Cambefort [eds.], Dung Beetle Ecology, pp. 5–19. Princeton Univ. Press, Princeton, New Jersey) and therefore it can represent an excellent foraging habitat for anurans. The use of this resource as anuran foraging sites has been documented in some species, e.g., *Hyla squirella* (Cline 2005. In Lannoo [ed.], Amphibian Declines: The Conservation Status of United States Species, pp. 456–458. Univ. of California Press, Berkeley California).

Between 0049–0208 h on 01 September 2013, we observed foraging site selection of *Spea multiplicata* in a livestock pasture located 3.7 km S of the town of San Luis Soyatlán, in the Municipality of Tuxcueca, Jalisco, Mexico (20.16523°N, 103.31288°W, datum WGS 84; elev. 2086 m). Air temperature and humidity were 19.6° C and 69.1%, respectively. We sampled an area of 5251 m², where we recorded 105 piles of livestock dung, 80 belonging to cows and 25 to horses. Of these, 17 cow patties (21.25%) had at least one individual of *Spea multiplicata* perched upon it (21 individuals total), in contrast to horse droppings, where only two (8%) had one individual frog each. All livestock droppings were wet due to rain of previous days. All frogs observed were metamorphic juveniles, and they were observed on the surface of the dung feeding on small invertebrates. None of the individuals observed were captured, but we documented the observations with photographs (Fig. 1). This note provides further evidence of the importance of livestock dung as a foraging microhabitat for anurans, and suggests that *S. multiplicata* may show a preference for cow dung as a foraging site.

JOSÉ LUIS BARRAGÁN-RAMÍREZ (e-mail: barragan5478@yahoo.com.mx), JOSÉ DE JESÚS ASCENCIO-ARRAYGA, FIDEL RODRÍGUEZ-RAMÍREZ, JOSÉ LUIS NAVARRETE-HEREDIA, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Carretera a Nogales Km. 15.5, La Agujas, Nextipac, Zapopan, Jalisco, México.

TESTUDINES — TURTLES

ASTROCHELYS RADIATA (Radiated Tortoise). NEST PREDATION. Anthropogenic habitat disturbance can have lasting effects on the wildlife that recolonize the recovering patches. Some animals prefer to use partially disturbed habitats or ecotones for various activities, including nesting for many turtle species. The Critically Endangered Radiated Tortoise (*Astrochelys radiata*; IUCN 2011. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>) in southwest Madagascar may be one of these species. While surveying habitat during an ongoing radiotelemetry study (Ranaivoharivelo et al., unpubl.) on 19 March 2013, we found an approximate 0.9-ha patch of historically cleared forest near the village of Lavavolo (24.633333°S, 43.933333°E) where *A. radiata*, especially females, were reported to be in relative abundance. The patch was previously forested Southern Dry Forest (an endemic and highly threatened Malagasy ecosystem) approximately 2.7 km E of the shore, atop the Mahafaly Plateau. The surrounding forest is comparatively untouched and purportedly supports a reasonably healthy population of *A. radiata*.

Upon surveying the disturbed 0.9-ha patch, we found approximately 15 adult female *A. radiata* and five freshly predated nests. The predated nests were found in the sand along the edge of the open patch, just under a row of *Opuntia* cactus that is used as a “fence” to surround the patch (Figs. 1, 2). Nests contained 1–4 predated eggs, the freshest of which had presumably been broken opened and the yolks (not albumin) eaten. We suspect a small mammal predator capable of excavating the nests, such as the Giant-striped Mongoose (*Galidictis grandidieri*), had depredated the eggs. Due to the freshness of the excavations, the nest predation had likely occurred within the previous few days. It seems reasonable to assume that such predation could occur repeatedly over the nesting season. At least two other instances of nest predation were reported in nearby habitat in May and June the previous year, but snake tracks were found and indicated the probable culprit.
It appears that the ecotone provided by this disturbed patch was preferentially used by female tortoises for nesting, and that the relative high concentration of nests and openness of the habitat encouraged the ingress of nest predators. For a critically endangered and locally isolated species, such a repeated threat to reproductive success could lead to local population extirpation.

