on the change in peer
visits and use a difference-in-difference strategy to disentangle social
interactions from common unobservables. As an alternative, we regress
the change in individual visits separately on current and lagged peer
visits. First we explain why the change in visits is a valid proxy for sub-
jective SARS risk. Next we specify the identifying assumptions of these
strategies. In Appendix A, a full model of belief formation derives the
relationship between the regression coefficients and the structural pa-
rameters of a social learning model.

2.1. The change in visits as a proxy for subjective SARS risk

Our analysis focuses on an individual's subjective assessment of the
risk of SARS death during amedical visit, sijt∈ [0, 1], which is indexed by
individual i, peer group j, and time period t. We proxy for sijt, which is
unobservable, with the change in an individual's medical visits com-
pared to a period before the SARS epidemic when sijt = 0. To motivate
this proxy, suppose a person has health care demand vijt = αi − δpijt.
In this equation, vijt ≥ 0 and pijt are the patient's quantity and out-of-
pocket price of care, while δ ≥ 0 and αi ≥ 0 are the slope and
individual-specific intercept of the demand curve. Fig. 1 represents the
equilibrium in the health care market.

Like a tax, SARS risk increases the perceived cost of health care. Let the
multiplier π N 0 convert SARS risk into a monetary value. The figure
520 additional non-SARS deaths, which is over six times the number of deaths from
SARS itself. The steep drop in health care utilization during SARS is the most likely reason
for this pattern. Widespread avoidance of health care facilities likely reduced SARS trans-
mission and made the outbreak easier to control (Chen, 2003; Lin, 2003).
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Fig. 1. Inference about SARS risk from a change in visits.
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illustrates how SARS shifts the out-of-pocket price upward to pijt + πsijt,
moving along the demand curve. Because the demand curve provides a
one-to-one mapping between quantity and price, the difference in quan-
tity yields themonetary value of SARS risk:Δvijt= vijt− vijt− 1= δπsijt. An
observer with knowledge of δ and π can perfectly derive SARS risk from a
change in visits if supply remains constant. The signal is weaker but still
informative if the observer must estimate the demand parameters.
In practice, the change in peer visits is consistent with information trans-
mission fromvarious sources, including direct observation and communi-
cation from doctors or peers.

2.2. Identification of a peer effect

Belowwe regress the change in individual visits on a common signal
of risk, sjtc , and the change in peer visitsΔv Ii jt. Two factorsmay confound
this regression. First, commonunobservablesmay jointly influence indi-
vidual and group behavior, causing a spurious correlation between vijt
andv Ii jt (Manski, 1993, 2000). Heterogeneous supply shocks such as of-
fice closures by some doctors may cause a correlation in the visits of pa-
tients of the same doctor. Patients and their peers, having self-selected
into the same group, may also share common traits such as risk aver-
sion. Group members may receive common risk signals. In a second
threat to identification, people may receive unobservable private risk
signals, sijtp , which reflect their idiosyncratic risk preferences or Bayesian
prior beliefs.

The following hypothetical regression incorporates these factors.

Δvi jt ¼ λ1s
c
jt þ λ2 þ λ3ð ÞΔv Ii jt þ λ4s

p
i jt þ εi jt : ð1Þ

In this equation, λ1 and λ2 are the weights people place on the com-
mon signal and the peer signal.λ3 captures the potential spurious corre-
lation between vijt and v Ii jt , and λ4 is the weight people place on the
private signal. In principle, λ1, λ2, and λ4 must sum to 1 if they exhaust
all possible learning channels. Because of this constraint, information
sources are substitutable.

We implement a difference-in-difference regression that compares
non-movers, who are long-time neighborhood residents, with movers,
who have recently joined the community and peer group. We examine
the correlation between individual and group outcomes for each type of
person before and during the SARS epidemic. Our identifying assump-
tion is that unobservable shocks to visits do not differentially affect
non-movers during the SARS period. To examine this strategy, we de-
compose each coefficient, λr, into type-specific and period-specific ele-
ments: λr = λr

θ + λr
τ + λr

θτ, for r ∈ {1, 2, 3, 4}. θ ∈ {m, n} denotes the
person type (mover or non-mover), and τ ∈ {p, d} denotes the period
(prior to SARS or during SARS).

Equivalently, we express this decomposition using dummy
variables for the non-movers and the SARS period, Ni and Dt: λj =
λj
mp + (λj

np − λj
mp)Ni + (λj

md − λj
mp)Dt + (λj

nd − λj
md)NiDt. Next we
substitute this expression into Eq. (1), noting that sjtc and sijt
p equal

zero prior to SARS.
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c
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3 −λmd
2 −λmd

3

h i
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In this expression,Ωijtdenotes the level effect ofΔv Ii jt and its pairwise
interactions with Ni and Dt.3 The private signal, which is unobservable,
appears in the error term: ξijt = λ4

mdDtsijt
p + [λ4

nd − λ4
md] NiDtsijt

p + εijt.
Our empirical objective is to identify λ1md, λ1nd, and [λ2nd − λ2md].

The primary identifying assumption of this regression is that com-
mon unobservables have the same effect on movers and non-movers
during the SARS period: λ3md= λ3nd. Under this assumption, the differen-
tial effect of common unobservables during SARS cancels and the coef-
ficient for NiDtΔv Ii jt isolates a peer effect. This regression controls for
any shock that is common tomovers and non-movers, including supply
heterogeneity. Our approach provides a lower bound estimate of the
peer effect because it excludes any social interactions bymovers during
SARS as well as social interactions by either group prior to SARS (λ2

mp,
λ2np and λ2md).

We provide further evidence using a complementary identification
strategy that does not distinguish betweenmovers and non-movers. In-
steadwe regress the change in individual visits on current and one-year
lagged peer visits with a SARS period interaction. Common unobserv-
ables primarily threaten identification by causing a correlation between
contemporaneous values of vijt and v Ii jt . However Fig. 1 illustrates that
lagged visits also contain information about a person's risk perception.
Fixing current visits, a peer group with previously high utilization pro-
vides a larger risk signal than a peer group with previously low utiliza-
tion. Contemporaneous shocks are unlikely to confound the differential
effect of lagged peer visits during SARS, since these visits occur prior to
the epidemic.

We implement this approach by regressing the change in individual
visits on current and one-year lagged peer visits with a SARS period in-
teraction. The identifying assumption is that while common unobserv-
ables may confound the effect of v Ii jt , they do not confound the effect
of v Ii jt−26 differentially during SARS. In the following specification, λ
denotes a contemporaneous effect and eλ denotes an effect with a one-
year lag.

Δvi jt ¼ λd
1Dts

c
jt þ λd

2 þ λd
3−λp

2−λp
3

h i
Dtv Ii jt− eλd

2 þ eλd
3−eλp

2−eλp
3

h i
Dtv Ii jt−26

þ λd
4Dts

p
i jt þΦi jt þ νi jt : ð3Þ

In this expression, Φijt contains the uninteracted effects of v Ii jt and
v Ii jt−26 .

4 As above, the private signal appears in the error term:
νijt = λ4

dDtsijt
p + εijt. To identify a social interaction, we must assume

that eλd
3−eλp

3 ¼ 0. Due to the one-year lag,Dtv Ii jt−26 is always measured
prior to SARS. To confound this estimate, common unobservables must
cause a greater correlation between these variables in 2002 than in
2001.

In this regression, Dtv Ii jt controls for unobservable shocks during
the SARS period. By separately controlling for Dtv Ii jt of movers and
non-movers (and interacting these variables with Ni), we can directly
control for type-specific unobservable shocks. These shocks are the re-
maining threat to identification under the difference-in-difference ap-
proach above. By examining the sensitivity of our estimates to these
controls, we can test the validity of the main identifying assumption of
the difference-in-difference approach.

Unobservable private signals may also threaten identification. A
second identifying assumption that applies to both approaches is

image of Fig.�1
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that the difference between the private signals of any two group

members must be orthogonal to the regressors: E spi jt−sp
i0 jt

� �
scjt

h i
¼ 0

andE spi jt−sp
i0 jt

� �
v Ii jt

h i
¼ 0. This assumption assures that the regressors

are uncorrelated with ξijt, which is plausible if individual private
signals are independent draws from a common distribution within the
group.5
6 The mortality risk calculation assumes conservatively that all SARS deaths arise be-
cause of outpatient visits. Consistent with the extreme response, Liu et al. (2005) find that
the VSL associated with avoiding SARS risk is several times greater than conventional VSL
measurements from Taiwan.

7 Critical visits include visits related to pregnancy, abortion, injury, appendicitis, stroke,
heart attack, and internal bleeding. Chronic visits include visits related to dialysis, chemo-
therapy, diabetes, and liver or kidney failure.
3. Context and data

3.1. The SARS epidemic in Taiwan

Taiwan is a densely populated island located near mainland China.
The country has a population of 23.1 million and income per capita of
around $31,000.Modern highways and railways facilitate intercity trav-
el. Taiwan is made up of 25 counties and cities, which further subdivide
into 368 townships and urban districts (hereafter labeled “counties”
and “townships” respectively). The population has a median age of 37
and a life expectancy of 78. Chinese New Year, which occurs on a
lunar schedule in January or February, is an important holiday that
causes a large decline in medical visits. During the two-week holiday,
many families travel to visit relatives and some medical offices are
closed. This holiday has a large impact on health care utilization in the
figures below.

