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Abstract

In a stock market experiment we examine how regret avoidance influences the decision to
sell an asset while its price changes over time. Participants know beforehand whether they
will observe the future prices after they sell the asset or not. Without future prices participants
are affected only by regret about previously observed high prices (past regret), but, when fu-
ture prices are available, they also avoid regret about expected after-sale high prices (future
regret). Moreover, as the relative sizes of past and future regret change, participants dynam-
ically switch between them. This demonstrates how multiple reference points dynamically
influence sales.
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1 Introduction

Regret is a negative emotion, associated with an action or inaction, which is experienced when
one wishes that another choice would have been made. Regret avoidance was found to be an
important factor in many empirical studies on topics ranging from heart disease prevention
in health economics (Boeri et al., 2013) to auctions (Filiz-Ozbay and Ozbay, 2007; Hayashi and
Yoshimoto, 2016), financial markets (Fogel and Berry, 2006; Frydman et al., 2017; Frydman and
Camerer, 2016), portfolio and pension scheme selection (Muermann et al., 2006; Hazan and Kale,
2015), and currency hedging (Michenaud and Solnik, 2008).

Apart from the empirical applications, regret avoidance has been studied both theoretically
(Bell, 1982; Loomes and Sugden, 1982; Skiadas, 1997; Sarver, 2008; Hayashi, 2008; Bikhchandani
and Segal, 2014; Leung and Halpern, 2015; Qin, 2015; Buturak and Evren, 2017) and experimen-
tally (Coricelli et al., 2005; Camille et al., 2004; Zeelenberg, 1999; Bleichrodt et al., 2010; Strack and
Viefers, 2017). Even though many aspects of regret avoidance were considered in these stud-
ies, their focus is mainly on static problems where a single decision is made that can be affected
by the information about possible counterfactual outcomes. Such problems are important since
many real life decisions, like buying a house or a pension plan, fit into this setting. Nevertheless,
many interesting phenomena that involve regret have a dynamic nature, the stock market being
one important example. These situations are characterized by the presence of the time dimen-
sion: a decision or decisions should be made given some past information and/or expectations
of the future, both of which change as time unfolds. Regret in this case also becomes a dynamic
variable that is reevaluated in each time period. More importantly, there emerge the concepts of
past and future regret. A choice is influenced by past regret when an action taken today brings
about a desirable outcome that was foregone in the past. Future regret involves taking actions
that prevent missing the opportunity of achieving a desirable expected future outcome. For ex-
ample, in financial markets the decision to sell an asset might depend on the highest observed
price in the past (past regret), but traders might also think about the hypothetical counterfactual
situation in which they sell an asset today and regret doing it later (future regret), and adjust
their behavior accordingly.

In this paper we investigate how past and future regret influence choices in a controlled
experimental setting, similar to a stock market. Our main interest is to understand how different
elements of the dynamic situation interact and influence behavior: in our case, the decision to
sell an asset. In particular, we are interested in the following questions: (i) How strongly does the
avoidance of past and future regret influence the choice to sell? and (ii) Is there an interaction
between past and future regret? Does one become stronger or weaker in the presence of the
other?

In our experiment, reminiscent of those reported in Oprea et al. (2009), Oprea (2014), and
Strack and Viefers (2017), participants take part in a series of “stock markets”: they observe
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how the price changes in real time and choose when to sell an asset that they own. Participants
make choices in two types of markets. In some markets they do not see the future price of
the asset after they made their selling decision. In other markets they do see the future price.
Participants are always informed beforehand about the type of the market they are in. This
setup allows us to analyze past and future regret, and their interaction. In both conditions past
regret can potentially influence participants’ decisions to sell the asset since the price history is
observable. At the same time, we are able to see if access to the prices after selling has an effect
on the decision making (future regret). More importantly, our design makes it possible to use
structural modelling and estimate the parameters of a utility specification that includes past and
future regret components in a dynamic discrete choice setting (e.g., Rust, 1987; Hotz and Miller,
1993).

We find that participants are influenced by the observable past prices and do behave differ-
ently depending on whether they know that the future prices will or will not be observed after
they sell the asset. Our evidence that participants sell the asset to make the effect of past re-
gret smaller or absent confirms the results of the recent studies which focus on past regret only
(Gneezy, 2005; Strack and Viefers, 2017). We go further and consider the possibility that agents
keep the asset longer when they know that they can observe future price and expect it to be high,
as compared to the case when they know they will not observe future prices. Our data show that
information about the availability of the prices after selling, indeed, has this expected effect on
the decision to sell. More importantly, when the participants know that they will not observe
future prices, their choices to sell are not affected by future regret avoidance. In addition, we
find that individual risk preferences also play a role in the selling decisions. However, their ef-
fect on choice is secondary to regret avoidance and does not influence the estimates of the regret
parameters.