We thank Tsilavo Rafeliarisoa and Jean Claude Rakotoniaina of the Madagascar Biodiversity Partnership (MBP) and Ryan Walker for their help in the field and through multi-year projects involving this species. We also thank the MBP, Turtle Conservation Fund, Turtle Survival Alliance, and Turtle Conservancy for funding much of our chelonian research in Madagascar.

ANDREA F. T. CURRYLOW, University of Southern California, 3616 Trousdale Blvd., AHF 107, Los Angeles, California 90089, USA (e-mail: A.Currylow@gmail.com); **MBOLATIANA RANAIVOHARIVELO,** Department of Animal Biology, University of Antananarivo, Antananarivo (101), Madagascar (e-mail: puccamelie@gmail.com); **EDWARD E. LOUIS JR.**, Center for Conservation and Research, Omaha’s Henry Doorly Zoo, 3701 South 10th Street, Omaha, Nebraska 68107, USA (e-mail: genetics@omahazoo.com).

CHELYDRA SERPentina (Snapping Turtle), **INTERSPECIFIC BASKING.** On 19 May 2006, at Standing Stone Lake (Standing Stone State Park, Overton Co., Tennessee, USA; 36.47113°N, 85.41553°W), we observed an adult *Chelydra serpentina,* a *Trachemys scripta* (Pond Slider), and a *Graptemys geographica* (Northern Map Turtle) basking on a log at the same time, within about 1.5 m of each other. This observation is noteworthy because Ernst et al. (1994. Turtles of the United States and Canada. Smithsonian Inst. Press, Washington, D.C. 578 pp.) indicated that other species of turtles typically avoid basking sites occupied by *C. serpentina.* However, *Chrysemys picta* (Painted Turtle) has been observed basking on the back of *C. serpentina* (Legler 1956. Trans. Kansas Acad. Sci. 59:461–462). We did not observe any aggressive basking behavior among species (but see Lindeman 1999. J. Herpetol. 33:214–219; Lovich 1988. Herpetologica 44:197–202; Selman and Qualls 2008. Herpetol. Rev. 39:214–215).

ANDREW S. WEBER, Tennessee Cooperative Fishery Research Unit, Tennessee Technological University, PO Box 5114, Cookeville, Tennessee 38505, USA; Current address: National Park Service, University Park, Pennsylvania 16802, USA (e-mail: andrewsweber1@gmail.com); **JAMES B. LAYZER,** U.S. Geological Survey, Tennessee Cooperative Fishery Research Unit, Tennessee Technological University, PO Box 5114, Cookeville, Tennessee 38505, USA (e-mail: jim_layzer@tntech.edu).

I found a dead female *Pseudemys rubriventris* on 5 July 2001 floating in Powhatan Creek, a channel in the tidal marsh separating Jamestown Island National Historic Park from the mainland in James City County, Virginia (37.22452°N, 76.78155°W; WGS 84). She was a large adult (268 mm CL, 253 mm PL) with three distinct propeller strikes on her carapace (Fig. 1). The anterior two strikes were deep and the one in the middle appears to have cut into the body cavity. The missing pieces of the marginals on the left rear and lower right portions of the carapace may have also been struck. Most information on injuries on turtles from propeller strikes involves living individuals that survived and were subsequently captured. Opportunities to document turtles killed by propeller strikes are rare. Reports by Bancroft et al. (*op. cit.*) and Galois and Quellet (*op. cit.*) are the exceptions. Observations of turtles killed by this anthropogenic hazard should be reported wherever possible.

JOSEPH C. MITCHELL, PO. Box 2520, High Springs, Florida 32655, USA; e-mail: dr.joe.mitchell@gmail.com.

Figure 1. A female *Pseudemys rubriventris* showing lethal propeller strike damage near Jamestown Island, Virginia.