In 1996, Taiwan implemented a universal fee-for-service health care
system (Cheng, 2003). Under the system, patients contribute modest
copayments of US$5 or less for visits, tests, and prescriptions. The Bu-
reau of National Health Insurance (BNHI) administers the system and
reimburses providers for most expenses. People may obtain outpatient
care from either hospital outpatient departments or small storefront
clinics. Clinics, which are ubiquitous in cities, serve around 70% of the
outpatient market. With such low copayments, many patients prefer
to visit the doctor (and obtain medicine) for minor illnesses such as
sore throats and colds. These conditions, classified broadly as “upper re-
spiratory infections” constitute 38% of all outpatient visits. The low out-
of-pocket cost has led to intense health care utilization, with patients
seeking care a median of 10 times per year.

SARS is a respiratory illness that resembles severe pneumonia. The
disease is caused by a coronavirus and is transmitted through close
contact with an infected person. The SARS epidemic originated in
Guangdong, China in November of 2002 and soon spread to Hong
Kong, Southeast Asia, and Canada. Taiwan's first SARS case occurred in
a traveler who became ill on March 14, 2003 after arriving from main-
land China. The epidemic escalated on April 22when an indigenous out-
break amongpatients and hospital staff at theHo-PingHospital in Taipei
led to several secondary outbreaks in other major cities. Fig. 2 plots the
number of reported andprobable SARS cases (explained below) by two-
week period to show the progression of the epidemic. The SARS epi-
demic lasted through June, leading to a total of 312 confirmed infections
and 82 deaths. At the peak of the epidemic, SARS infected 60 and killed 6
people per day. Nevertheless, the overall burden of SARS was only 1.4
confirmed cases and 0.36 deaths per 100,000 people.

The Ho-Ping Outbreak, which took place during Period 9 in the
figure, led to widespread panic. According to Ko et al. (2006, p. 398),
“People started to hoard all possible protective equipment, and reject
people or materials with any risk of infection, including infected pa-
tients, the families of patients, subjects quarantined, and even health
providers.” Domestic air travel fell by 30% and international air travel
fell by 58% from 2002 levels (National Policy Foundation, 2003). The
5 This assumption also requires type-specific time fixed effects. With this modification,
the first term of ξijt is the difference between sijt

p,md and sp;md
i jt . Regression estimates that in-

clude type-specific time fixed effects (available from the authors) are equivalent to the es-
timates in Section 4. The insensitivity of our estimates to type-specific time fixed effects
suggests the first element of ξ is not a serious confound.
price of Isatidis Radix, a traditional Chinese antiviral remedy, rose by
800% (Huang, 2003).

The SARS epidemic also had a large impact on health care utilization.
Fig. 3 plots the nationwide volume of outpatient visits by two-week pe-
riod in 2001, 2002, and 2003. In a sharp deviation from the usual sea-
sonal pattern, visits fell by over 30% from March to June of 2003. Visits
did not return to the pre-SARS level until September of that year,
three months after the last probable SARS case on June 16. Based on
the number of SARS deaths and outpatient visits from March to June
of 2003, SARS created a mortality risk of at most 0.0000007 deaths per
visit. Using an upper-bound estimate of $2.2 million for the value of sta-
tistical life (Hammitt and Liu, 2004), the risk of SARS death during a
medical visit raised the expected price of a visit by $1.93. However the
decline in visits during SARS is consistent with a much larger perceived
cost. After a copayment increase of $3 in November of 2002, visits to
medical centers fell by 3%. Benchmarking the SARS response by this
copayment response, people behaved as if SARS had increased the
price of a visit by $17.60.6

The response to SARS occurred both in townships with and without
actual SARS incidence. Fig. 4 plots total visits, comparing townships
with zero and positive SARS incidence. The response to SARS is only
slightly larger in townships that actually experienced the outbreak.
The timing and magnitude of the SARS response also depended on the
nature of the visit. Fig. 5 categorizes visits as respiratory, critical, chronic,
or other.7 Although utilization fell in all categories, the response of re-
spiratory visits was particularly sharp and extended. These visits fell
by over 50% and remained suppressed through the end of the year.
Although respiratory visits are distinct in several aspects, the low mar-
ginal benefit of a respiratory visit is the most likely explanation for
this pattern.8
3.2. Data

Our primary data source is a large panel of medical claims furnished
by the BNHI. The data set contains all outpatient visits from 1997 to
2003 for a representative sample of one million people (4.3% of
Taiwan's population). We obtain a manageable regression data set by
drawing a random 16% subsample through the procedure below. For
each individual × peer group, the regression data set contains 78 bi-
weekly observations from 2001 to 2003. The dependent variable is the
number of outpatient visits by a patient to the doctorwhodefines a par-
ticular peer group.

The Taiwan Centers for Disease Control (TCDC) provides data on the
incidence of “reported” and “probable” SARS cases. A reported case is
any case that the TCDC investigates as a possible SARS infection. A prob-
able case is a reported case that also (1) exhibits high fever anddifficulty
breathing, (2) an epidemiological link toother SARScases, and (3) radio-
graphic evidence of pneumonia or respiratory distress syndrome or a
positive assay for the SARS coronavirus (WHO, 2003).9 To express
SARS incidence as an infection probability, we compute the number of
cases per 100 people.
8 Patients withmild respiratory illnessesmay have also feared that doctorswould place
them in quarantine (Hsieh et al., 2005). As a respiratory condition, SARS could also have
increased respiratory visits among people concerned about possible exposure.

9 Confirmatory diagnostic tests for SARS did not become available until midway
through the epidemic. Even once these tests arrived, authorities did not provide immedi-
ate confirmation of SARS infection. Therefore, people did not generally have information
about confirmed SARS incidence.



Fig. 2. SARS cases by two-week period during 2003.
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3.3. Signals of risk

Under incomplete information, a decision maker may seek new in-
formation sources and tailor his response to a signal's credibility and
precision. Common signals of risk, such as public announcements of dis-
ease incidence, convey the average risk in a population. However these
signals may provide little information about idiosyncratic risk, which
depends upon a person's behavior and social interactions. Common sig-
nals are especially noisy during a new disease outbreak, when even ex-
perts do not fully understand the disease's severity or mode of
transmission.

Official SARS incidence reports received intensemedia coverage and
provided a common signal of SARS risk. The front page of the Apple
Daily News on May 22, 2003 in Fig. 6 exemplifies the print coverage of
SARS. The lead story describes a restriction on travel out of Taiwan. On
Fig. 3. Aggregate outpatient visits by
the left, a map shows the cumulative number of SARS cases by county,
and a table summarizes the number of cases and deaths nationwide.
Although both local and national incidence contain information, nation-
al incidence may provide a more meaningful signal in a small country
like Taiwan.

Without precise objective information, peoplemay have relied on pri-
vate signals such as the perceptions and behavior of their peers. As we
illustrate in Section 2, the change in visits from an earlier (risk-free)
period proxies for the subjective risk perception of a person or group.
This signal is noisy for a particular individual because health varies idio-
syncratically: a decline in visits during SARS could merely indicate the
absence of a prior illness. Aggregationwithin a group reduces the idiosyn-
cratic noise in this signal.

The patient's actual peer group – his family, friends, and neighbors –
is unobservable. We proxy for peer groups using cohorts of patients
two-week period: 2001–2003.

image of Fig.�2
image of Fig.�3


12 The identification strategy exploits heterogenous exposure to social interactions
among subsets of the peer group. Cohen-Cole (2006) and Blume et al. (2011, Theorem
2)derive the conditionsunderwhich this approach is valid.Despite the superficial similar-
ity, this strategy is distinct from Gaviria and Raphael (2001), who test the endogeneity of
school choice by comparing movers and non-movers.