Estimates of the parameters of a regret-averse utility function obtained from a dynamic dis-
crete choice model suggest that the effects of the past and future regret are not simply additive.
We demonstrate that there is an interaction between past and future regret in the utility, which
would not be possible to identify with simple regression analysis. Past and future regret are
not complements, but rather lessen the effects of one another. This happens because, while both
regret components of the utility function are negative, the interaction term offsets the effect of
the smaller one. We call this phenomenon a substitution effect between past and future regret.
At each point in time participants’ selling choices are not influenced by both types of regret at
once but are rather guided by the one which is stronger. This also implies that, depending on
the circumstances, the behavior on the market can be either past or future oriented.

Our findings demonstrate that individuals incorporate past and future regret into the utility
function in dynamic settings, and that they are able to extract and update complex counterfactual
information about the changing environment and integrate it into the decision process.
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2 The Experiment

The data were collected in a behavioral experiment in which participants were presented with a
series of mini stock markets. Each participant observed the graph of a market price as it grad-
ually changed in time in 0.8 seconds intervals and had to decide when to sell an “asset” (see
Figure 1). For the first 15 periods participants could only observe the price. Then, in period 15,
they were forced to buy an asset at the current price. The point of entry was marked with a verti-
cal red line. The market price kept changing until participants decided to sell the asset (marked
with a blue line on the graph). In case no selling decision was made the market continued until
its closure in period 50, at which point participants were forced to sell. The profit was equal to
the selling price minus the entry price (price in period 15), so that participants could actually
lose money (each participant received a e 10 fee that covered her in the case of a loss).

In each market the price followed a stochastic mean reverting process defined by yt+1 =

αyt + (1− α)ε, where α = 0.6, yt is the price in period t, and ε is an identically and independently
distributed random variable (uniform between e 0 and e 10). Participants were informed about
the process that generated the price and made selling decisions in six training markets without
payment which allowed them to see the examples of the price dynamics and get used to the
interface (the market prices used in the experiment are graphed in Appendix A.5).

Figure 1: Screenshots of two markets. Above the graph participants could see the entry price
(Valore di entrata), current price (Valore corrente), selling price (Valore di uscita), and profit
(Guadagno), which was green for positive and red for negative profit. In the No Info condition
the future price was not shown (left picture). In the Info condition the price evolution was shown
after the selling decision (right picture). The sentence at the bottom of the left picture says:
“Please wait until the market is closed.”

Each participant made selling decisions in 48 different markets, which could be of two types.
In some markets (No Info condition, left picture in Figure 1) participants knew from the beginning
that after they sell the asset they will not see the future price. In the Info condition (right picture
in Figure 1) participants knew from the beginning that after selling the asset they will observe
the evolution of the price until the market closure in period 50. This information was shown
in the upper-left corner of the graph from period 1 onwards (INFO DOPO means “info after”).
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The markets were presented in random order that was generated independently for each par-
ticipant. Half of the markets were presented in the No Info and half in the Info condition. The
sequence of conditions was also randomized. After the markets, the participants were presented
with an incentivized Holt-Laury task (Holt and Laury, 2002) and a questionnaire. Overall, 154
participants took part in the experiment in 9 sessions. The average earnings in the main task
were e 11.46. The experiment was programmed in z-Tree (Fischbacher, 2007). Further details of
the design can be found in Appendix A.

3 Evidence of Regret Avoidance

In this section we look at some summary statistics, in order to compare the selling behavior to the
no regret benchmark, and report a regression analysis that shows the effects of past and future
regret. This analysis can provide only crude estimates of how the current market state influences
the choices to sell, since it is static in nature and does not take into account the dynamic struc-
ture of the markets. Nevertheless, it does demonstrate how the participants react to past and
expected future prices. We start with a comparison of the behavior of our participants with the
optimal choice of a risk-neutral regret-free agent who should sell the asset whenever the price
rises above a certain threshold that depends on the number of periods left in the market. The
dynamic stopping problem that describes optimal choices is formulated in Appendix B.
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Figure 2: The optimal selling price threshold for different risk preferences (CRRA utility without
regret).

We focus on the class of CRRA utilities U(y) = y1−ρ−1
1−ρ , where y is a selling price, and numer-

ically evaluate the optimal policy prescribed by the dynamic program from Appendix B. Figure
2 illustrates the optimal policies for five values of the risk parameter ρ (both risk-loving and
risk-averse). It is optimal for the agent to sell the asset if the price is above the shown thresholds.
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The figure demonstrates that risk-loving agents (with ρ < 0) optimally sell the asset at higher
prices than risk-averse agents (ρ > 0). Notice, however, that the effect of risk preferences on the
optimal threshold is rather small. The threshold is virtually the same in period 16 for risk-loving
and risk-averse agents, and in period 49 the threshold changes from e 4.7 (ρ = 0.7) to e 5.3
(ρ = −1). This implies that we should not expect any strong behavioral effects to stem from the
heterogeneity in risk preferences.
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Figure 3: The proportion of times the participants decided to keep the asset despite the current
price being greater than the optimal selling threshold of the risk-neutral regret-free agent. Ob-
servations are grouped by deciles. The solid line at zero shows the proportion of missed sales
expected from the rational no regret agent. The spikes are ±1SE.