Fig. 4. Visits for SARS-affected and -unaffected townships during 2003.
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who visit the same physician and medical facility from 2001 to 2003.
Using this measure, 93.1% of the population belongs to at least one
peer group and the median number of peer groups is seven. Quartiles
of the group size distribution occur at 12, 55, and 204 people. A peer
group definition based on common health care utilization is sensible
for two reasons. People typically seek outpatient care for mild condi-
tions and are unwilling to travel far outside the community. Outpatient
health care markets in Taiwan are highly localized andmany neighbors
visit the same physician. Because most patients select a physician
through a friend's referral, patients of a common physician often share
a direct or indirect acquaintance (Hoerger and Howard, 1995; Tu and
Lauer, 2008).10

Noise in the definition of a peer group is a common issue that does
not ordinarily interfere with the identification of social interactions as
long as the true social network overlaps with the proxy (Blume et al.,
2011). Misspecification of peer groups most likely causes attenuation
bias through the same mechanism as classical measurement error. In
Section 4, we show that results are robust to defining peer groups by fa-
cility, township, or county. Results are also similar if a person must visit
twice from 2001 to 2003 rather than just once in order to count as a
group member.11

The one-year change in average visits of peers proxies for the group's
perception of SARS risk. v Iijkt denotes the average number of visits in
group j and township k, excluding the index person. The change in
peer visits,Δv Iijkt is the difference in v Iijkt from the same two-week pe-
riod in the previous year: Δv Iijkt ≡ v Iijkt−v Iijkt−26. The lagged compo-
nent of Δv Iijkt always captures pre-SARS utilization because SARS
lasted for less than a year. While the duration of the difference is arbi-
trary, a one-year difference implicitly removes seasonality from the re-
gressor. Regressions in which Δv Iijkt is constructed as a six-month
difference lead to similar results. For both Δv Iijkt and SARS incidence,
we construct the sum over periods t − 2 to t (a six week period),
10 Published evidenceof this phenomenon from countries other than theUS is extremely
limited. Anecdotally, referrals are especially important in Taiwan because there are few in-
stitutional restrictions (such as HMO networks) on the choice of physician.
11 If group membership requires two rather than one visit, then 85% of the population
belongs to at least one group and the median number of groups per person is 4. Quartiles
of the group size distribution occur at 6, 29, and 115 people.
allowing these variables to reflect SARS risk information from the pre-
ceding six weeks.

Our identification strategy distinguishes between longtime communi-
ty residents (“non-movers”) and people who have recently joined the
community (“movers”).12 Recent arrivals have weaker ties to their
peers because people establish social connections over time (Jackson,
2009).13 To identify movers, we first calculate the overlap in outpatient
traffic between all pairwise combinations of townships. Next we deter-
mine each patient's modal township by year and define amove as a tran-
sition across townships with low overlap.14 This process allows us to
classify people by tenure status in the community, which ranges from 1
to≥7 years. Movers are defined as people who join their 2003 township
in 2001 or later, so that they either have one or two years of tenure. Under
this definition, movers make up 5.6% of the population, people with ten-
ure of 3–6 years make up 6.6% of the population, and people with tenure
of ≥7 years make up 87.8% of the population.

Our sampling procedure is designed to increase statistical power by
oversampling peoplewith tenure below 7 years and balancing the sam-
ple of movers and non-movers within each peer group. We begin by
discarding peer groups that contain only movers or only non-movers
(2% of all observations). For the remaining peer groups, we attempt to
draw 16 people who have tenure of 1, 2 or ≥7 years. We attempt to
draw 8 people with tenure of 3, 4, 5, or 6 years. This step increases the
proportion of movers and reduces the proportion of people with tenure
of ≥7 years relative to the population. This procedure yields a regres-
sion data set with 28.3% movers and a sufficient share of people with
13 This dichotomy between movers and non-movers does not conflict with Munshi's
(2003) finding that international migrants with larger destination networks have better
outcomes. Munshi comparesmigrants from different origin communities within the same
city, and does not claim that migrants have larger networks than longtime destination
residents.
14 As a baseline, townships have low overlap if they fall below the fifth percentile of the
overlap distribution, so that less than 0.17% of patients visit doctors in both townships. As
we show below, results are robust to using the tenth percentile of overlap (0.92%) as an
alternative cutoff.

image of Fig.�4
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Fig. 5. Visits by diagnosis during 2003.
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tenure of 3–6 years. Our regressions use probability weights to restore
the population proportions and weight individual patients equally.

Table 1 compares the characteristics of movers and non-movers. Be-
cause of the large sample, all mean differences in the table are statisti-
cally significant with p b 0.001.15 In Panel A, non-movers average
0.039 visits per two-week period, compared to 0.032 for movers.
Movers and non-movers are diagnosed with respiratory infections
(e.g. sore throat and cold) at comparable frequencies. These groups
have similar gender and income distributions, but movers are an aver-
age of 7.2 years younger than non-movers. Panel B summarizes the
characteristics of peer groups. Movers' and non-movers' peer groups
are generally similar, however movers differentially belong to large
peer groups and groups with a high intensity of respiratory visits.
Because regressions below include tenure × SARS fixed effects, period-
specific level differences between movers and non-movers do not con-
found the estimates.

To investigate homophily within peer groups, Table 2 reports the
correlation between individual characteristics and the group means of
these characteristics (excluding the index person). Among patients of
a common physician × facility in Column 1, these correlations are
0.29, 0.50, and 0.15 for gender, age, and income respectively. The corre-
lation is also high for the number of peer groups per patient, the annual
number of visits per patient, and the location of the peer group in the
patient's modal township. In Columns 4–6, the correlation falls mono-
tonically as the peer group broadens to the facility, township, or county.
A table of intraclass correlation coefficients (available from the authors)
shows the same pattern. Columns 2 and 3 show that movers exhibit
slightly less homophily with their peers than non-movers.

Consistent with an increase in social interactions, inter-group varia-
tion in the frequency of visits increased during SARS (Glaeser et al.,
1996; Graham, 2008). Fig. 7 plots the coefficient of variation (CV) in
visits by two-week period, distinguishing between variation within
and across peer groups.16 In a pattern specific to 2003, inter-group var-
iation rose dramatically during SARS while intra-group variation
15 We compute p-values by regressing each variable on a non-mover dummy during the
non-SARS period and apply the same probability weights that we use in our regressions
below. Income data based on BNHI estimates of earnings by occupation category are avail-
able for 62% of the sample.
16 Because visits are boundedby zero, the decline invisitsmechanically reduces the stan-
dard deviation. The coefficient of variation partially corrects for this issue.
remained flat. The reader should interpret the increase in dispersion
cautiously since a decline in themean of visits maymechanically inflate
the CV. However the CV only increases slightly during ChineseNewYear
(Period 3 of 2003), despite an even larger decline in visits at that time.

4. Estimation

4.1. Baseline estimates

In this section, we estimate the response to public information and
information from peers about SARS risk. Regression Eq. (4) adapts
Eq. (2) from Section 2 to include both national and local SARS incidence
as common signals. We measure incidence in terms of either reported
or probable SARS cases, and interact these variables with Ni to allow
the weight on common signals to vary by person type. Consistent with
the interpretation of Δvijkt as a risk perception, regressions control for
the one-year lag of the dependent variable, vijkt − 26.17

vijkt ¼ β1s
l
kt þ β2s

n
t þ Ni β3s

l
kt þ β4s

n
t

� �
þ β5DtNiΔv Iijkt þ β6vijkt−26

þ levels and pairwise interactions of Dt ;Ni; and Δv Iijkt

h i
þ α jk þ Niγ jk þ δt þ εijkt:

ð4Þ

Regressions control for time-constant group attributes and general-
ized time trends using peer group, peer group × N, and time fixed ef-
fects. 18 Because national SARS incidence is collinear with the time
fixed effects, specifications that include national SARS incidence utilize
separate period and year (rather than period × year) fixed effects. We
estimate the model using OLS and cluster standard errors by the
modal townships of patients. The regressions employ probability
avoid endogeneity due to serial correlation in individual risk perceptions. If perceptions
are serially correlated, then lags of vijkt belong as controls in the specification. However,
these lags are functionally dependent upon vijkt− 26.Moving vijkt− 26 to the right hand side
is the most direct solution to this problem.
18 The use of a peer groupfixed effect leads to bias in the coefficient on the laggeddepen-
dent variable. However, Hsiao (2003, p. 72) notes that the bias vanishes as T→∞. With 78
time periods, this setting features an unusually long panel. Moreover, bias in β4 is unlikely
to contaminate the other coefficients: the pairwise correlations of vijkt − 26 with sl, sn, and
DtNiΔv Iijkt are 0.002, 0.007, and −0.021 respectively.
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Fig. 6. News coverage of the SARS epidemic.
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weights to restore the population proportion of movers and weight pa-
tients equally. Negative signs on SARS incidence variables indicate a re-
sponse to public information while a positive sign on DtNiΔv Iijkt
indicates a response to the risk perceptions of peers.

Baseline estimates appear in Table 3. Columns 1 and 3 leave aside peer
effects and show the response to local and national SARS incidence. In
general, the response to national incidence is much larger than the re-
sponse to local incidence. People may find national incidencemore infor-
mative than local incidence because Taiwan is a small country and
national incidence is less noisy. movers and non-movers respond similar-
ly to local SARS incidence, but non-movers respondmore to national SARS
incidence. Results are not sensitive to the use of reported or probable
SARS cases to define incidence. In Columns 2 and 4, we add subjective
risk perceptions of peers by includingDtNiΔv Iijkt and the related pairwise
interactions in the regression. After accounting for social interactions and
unobservable shocks, the response to local incidence falls by 42–58% and
the response to national incidence falls by 22–26%.

In Fig. 8, we plot the response elasticity by information source for
non-movers and movers. For non-movers, the response elasticity to
peer information is weaker than for national information but stronger
than for local information. This social estimate is a lower bound because
it only incorporates the differential response of non-movers during
SARS. The figure also shows that non-movers respond more than
movers to national information. This result suggests that national infor-
mation and peer information are complements.

The specifications in Table 4 evaluate the robustness of the peer effect
result.We replace the SARS incidence variableswith comprehensive time
fixed effects. Although the table does not report the coefficients, these re-
gressions also include all levels and pairwise interactions of DtNiv Iijkt , as
well as the one-year lag of individual visits.19 Column 1 shows the
19 An estimate that incorporates non-mover × time fixed effects (available from the au-
thors) is comparable to these estimates. This finding provides a basis for the second iden-
tifying assumption on page 9.
baseline estimate, which is slightly larger than the estimates in Table 3.
Columns 2 and 3 incorporate peer group × SARS and peer group × time
fixed effects respectively. These more restrictive specifications only in-
crease the magnitude of the peer effect estimate. Column 3 is identified
exclusively through the difference between the responses of movers
and non-movers within a common peer group. For these results to be
spurious, non-moversmust experience differentially strong unobservable
shocks during SARS.

Columns 4–8 of Table 4 show that the peer effect estimate is robust
under several alternative formulations. In Column 4, people must visit a
doctor × facility twice during 2001–2003, rather than once, in order to
belong to a peer group. Column 5 broadens the definition of a mover
by defining a move as a transition across townships with overlap
below the 10th percentile rather than the 5th percentile. Columns 6–8
definepeer groups by facility, township, or county. Defining peer groups
by physician × facility leads to the largest peer effect estimate. The esti-
mate declines if we broaden peer groups further.

In the preceding estimates, a mover is defined as someone with
tenure in the community of 1 or 2 years in 2003.We test the sensitivity
our results to this definition by varying the tenure cutoff between
movers and non-movers. Fig. 9 plots the coefficient on DtNiΔv Iijkt
from these regressions, and shows that the peer effect estimate declines
smoothly as the definition of a mover is relaxed.

Table 5 investigates the timing of the SARS response by category of
diagnosis. Instead of treating Quarters 2–4 as a common SARS period,
these regressions interact NiΔv Iijkt with quarter-of-2003 dummies.
Column 1 shows that across all diagnoses, the peer effect is greatest in
Quarter 2, followed by Quarter 4. While Quarter 2 coincides with the
peak of the epidemic, the result for Quarter 4 is initially surprising be-
cause visits fully resumed by the end of Quarter 3. Distinguishing
among diagnoses helps to explain this finding. In Columns 2–5, the
peer effect estimate is particularly strong for respiratory infections but
is much smaller for critical or chronic illnesses. As Fig. 5 highlights, the
SARS response for respiratory visits lasted through the end of Quarter 4.

image of Fig.�6


21 One mechanism that may induce a negative correlation between vijkt and v Iijkt−26 is

Table 1
Summary statistics during the non-SARS period.

Non-movers Movers

Mean S.D. Mean S.D. Pct. Diff

(1) (2) (3) (4) (5)

Panel A: individuals
Male 0.45 0.50 0.47 0.50 0.04
Age 40.8 22.5 33.6 19.8 −0.18
Income 27,643 14,904 27,907 13,657 0.01
Group membership 16.4 10.8 15.3 9.5 −0.07
Visits

All 0.039 0.232 0.032 0.208 −0.18
Respiratory 0.013 0.137 0.012 0.128 −0.08
Critical 0.005 0.078 0.003 0.068 −0.28
Chronic 0.003 0.054 0.001 0.041 −0.46
Other 0.020 0.160 0.016 0.141 −0.21

Change in visits
All 0.007 0.298 0.007 0.274 0.02

Panel B: peer groups
Male 0.45 0.16 0.44 0.15 −0.02
Age 39.9 13.1 37.7 10.7 −0.06
Income 14,642 4,792 14,143 3790 −0.04
Non-mover 0.93 0.05 0.93 0.04 b0.01
Group size 242 300 433 391 0.78
Physician male 0.89 0.31 0.92 0.28 0.02
Physician age 44.2 11.0 45.0 9.89 0.02
Visits

All 0.115 0.133 0.135 0.115 0.18
Respiratory 0.038 0.077 0.054 0.082 0.42
Critical 0.014 0.038 0.014 0.031 −0.01
Chronic 0.008 0.028 0.007 0.023 −0.09
Other 0.056 0.081 0.062 0.067 0.09

Change in visits
All 0.21 0.139 0.024 0.107 0.17

Number of observations 1,040,733 – 411,061 – –

Number of individuals 102,133 – 39,942 – –

Note: Visit counts are calculated by two-week interval. Peer visits and the change in peer
visits are calculated from periods t to t − 2 to be consistent with subsequent regressors.
Income is the person's approximate monthly earnings in US dollars. To calculate Column
(5), we subtract Column (3) from Column (1) and divide by Column (1). All difference be-
tween Columns (1) and (3) are statistically significant with p-values under 0.001.
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4.2. An alternative identification strategy

This section corroborates our results under an alternative identifica-
tion strategy. As we explain in Section 2.2, an alternative identifying as-
sumption is that common unobservables do not confound the effect of
Dtv Iijkt−26. We regress vijkt on v Iijkt and v Iijkt−26 separately (as well as
vijkt − 26) according to Eq. (3). The sign of the peer effect estimate is re-
versed in these regressions because v Iijkt−26 enters Δv Iijkt negatively.
These regressions control for peer group and time fixed effects but
cannot utilize peer group × time fixed effects because they exploit
inter-group variation.20

vijkt ¼ β1s
l
kt þ β2s

n
t þ Ni β3s

l
kt þ β4s

n
t

� �
þ β5Δv Iijkt þ β6v Iijkt

þ Dt β7Δv Iijkt þ β8v Iijkt

� �
þ α jk þ Niγ jk þ δt þ εijkt :

ð5Þ

Regressions based on this approach appear in Table 6. Columns 1–4
include SARS incidence, while Columns 5 and 6 include comprehensive
time fixed effects. Columns 1, 3, and 5, which most closely conform to
Eq. (3), yield peer effect estimates that closely resemble the estimates
20 To observe movers' visits to their 2003 peer groups (a necessary aspect of the non-
mover difference-in-difference), we must construct peer groups and measure behavior
with the same raw data from 2001 to 2003. In regressions that control for v Iijkt , we can
construct peer groups based on utilization prior to 2001. Defining peer groups based on
1999–2000 utilization yields similar results.
in Tables 3 and 4.21 In Columns 2, 4, and 6, we control separately for
the average current visits ofmover and non-mover peers.We also inter-
act these variables with Ni in order to allow for a differential effect for
non-movers of v Iijkt among non-mover peers. These regressions show
directly that peer effect estimates are insensitive to shocks specific to
non-movers, supporting the identifying assumption of our previous
approach.22

4.3. Chinese New Year

A falsification test based on Chinese New Year further validates the
social learning result. During Chinese New Year, both patients and phy-
sicians travel to reunite with family, causing a 20–30% decline in health
care utilization that is unrelated to social interactions. ChineseNewYear
represents a combination of supply and demand shocks, both of which
threaten the identification of the estimates above. Some offices close
and others remain open during Chinese New Year, potentially generat-
ing a correlation between Δvijkt andΔv Iijkt. If unobservable shocks spu-
riously drive our findings, then an interaction with Chinese New Year
may generate the same pattern. In this sectionwe replace Dtwith an in-
dicator for Chinese New Year (Ct) in our main specifications. We avoid
any confounding effect of SARS in these regressions by excluding the
SARS period. Alternatively, we include interactions with both Dt and Ct
in the same regression, which allows us to test whether the “peer
effects” estimates for SARS and Chinese New Year are statistically
different.

Chinese New Year results based on both identification strategies ap-
pear in Table 7. Column 1 replicates ourmain specification (Column 1 of
Table 4) but replaces SARS with Chinese New Year, while Column 2 in-
cludes both SARS and Chinese New Year interactions. The Chinese New
Year estimate is negatively rather than positively signed, in contrast to
the SARS estimate, which suggests that it does not capture a similar re-
sponse. An F-test clearly rejects the hypothesis that the Chinese New
Year and SARS estimates are the same. Columns 3 and 4 show similar re-
gressions under the identification strategy that controls for current peer
visits. Again the Chinese New Year effect is small (7% of the SARS effect)
and statistically insignificant. These results indirectly support ourmeth-
odology by failing to find a spurious peer effect during Chinese New
Year.

5. Dynamic simulation

In this section, we simulate the dynamic response of visits to the
SARS epidemic. The response to SARS may have a dynamic component
because individuals update their beliefs about SARS risk using informa-
tion from previous periods, including information from peers. To simu-
late the dynamic response, we first estimate a regression that allows us
to predict visits in the current period based on information from the
prior period. Then we simulate the behavior of a hypothetical popula-
tion in each period and update peer behavior by aggregating individual
responses before simulating the next period.