In order to compare the behavior of participants with this benchmark we consider selling
decisions at relatively high prices, since participants’ choices coincide with the model prediction
to keep the asset when the prices are low. Figure 3 summarizes selling decisions in situations
when the participants had a choice to sell, and the price was above the optimal selling threshold
(of a risk-neutral agent). If our participants chose in accordance with the predictions of the no
regret utility model, they would have sold the asset in all these cases. We observe that even
at the 10th decile of the price distribution there is a large deviation from the optimal strategy:
participants do not sell the asset in 34% of the cases. When we look at the prices below e 6.3
(first decile), we see that the asset is kept in 80% of the cases when it actually should have
been sold, a huge discrepancy with the predictions of the standard model. Still, the deviations
from the standard model can, in principle, be noise artifacts. To falsify this idea we run a logit
and an OLS regression where the dependent variable is the decision to keep the asset and the
independent one is the current price (conditional on being above the optimal threshold). We
find a significant negative trend in the probability to keep the asset (logit coefficient −0.71∗∗∗;
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OLS coefficient−0.16∗∗∗). This shows that the differences in proportions are not random and are
higher for lower prices.

This evidence suggests that the participants mostly keep the asset in situations when the stan-
dard model predicts it should be sold. One potential explanation of this effect is loss aversion.
Suppose that participants suffer some additional fixed disutility from having negative profit
(selling the asset at a price lower than the entry price). This can, in principle, make them keep
the asset longer in order to make a positive profit. However, in our data the correlation between
the entry and selling prices is very small (Spearman’s ρ = 0.058, p < 0.001). This suggests that
loss aversion is not a good candidate for explaining the data. Moreover, it does not predict any
difference between the Info and No Info conditions which we report below.

We hypothesize that the observed behavior is driven by the desire to minimize regret, which
is proportional to the distance between the current price and the highest price in the past (past
regret) or the expected highest price in the future (future regret). The highest price in the past,
or past peak, is calculated as the highest price achieved up to the current period.1 The fu-
ture expected highest price (future peak) is the expectation over the maximum price that can
be achieved in all future paths (see Section 4 for details).
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Figure 4: Panel A: The percentage of sales when the price reaches a new peak (dark grey) and
when the price is below the current past peak (light grey). The error bars are ±1SE. Panel B: The
ratio of the number of sales up to period t in the No Info condition to the number of sales up to
period t in the Info condition. The dashed line includes sales within e 0.5 of the past peak and
the solid line within e 1 of the past peak.

To test the idea that the past peak influences the decision to sell, we examine the selling rates.
Overall, participants sell the asset in 51% of the situations when the price goes above the past
peak (i.e., it is a new peak). If we look only at the cases when the price is above the optimal
threshold of the risk-neutral agent without regret, then the selling rate becomes 71% at the new
peak and 34% when the price is not the new peak. This provides evidence that the past peak
has an influence on the decisions to sell even when the standard model unambiguously predicts
only sales. To see the importance of the past peak for the decision to sell consider Figure 4A.

1Gneezy (2005) shows in a setting similar to ours that the past peak is a more plausible reference point than the
purchase price.
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We group the new past peaks by how high they are and find that, when the new past peak is
above e 8, selling happens in 71% of the cases, in the range [7, 8] – in 63%; in the range [6, 7] –
in 30%; and in the range [5, 6] – in 2.6%. Notice that the percentages of selling, when the price
is in the same intervals, but is not a new peak, are 46%, 32%, 14%, and 3.4% respectively, much
lower values. Figure 11 in Appendix C shows the same graph restricted to observations above
the optimal threshold in the standard model. The influence of the past peak is unchanged. Thus,
the difference in sale rates cannot be explained by the standard theory, we need to consider past
peaks in order to explain our data.