The simulation follows a thought experiment in which we sequen-
tially remove social interactions and peer group shocks from the aggre-
gate response to SARS, ultimately leaving only the response to public
information. This exercise allows us to distinguish the relative influence
of public information and peer effects. To simulate the path of visits
regression toward themean. Stochastic shocksmay elevate visits in period t− 26 and sup-
press visits in period t. By conditioning on vijt − 26, our regressions control for the individ-
ual effect of stochastic shocks in period t − 26. Because of the interaction with Dt, these
shocks would need to become stronger during SARS to cause a spurious correlation.
22 The distribution of peer visits is approximately binomial because 99.6% of people visit
no more than once per period; therefore v Iijkt is nearly a sufficient statistic for the distri-
bution of visits by peers. Conditioning on v2Iijkt can control for aspects of the visit distribu-
tion that the mean does not capture. Estimates that included squared peer visits are very
similar to the estimates in Table 6.



Table 2
The correlation between individual and group characteristics.

Group definition: Physician × facility Facility Township County

Sub-group: All Non-movers Movers All

(1) (2) (3) (4) (5) (6)

Male 0.29 0.28 0.31 0.22 0.07 0.04
Age 0.50 0.52 0.42 0.30 0.13 0.06
Income 0.15 0.17 0.11 0.16 0.17 0.14
Number of peer groups 0.27 0.29 0.21 0.15 0.11 0.05
Peer group is in modal township 0.46 0.48 0.43 0.47 0.49 0.44
Visits per year 0.19 0.18 0.19 0.13 0.09 0.05

Note: The table reports the correlation between individual characteristics and the means of these variables across other group members.
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without a given source of information, we zero out the appropriate re-
gression coefficient(s) when predicting individual visits.

5.1. Simulation methodology

In this exercise, we focus on simulating the behavior of non-movers,
who we posit experience greater peer effects than movers. Therefore,
we simulate peer effects by adding the regression coefficient that cap-
tures peer effects among non-movers to regression coefficients that
capture the influence of other sources of information on these residents.

The simulation includes four counterfactuals, which we summarize
in Table 8.23 The regression model for all counterfactuals is a variant of
Eq. (2) estimated on a combined sample of movers and non-movers.24

vijkt ¼ β2s
n
t−1 þ β4Nis

n
t−1 þ β5DtNiΔv Iijkt þ β6vijkt−26

þ levels and pairwise interactions of Dt ;Ni; and Δv Iijkt

h i
þ α jk þ Niγ jk þ δt þ εijkt : ð6Þ

We simulate the visits of non-movers by iteratively generating pre-
dictions using coefficient estimates that capture the response of non-
movers to national SARS prevalence, peer group shocks plus coefficients
on the regressors NiΔv Iijkt and DtNiΔv Iijkt , which capture peer effects
among non-movers.

In the first counterfactual, non-movers respond to public SARS
information, peer group shocks, and social interactions. The second
counterfactual preserves the response to public information and peer
group shocks but shuts down peer effects. We accomplish this by simu-
lating non-mover behavior using the coefficients from the first counter-
factual but setting the coefficient on DtNiΔv Iijkt to zero. This approach
measures peer effects in a conservative way because it counts the effect
ofNiΔv Iijkt as a peer group shock, even though this coefficient may par-
tially reflect peer effects outside of the SARS period. For the third coun-
terfactual, in which people only respond to public information, the
simulation also zeroes out the coefficients on Δv Iijkt and all associated
interactions. National SARS incidence is the only remaining variable
that contains information about the epidemic. In the fourth counterfac-
tual, the simulation excludes the response to national SARS incidence by
23 This exercise is based on the following algorithm. First, we create a simulation data set
with 1000 hypothetical doctor's offices, each populated with 61 patients, the median size
of peer groups in the regression sample. The simulation data set spans the period from
2002 to 2003. For each person, the number of visits during period t in 2002 equals the
mean of this variable for movers in the regression sample. Beginning with the first period
in 2003, we construct vijkt usingΔv Iijkt and vijkt − 26 based on lagged data according to the
requirements of each counterfactual.
24 Simulation regressions deviate from our earlier regressions in two important ways.
We construct the regressors as sums over periods t − 2 and t − 1, rather than t − 2 to t,
to avoid the need to determine vijkt andΔv Iijkt jointly. Our regression eliminates the need
to assign simulated people to actual townships by omitting local SARS incidence, forwhich
the effect is small.
also setting the coefficient on st
n to zero. This scenario provides a bench-

mark for comparison to the other counterfactuals.

5.2. Simulation results

Figs. 10 and 11 show the paths of aggregate visits and respiratory
visits under the counterfactuals described above. The simulation iso-
lates respiratory visits because Fig. 5 and Table 5 indicate that respirato-
ry visits contribute substantially to the overall decline in visits. In each
figure, we calculate the ratio of aggregate visits by period under Coun-
terfactuals 1–3 to aggregate visits under Counterfactual 4. The solid
black line presents average visits by non-movers per period from our
first counterfactual in which non-movers experience peer effects. The
dashed line shows the result for the second counterfactual, which ex-
cludes the response to peer effects. The difference between this line
and the solid line represents the contribution of peer effects to the over-
all response. Finally the dotted line shows the response under the third
counterfactual, which only includes the response to public information.
The difference between the dotted line and the dashed line represents
the response to unobservable peer group shocks.

Our simulation of visits for all diagnoses suggests that SARS inci-
dence (public information) was the sole driver of the initial, sharp de-
cline in visits. Peer group shocks and peer effects prolonged the
decline beyond the peak in SARS incidence. By Period 13 (just after visits
reach their nadir), unobservable shocks and peer effects account for
nearly half of the continued suppression in visits.25 By the end of the ep-
idemic in Period 16, visits remained almost 20% below normal and peer
effects account for roughly one-third of all visit suppression.26 We find
qualitatively similar results for respiratory visits in Fig. 11.

6. Discussion

Our goal in this paper is to understand how social interactions may
have contributed to the sharp and sustained decline in visits during
the SARS epidemic. Although several factors may have contributed to
this response, we find that social interactions played a significant role.
Others have documented how objectively small risks can trigger dispro-
portionately large responses (Abadie and Gardeazabal, 2003; Blunk
et al., 2006; Kraipornsak, 2010). Becker and Rubinstein (2011) suggest
that people overreact to unfamiliar risks. In our setting, overreaction
does not explain the sharp increase in the coefficient of variation
in Fig. 7, while social interactions can explain this pattern. Without a
theory of differential overreaction by non-movers, overreaction also
fails to explain the differential correlation between the behavior of
25 Visits in our simulation closely track the actual decline in visits by movers, for whom
all visits fell by around 25% and respiratory visits fell by around 60%.
26 This result differs slightly from the finding in Table 5 that peer effects had the largest
impact in Quarters 2 and 4. This differencemost likely arises because the simulation uses a
single dummy for the SARS period (Quarters 2–4), while regressions in the table use sep-
arate dummies for each quarter.



Fig. 7. The coefficient of variation within and across groups by two-week period.
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non-movers and their peers. In our analysis, both public signals and
time fixed effects may embody overreaction to SARS. The simulation,
which shows similar responses to public information and social interac-
tions, suggests that peer effects contribute in an important way to the
response to SARS in Taiwan.

In principle, several forms of social interactionmay contribute to the
peer effect we observe. We label these mechanisms social learning, im-
itation, contagion, and congestion. As we discuss in Section 2, social
Table 3
The response to SARS by information source.

Dependent variable: Individual visits

SARS case definition: Reported Probable

(1)⁎ (2)⁎⁎ (3) (4)

Local SARS incidence
– −0.14⁎⁎⁎ −0.082⁎⁎⁎ −0.29⁎⁎⁎ −0.19⁎⁎⁎

(0.029) (0.029) (0.054) (0.055)
× N −0.050 −0.0037 −0.10 −0.018

(0.040) (0.039) (0.076) (0.074)
National SARS incidence

– −0.87⁎⁎⁎ −0.76⁎⁎⁎ −3.80⁎⁎⁎ −3.62⁎⁎⁎

(0.16) (0.16) (0.64) (0.62)
× N −1.29⁎⁎⁎ −0.85⁎⁎⁎ −3.52⁎⁎⁎ −2.16⁎⁎⁎

(0.21) (0.20) (0.82) (0.79)
Change in peer visits

– 0.13⁎⁎⁎ 0.13⁎⁎⁎

(0.0040) (0.0040)
× SARS 0.015 0.015

(0.0093) (0.0093)
× N 0.043⁎⁎⁎ 0.043⁎⁎⁎

(0.0058) (0.0058)
× SARS × N 0.084⁎⁎⁎ 0.085⁎⁎⁎

(0.012) (0.012)
Lagged individual visits 0.16⁎⁎⁎ 0.16⁎⁎⁎ 0.16⁎⁎⁎ 0.16⁎⁎⁎

(0.0040) (0.0040) (0.0040) (0.0040)
Observations 79.7 mil 79.7 mil 79.7 mil 79.7 mil
R2 0.10 0.10 0.10 0.10

Note: Standard errors appear in parentheses. Standard errors are clustered by the patient's
modal township. Individual visits are observed at time t, lagged individual visits are ob-
served at time t − 26, and all other regressors are observed from time t to t − 2. SARS con-
notes Quarters 2–4 of 2003. N indicates that the person is a non-mover. All regressions
include network × N, year, and two-week period fixed effects.
⁎ p b 0.1.
⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.
learning is a very plausible cause of a heightened peer effect for non-
movers during SARS. In a novel epidemic, people face considerable un-
certainty about the risk and severity of the disease, as well as the effec-
tiveness of possible prevention measures. Public signals such as
incidence reports only provide a noisy signal of an idiosyncratic risk ex-
posure. People with social connections may demand additional infor-
mation from peers under these conditions.

Peer imitation may also contribute to the peer effect during SARS.
Imitation lacks a consensus definition (Apesteguia et al., 2007), howev-
er imitation is distinct from learning because learning involves the
transmission of information among peers. A complementarity between
individual and peer consumption (either through utility or the budget
constraint) may lead to imitation. Complementary utility may lead
people to watch the same television shows or wear the same clothing
brands as their peers. Complementarity in terms of the budget sets
may cause peers to share transportation to common activities. A medi-
cal visit is distinct from entertainment or clothing because health is
idiosyncratic, and so a peer's health care utilization does not strongly in-
fluence someone's utility of amedical visit. Imitation due to cost sharing
(e.g. carpooling to medical facilities) could contribute to the peer effect,
however this effect would need to become stronger during SARS to con-
tribute to identification, which we do not suspect. Finally, peers could
have coordinated with each other in terms of the extent of social dis-
tancing.Whilewe cannot rule out this hypothesis, itwould be odd to co-
ordinate in this dimension without also communicating SARS risk
perceptions.

Contagion of either SARS or other diseases could also contribute to a
peer effect. By interacting socially, peers may transmit communicable
diseases to one another, causing a positive correlation in their medical
visits. SARS prevalence is too low for SARS contagion to have a notice-
able effect on our estimates. SARS incidence peaked nationally in Period
10 of 2003, in which there were 270 probable cases. During this period,
there were 928,700 outpatient visits, which was 230,300 fewer than
Period 10 of 2002, so that SARS diagnoses comprise 0.029% of visits dur-
ing this period. Themaximum of SARS incidence occurs during Period 9
of 2003 in the Jhongjheng District of Taipei City, in which there were 96
probable cases (0.00006 SARS cases per capita), so that SARS diagnoses
comprise 0.57% of visits in Jhongjheng during this period. SARS
contagion contributes positively to health care utilization during this
period, which works against the aggregate decline in visits that we ob-
serve. Our estimates are robust if we limit the sample to the 68% of
township × period observations with zero SARS incidence.

image of Fig.�7


Fig. 8. The prevalence response elasticity by information source.
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Non-SARS contagion may also induce a correlation between the
medical visits of peers. However this mechanism can only explain a
peer effect for visits due to communicable diseases. Table 5 distin-
guishes between respiratory, chronic, critical and “other” visits. Critical
visits include diagnoses of pregnancy, abortion, injury, appendicitis,
stroke, heart attack, and internal bleeding, all of which are non-
communicable. Chronic visits relate to dialysis, chemotherapy,
diabetes or liver failure. “Other” visits include diagnoses that are neither
respiratory, chronic, nor critical. This category is also predominately
non-communicable. Contagion cannot explain the significant social in-
teractions for critical and other visits in Columns 3 and 5 of Table 5.

Finally, congestion at medical facilities may manifest as a social in-
teraction because patients may crowd each other out at medical facili-
ties. This mechanism bears particular mention because we define peer
groups by physician × facility. However congestion creates a negative
correlation between the medical visits of peers, which works against
the positive peer effect that we observe. Congestion provides another
reason (alongwith our assumption thatmovers do not interact socially)
why we may underestimate social learning.

Although we have assumed that people curtailed medical visits
to avoid catching SARS, they may have also had other motivations.
Roughly 131,000 people were quarantined during the epidemic
(Hsieh et al., 2004), and people with flu symptoms may have feared
Table 4
Robustness under alternative specifications.

Dependent variable: Individual visits

Specification: Baseline 2 Visi

(1) (2) (3) (4)

Change in peer visits × N × SARS 0.085⁎⁎⁎ 0.112⁎⁎⁎ 0.185⁎⁎⁎ 0.063
(0.012) (0.015) (0.052) (0.00

Fixed effects:
Doc. × facility × N, year × period Yes – – Yes
Doc. × facility × SARS, year × period – Yes – –

Doc. × facility × year × period – – Yes –

Observations 79.7 mil 79.7 mil 79.7 mil 47.7 m
R2 0.103 0.111 0.323 0.076

Note: Standard errors appear in parentheses. Standard errors are clustered by the patient's mod
from time t to t − 2. Regressions include all pairwise interactions between SARS, N, and the ch
⁎⁎⁎ p b 0.01.
being quarantined if they visited a doctor's office. Our comparison of
movers and non-movers can distinguish between SARS avoidance and
quarantine avoidance. A doctor's decision to quarantine, like the deci-
sion to close an office, is invariant to the patient's status as a mover.

7. Conclusion

This paper analyzes the behavioral response to the SARS crisis. Our
analysis broadens the existing approach to measuring the response to
risk by comparing the response to public and private risk signals.
Estimates indicate that the response to information from peers and
the response to public information have similar elasticities. The social
learning mechanism may partially explain why people react more
strongly to risks that are novel rather than mundane. Our dynamic sim-
ulation indicates that social interactions magnified the behavioral re-
sponse to SARS risk.

Crises like the SARS epidemic occur with regularity. Past examples
include the 9/11 terrorist attacks, the outbreaks of H1N1 and H5N1
flu, and oil spill in the Gulf of Mexico. In 2011, the earthquake and tsu-
nami in Japan forcedmany residents to assess the risk of radiation expo-
sure. Despite reassuring test results, consumption of Japanese seafood
fell dramatically because people worried about radiation (Fukue,
2011; Kelland, 2011). The outbreak of a novel strain of E. coli in
ts to join Alt. overlap Facility groups Township groups County groups

(5) (6) (7) (8)

⁎⁎⁎ 0.099⁎⁎⁎ 0.072⁎⁎⁎ 0.068⁎⁎⁎ 0.047⁎⁎⁎

7) (0.025) (0.010) (0.007) (0.004)

Yes Yes Yes Yes
– – – –

– – – –

il 79.7 mil 79.7 mil 79.7 mil 79.7 mil
0.105 0.102 0.103 0.102

al township. The dependent variable ismeasured at time t and all regressors aremeasures
ange in peer visits, as well as individual visits from period t − 26.
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Fig. 9. The social learning estimate with alternative mover definitions.
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Europe in June caused an international scare over Spanish produce be-
fore officials traced the outbreak to Germany (Patterson, 2011).

The way people learn from their peers may strongly influence the
duration and severity of an emergency. Social learning can cause the
perception of risk to deviate from reality in either a positive or negative
direction, leading to either an insufficient or excessive private response.
By skewing individual risk perceptions, social learning may also influ-
ence the demand for public policies related to risk, such as counter-
terrorism or nuclear energy initiatives. As a result, authorities may
wish to control the extent of social learning about risk. Further research
should examine how education campaigns or more precise public sig-
nals affect the reliance on information from peers.
Appendix A. A model of learning about SARS risk

In this appendix, we provide more formal motivation for our empir-
ical approach with a theoretical framework that relates learning and
health care utilization. Themodel highlights the threats to identification
and provides an interpretation of the regression coefficients. We first
Table 5
Social learning by diagnosis and quarter of 2003.

Dependent variable: Individual visits

Type of visit: All Respiratory

(1) (2)

N × change in peer visits:
× 2003 Quarter 1 0.050⁎⁎⁎ 0.034⁎⁎⁎

(0.017) (0.011)
× 2003 Quarter 2 0.13⁎⁎⁎ 0.059⁎⁎⁎

(0.018) (0.012)
× 2003 Quarter 3 0.069⁎⁎⁎ −0.0012

(0.019) (0.010)
×2003 Quarter 4 0.092⁎⁎⁎ 0.058⁎⁎⁎

(0.023) (0.014)
Observations 79,663,296 79,663,296
R2 0.102 0.088

Note: Standard errors appear inparentheses and are clusteredby thepatient'smodal township. A
variable is measured at time t and all regressors are calculated for time t to t − 2. Critical visits
internal bleeding. Chronic visits include visits related to dialysis, chemotherapy, diabetes, and
⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.
present a simple model of individual belief formation about SARS risk
from different information sources that may be empirically observable
or unobservable. We then incorporate the decision to seek health care
and illustrate the conditions under which a person's observable change
in medical visits over time proxies for his perception of SARS risk.
A.1. Learning about SARS risk

People are indexed by i and belong to peer groups that are indexed
by j and have size Nj. Each person decides whether to visit the doctor
during period t. By visiting, the patient faces perceived risk sijt ∈ [0, 1]
of contracting SARS and dying.

People learn about sijt by observing realizations of this parameter
from three data sources. First, the government draws a sample from
the distribution of SARS risk. Specifically, it tracks new SARS cases and
reports the mean SARS incidence, sjtc ∈ [0, 1], which is a common public
signal of SARS risk. Second, people obtain a private estimate of SARS risk.
This estimate reflects personal risk factors, such as the frequency of con-
tact with others and use of a mask outdoors. The individual's private
Critical Chronic Other

(3) (4) (5)

0.0031 −0.0011 0.015
(0.0036) (0.0023) (0.0100)
0.013⁎⁎ 0.0035 0.061⁎⁎⁎

(0.0057) (0.0036) (0.011)
0.019⁎⁎⁎ 0.0037 0.050⁎⁎⁎

(0.0060) (0.0033) (0.013)
0.0060 −0.00050 0.032⁎⁎

(0.0051) (0.0036) (0.013)
79,663,296 79,663,296 79,663,296

0.097 0.187 0.087

ll regressions include peer groupfixed effects and year periodfixed effects. Thedependent
include visits related to pregnancy, abortion, injury, appendicitis, stroke, heart attack, and
liver or kidney failure.
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Table 6
Regressions that utilize the level of visits as a control.

Dependent variable: Individual visits

SARS case definition: Reported Probable N/A

(1) (2) (3) (4) (5) (6)

Local SARS incidence −0.11⁎⁎⁎ −0.085⁎⁎ −0.238⁎⁎⁎ −0.201⁎⁎⁎

(0.023) (0.037) (0.040) (0.073)
National SARS incidence −1.41⁎⁎⁎ −2.01⁎⁎⁎ −5.13⁎⁎⁎ −7.33⁎⁎⁎

(0.17) (0.16) (0.65) (0.64)
Lagged visits of all peers × SARS −0.096⁎⁎⁎ −0.083⁎⁎⁎ −0.097⁎⁎⁎ −0.085⁎⁎⁎ −0.098⁎⁎⁎ −0.083⁎⁎⁎

(0.010) (0.013) (0.010) (0.013) (0.010) (0.013)
Current visits of all peers × SARS 0.053⁎⁎⁎ 0.054⁎⁎⁎ 0.052⁎⁎⁎

(0.0094) (0.0094) (0.010)
Current visits of non-mover peers × SARS

– 0.081⁎⁎⁎ 0.079⁎⁎⁎ 0.045⁎⁎⁎

(0.014) (0.014) (0.012)
× N −0.057⁎⁎⁎ −0.053⁎⁎⁎ −0.022⁎

(0.013) (0.013) (0.012)
Current visits of mover peers × SARS

– 0.0061 0.0057 −0.0007
(0.0065) (0.0065) (0.0064)

× N −0.023⁎⁎ −0.023⁎⁎ −0.017⁎

(0.0093) (0.0093) (0.0093)
Observations 79.7 mil 76.2 mil 79.7 mil 76.2 mil 79.7 mil 76.2 mil
R2 0.10 0.18 0.10 0.18 0.10 0.18

Note: Standard errors appear in parentheses and are clustered by the patient'smodal township. All regressions include peer group fixed effects. Columns 1–4 include year and period fixed
effects. Columns 5 and 6 include year × period fixed effects. The dependent variable is measured at time t and all regressors are calculated for time t to t − 2.
⁎ p b 0.10.
⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.
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signal may be correlated with the common signal or his prior. Third,
people sample their peers' estimates of SARS risk, {s¬ ijt}, where ¬ i indi-
cates individuals other than i.27

Using these information sources, individuals update their prior be-
liefs using Bayes' theorem. People assume that SARS is distributed bino-
mially in the population. This implies that the posterior probability of an
individual catching SARS is a linearweighted average of themeans from
different data sources (Jewell, 1974) and their priors. For tractability, we
make two assumptions about these weights. First, each person places
identical weight on the private information of different peers. Second,
all individuals place the same weight on each information source. In
addition, we define the composite influence of an individual's prior in-
formation and his priors as sijtp .28 This definition does not compromise
generality because we proceed under the conservative assumption that
sijt
p is not observed. Given these assumptions and our definition, we
can represent each agent's learning process with the following linear
function.

si jt ¼ ϕ1s
c
jt þ ϕ2s

p
i jt þ ϕ3s Ii jt ð7Þ

where s Ii jt ¼ ∑l∈I j ;l≠isl jt= N j−1
� �

is the average beliefs of peers and Ij

is the set of individuals in peer group j. The weights, ϕ, are increasing in
the reliability and precision of the signal. Our empirical objective is to
test whether individual posterior beliefs on SARS risk give positive
weight to the common signal (ϕ1 N 0) or peers' beliefs (ϕ3 N 0).

Our primary empirical challenges are that the beliefs of peers de-
pend on the beliefs of an individual (the reflection problem), generating
endogeneity bias, and that the private signals of person i, and thus the
composite input sijt

p , is unobservable. The first issue, the learning
feedback between the individual and the group, only threatens identifi-
cation if groups are small. In small groups, an individual's risk perception
27 People may sample peers' beliefs by communicating directly or by observing behav-
iors like the change in health care utilization,which indicate beliefs. Ellison and Fudenberg
(1995) and Offerman and Schotter (2009) develop models of social learning from peer
behavior.
28 Suppose the separate influence of an individual's private and prior information is
ϕprivsijt

priv + ϕpriorsij(t − 1), where sijt
priv is private information, sij(t − 1) is prior information

and the ϕ's are their respective weights. In Eq. (7), we define s ijt
p = sijt

priv + (ϕprior/
ϕpriv)sij(t − 1) and ϕ2 = ϕpriv.
can have ameaningful impact on the average group risk perception. This
impact vanishes, however, as group size increases: lim N j→∞s Ii jt ¼ s jt ¼
Σl∈I j sl jt=Nj. In our data, the median peer group size is 55. Therefore, it is
reasonable to assume thatNj is large.29 Under this assumption, the indi-
vidual perception becomes:

si jt ¼ ϕ1s
c
jt þ ϕ2s

p
i jt þ ϕ3s jt : ð8Þ

The equation above still cannot be estimated because we do not ob-
serve person i's independent private information. Dropping sijt

p , we
could estimate a hypothetical regression of the individual's risk percep-
tion on the common signal and group risk perceptions.

si jt ¼ α0 þ α1s
c
jt þ α2s jt þ ζ i jt ð9Þ

where ζijt = ϕ3sijt
p . Because person i's private signal and prior beliefs

appear in Eq. (8) but are omitted variables in Eq. (9), the coefficients
reflect omitted variable bias.

α1 ¼ ϕ1ϕ2

ϕ2 þ ϕ3
þ γ1ϕ2 ð10Þ

α2 ¼ ϕ3

ϕ2 þ ϕ3
þ γ3ϕ2: ð11Þ

In these expressions, (γ1, γ3) are coefficients from hypothetical
regressions of the omitted variable sijtp on the regressors in Eq. (9): spi jt ¼
γ0 þ γ1s

c
jt þ γ3s jt þωi jt .

Our empirical approach addresses this omitted variable bias through
a difference-in-difference comparison of long time residents (non-
movers) and recent arrivals (movers) within a peer group. Movers,
who have fewer social connections, place weakly less weight on data
from peers than non-movers: ϕ3

m ≤ ϕ3
nm. The difference-in-difference

estimator can detect social learning (ϕ3 N 0) despite omitted variable
bias in Eq. (11) under two assumptions. First, movers and non-movers
29 A large Nj assumption is reasonable because the median peer group size is 55 in our
data. Limiting the sample to only large networks, for which this assumption is most valid,
does not affect our results.



Table 7
A falsification test using Chinese New Year.

Dependent variable Individual visits

Identification strategy DD Control for peer visits

(1) (2) (3) (4)

Change in peer visits × N × CNY −0.019 −0.028⁎⁎

(0.015) (0.014)
Change in peer visits × N × SARS 0.10⁎⁎⁎

(0.012)
Lagged visits of all peers × CNY −0.0090 −0.0068

(0.010) (0.0098)
Lagged visits of all peers × SARS −0.099⁎⁎⁎

(0.010)
Equality of CNY and SARS estimates (p-value) – b0.001 – b0.001
Observations 59.2 mil 79.7 mil 59.2 mil 79.7 mil
R2 0.105 0.103 0.105 0.103

Note: Standard errors appear in parentheses and are clustered by the patient's modal township. All regressions include physician × facility and year × period fixed effects. The specifica-
tions in Columns 1 and 2 are consistent with Column 1 of Table 4. Columns 3 and 4 are consistent with Column 5 of Table 6.
⁎ p b 0.10.

⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.
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obtain private signals and peers' information in the same way, so the
correlation between different sources of data is identical for movers
and non-movers, i.e., γ3

m= γ3
nm. Second, movers and non-movers follow

the same Bayesian updating process in Eq. (7).30 These assumptions
imply that the coefficient on average peer beliefs in Eq. (11) is larger
for the non-mover group only if ϕ3

nm N 0.
The differential response of non-movers is

αnm
2 −αm

2 ¼ ϕnm
3

ϕnm
2 þ ϕnm

3
− ϕm

3

ϕm
2 þ ϕm

3

� �
þ γ3 ϕnm

2 −ϕm
2

� 	
:

This is positive only in a subset of cases where ϕ3
nm N 0: when non-

movers place positive weight on peers' information and movers place
much less weight on that information. If movers place less weight on
peers' information, they must place more weight on own private infor-
mation, making the second term negative. For the differential response
to be positive, the first term must be sufficiently positive, which is pos-
sible only ifϕ3

nm N Nϕ3
m.31 In other caseswhereϕ3

nm N 0 orwhenϕ3
nm=0,

the differential is easily verified to be negative or zero.

A.2. Using change in visits as a proxy for perceived risk

To estimate regression (Eq. (9)), wemust either observe or proxy for
individual and group risk perceptions sijt and s Ii jt. Herewemotivate the
use of the change in medical visits over time as a proxy for perceived
risk and explain what a regression employing this proxy reveals about
the structural parameters.

Whendecidingwhether to see the doctor, a person compares his level
of illness to his perceived cost of a visit. In general, this cost includes the
copayment (which is less than US$5 per visit) and the cost of transporta-
tion to the medical facility. During SARS, the cost also includes the risk of
contracting SARS during the visit. Holding illness and other costs con-
stant, a change in visits indicates a change in the perceived SARS risk.

More formally, people receive utility from health and other con-
sumption, hijt and xijt, respectively. In each period, people experience a
health shock, dijt ≥ 0, and must decide whether to seek medical care,
vijt ∈ {0, 1}. A visit to the doctor restores the patient to his baseline
health, but requires him to pay a copayment ct. During the SARS
30 Therefore, if the two types place the same weight on peers' information, then they
place the sameweight on private information, i.e.,ϕ2

nm=ϕ2
m⇔ϕ3

nm=ϕ3
m. Ifmovers place

lessweight on peers' private information, they shift only a portion of thatweight to private
information, i.e., 0 ≤ ϕ2

m − ϕ2
nm ≤ − (ϕ3

m − ϕ3
nm).

31 The second assumption implies that the full derivative of ϕ3 / (ϕ2 + ϕ3) is positive,
even accounting for shift in weight from peers' information to and own private informa-
tion and lagged peers' beliefs.
epidemic, people also face the risk that a visit may cause them to
catch SARS and die. After normalizing the utility from death to be
zero, the expected utility from visiting and not visiting the doctor are:32

EU vi jt ¼ 1
h i

¼ 1−si jt
� �

u hi jt ; xi jt−ct
� �

ð12Þ

EU vi jt ¼ 0
h i

¼ u hi jt−di jt ; xi jt
� �

: ð13Þ

A person seeks care if the value of alleviating his illness exceeds the
cost of treatment: EU[vijt=1] N EU[vijt=0]. Taking logs yields to the fol-
lowing equivalent expression.

ln 1−si jt
� �

þ ln u hi jt ; xi jt−ct
� �

−ln u hi jt−di jt ; xi jt
� �

N0:

In this formulation, the probability of a visit depends upon the
person's health status and his perceived SARS risk.

An observer wishing to interpret the change in visits as an indicator
of perceived risk must account for secular trends in health. To satisfy
this requirement, we assume that the difference in log utility from seek-
ing care rather than not seeking care is a trend-stationary function of the
person's age: ln u(hijt, xijt− ct)− ln u(hijt − dijt, xijt) = μij+ gaijt − eijt,
where aijt is the person's age.33 The error term, eijt, is identically and in-
dependently distributed throughout the population, with mean zero,
cumulative distribution F(e), and density f(e). Under this formula-
tion, people experience idiosyncratic health shocks with a mean
that linearly increases with age. The first expression below shows
the probability of a visit under these assumptions. In the second ex-
pression, we apply a first-order Taylor-series expansion at a suitable
common point, e, in the distribution of eijt, and incorporate the approx-
imation that ln(1− sijt) ≈ − sijt for small values of sijt.

pr vi jt ¼ 1
h i

¼ F ln 1−si jt
� �

þ μ i j þ gai jt
h i

ð14Þ

≈F eð Þ− f eð Þ si jt−μ i j−gai jt þ e
h i

: ð15Þ

The probability of a visit is thus an affine transformation of SARS risk,
the idiosyncratic health endowment, and age.
32 Without loss of generality, we ignore the dynamic effects of current health decisions.
Our approach can incorporate these effects by reinterpreting the contemporaneous utility
function as a value function that embeds future optimizing behavior.
33 Under the assumption of a quadratic trend, Eqs. (16) and (17) become non-linear
functions of age.



Table 8
Description of simulation counterfactuals.

Counterfactual Description Simulation model

1 Public information +
peer group shocks +
social learning

v̂ijkt ¼ β̂2snt−1 þ β̂4Nisnt−1 þ β̂5DtNiΔv Iijkt

þβ̂6vijkt−26 þ β̂7Dt þ β̂8Ni þ β̂9Δv Iijkt

þβ̂10DtNi þ β̂11DtΔv Ii jt þ β̂12NiΔv Iijkt
þδt þ uijkt

2 Public information +
peer group shocks

v̂ijkt ¼ β̂2snt−1 þ β̂4Nisnt−1

þβ̂6vijkt−26 þ β̂7Dt þ β̂8Ni þ β̂9Δv Iijkt

þβ̂10DtNi þ β̂11DtΔv Ii jt þ β̂12NiΔv Iijkt
þδt þ uijkt

3 Public information v̂ijkt ¼ β̂2snt−1 þ β̂4Nisnt−1

þβ̂6vijkt−26 þ β̂7Dt þ β̂8Ni

þβ̂10DtNi
þδt þ uijkt

4 No information v̂ijkt ¼ β̂6vijkt−26 þ β̂7Dt þ β̂8Ni

þβ̂10DtNi
þδt þ uijkt

Note:uijkt is an independent draw fromaN 0; σ̂2
ε

� �
distribution,whereσ̂2

ε is the variance of

the residual from the regression model in Counterfactual 1. v̂ijkt is the prediction of visits.
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The first difference of this probability is our proxy for an individual's
perceived SARS risk. We subtract the number of visits during a compara-
ble pre-SARS period (so sij(t − k) = 0) from the number of visits in the
index period. The change in visits, Δvijt = vijt − vijt − k, nets out the
time-constant health endowment and F eð Þ. The coefficient on age be-
comes a fixed effect because the increase in age is constant for any first
difference. Likewise, the change in average peer visits, Δv Ii jt ¼ v Ii jt−
v Ii jt−k, proxies for the average risk perception of the peer group.

E Δvi jt
h i

≈ f eð Þgk− f eð Þsi jt ð16Þ

E Δv Ii jt

h i
≈ f eð Þgk− f eð Þs Ii jt : ð17Þ

A person who is familiar with f eð Þ and the effect of age on health, g,
can infer sijt and s Ii jt from the change in individual and group visits,
respectively.
Fig. 10. The simulated path of aggregat
A.3. Merging the model of learning with the proxy for beliefs

Our empirical strategy uses these proxies to estimate a version of the
hypothetical regression in Eq. (9):

Δvi jt ¼ β0 þ β1s
c
jt þ β2Δv Ii jt þ ηi jt : ð18Þ

By substituting in the expressions for Δvijt,Δvi jt, sijt and s Ii jt, we find
that β̂1 and β̂2 have the following structural interpretations.

E β̂1

h i
¼ − f eð Þ ϕ1ϕ2

ϕ2 þ ϕ3
þ γ1ϕ2


 �
ð19Þ

E β̂2

h i
¼ ϕ3

ϕ2 þ ϕ3
þ γ3ϕ2: ð20Þ

Although the system (which also includes an expression forE β̂0

h i
) is

not identified, a difference-in-difference estimator that compares
movers and non-movers provides a test whether people learn from

public information and from peers. A significant value of β̂1 indicates
that people learn from public information, while a significant value of

β̂2 indicates that people learn from their peers. The signs on these coef-
ficients differ because an increase in Δv Ii jt indicates less risk while an
increase in sjt

c indicates greater risk.
Eq. (19) also shows that β̂1 incorrectly estimates the response to

public information ϕ1. In the special case where the common signal is
uncorrelated with private information or prior beliefs, however, a com-
plementary regression of the change in individual visits on just the com-
mon signal avoids omitted variable bias and identifies ϕ1.

Δvi jt ¼ β3 þ β4s
c
jt þωi jt : ð21Þ

The coefficient on the common signal has the following structural
interpretation:

E β̂4

h i
¼ − f eð Þϕ1:
e visits under alternate scenarios.

image of Fig.�10


Fig. 11. Simulated path of respiratory visits under alternate scenarios.
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Using this coefficient estimate rather than β̂1 leads to a larger esti-
mate of learning from public information. It is also more accurate if
the common signal is uncorrelatedwith private information or prior be-
liefs. A regression based on Eq. (21) proves useful for the dynamic sim-
ulation in Section 5, where it serves as a predictive model that better
captures the response to public information.
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