To show the influence of the future peak on the decisions to sell, we notice that the future
expected highest price is decreasing in time, since early in the market there is plenty of oppor-
tunities for the price to rise, whereas, when there are only few periods left, the price cannot go
much higher than its current level. Therefore, future regret, which is proportional to the future
peak, should be highest in early periods and decrease later on. If our participants are sensitive
to future regret, we should observe a difference in selling behavior between the No Info and Info

conditions in early periods. The two lines on Figure 4B represent the cumulative ratio of the
number of sales in the two conditions which are within e 0.5 and e 1 of the past peak. For each
time period this ratio exceeds one which implies that there are more decisions to sell in the No

Info than in the Info condition. This effect is especially evident in the early periods. In the late
periods the number of selling decisions becomes approximately the same.2 This provides first
evidence that participants sell less often early on in the Info condition because of the possibility
of future regret, which makes them keep the asset longer in order to reduce the disutility asso-
ciated with it. Moreover, the ratio is higher for the sales which are e 0.5 close to the past peak
than for the sales which are e 1 close. This is the case since in the No Info condition being closer
to the past peak implies higher probability of selling, whereas in the Info condition the past peak
is less salient due to the possibility of observing high prices after selling.

To investigate the influence of a larger set of variables on the decisions to sell we run a series
of logit regressions shown in Table 1 with the dependent variable equal to 1 if a participant
keeps the asset and 0 if she sells it. Notice that these regressions can provide only a simplified
picture of the relationships in our data since they do not account for the time dependencies due
to the Markovian nature of the price evolution and the optimizing behavior of the participants.
The main variables of interest are the market condition (info), the past peak, the future expected
peak, and their interactions.3 We see that both past and future peaks significantly influence the
probability to keep the asset (columns II and III): the higher they are, the longer the participants
hold the asset. More importantly, in the Info condition we see that the influence of the past peak
decreases and the influence of the future expected peak increases (interactions with the variable

2Figure 12 in Appendix C shows that the ratios starting from period 33 oscillate in the vicinity of one.
3See Appendix D for the description of the variables used in the regressions and Appendix F for the computation

of highest expected future price.
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info, column III). This is consistent with our hypothesis that the possibility to observe future
prices makes participants more focused on the future.4

Pr[choice = keep] I II III

price –0.497∗∗∗ –0.319∗∗ –0.326∗∗
(0.146) (0.133) (0.134)

price2 –0.102∗∗∗ –0.125∗∗∗ –0.125∗∗∗
(0.013) (0.012) (0.012)

time –0.088∗∗∗ –0.082∗∗∗ –0.082∗∗∗
(0.004) (0.004) (0.004)

future expected price 1.423∗∗∗ 1.401∗∗∗ 1.381∗∗∗
(0.230) (0.190) (0.188)

past peak 0.506∗∗∗ 0.600∗∗∗
(0.035) (0.045)

future expected peak 0.309∗∗∗ 0.210∗∗
(0.071) (0.084)

past peak×info –0.209∗∗∗
(0.065)

future expected peak × info 0.183∗∗∗
(0.066)

info 0.129
(0.675)

constant 4.525∗∗∗ –1.955∗∗ –1.746
(1.161) (0.966) (1.099)

N 112,137 112,137 112,137

Table 1: Random effects logit regression of the choice to keep the asset. choice is zero at the time the
participant sells the asset and one otherwise. Observations are all periods in all markets for all participants
in which they made a choice (periods 16 to 49). Errors are clustered by participant. The descriptions of all
variables can be found in Appendix D.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

We further investigate the decision to keep the asset by introducing more variables. The
regressions reported in Table 5, Appendix E, show a small but significant effect of the risk pref-
erences, as estimated by the Holt and Laury task (Holt and Laury, 2002), on the probability to
keep the asset (variable hl). As risk aversion increases, the probability of keeping the asset goes
down, which is consistent with the predictions of the no regret model (Appendix B). Never-
theless, risk preferences alone cannot account for the dependency of the selling choices on the
market condition, the past price history, or future expected prices since all the interactions of the
corresponding variables with hl are insignificant (regressions in columns V and VI). Finally, the
regressions in Table 6, Appendix E, show a significant effect of the market condition (Info vs. No
Info) in early periods. The probability of keeping the asset is higher in the Info condition (variable

4We also make several observations about the control variables. The probability of selling increases with time
(coefficient on period is negative). The negative coefficient on price2 suggests non-linearity in response to price
changes and increase in probability of selling as price increases. The positive coefficient on the future expected price
shows that the selling behavior is modulated by future considerations, in particular, a higher expected price in the
future makes participants keep the asset longer.
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info×early, columns I and II), which is in line with future regret avoidance as we explained above
(Figure 4B).

To summarize, we find some evidence that the decisions to sell are influenced by past regret
avoidance (Figure 4A and Table 1). We also find that in the Info condition future peaks become
more and past peaks less salient for the decision to keep the asset (Table 1), which is consistent
with future regret avoidance. Finally, participants keep the asset longer in the early periods of
the Info condition when future regret is the strongest (Figure 4A and Table 6 in Appendix E)
suggesting an interaction between the two types of regret. These results, however, should be
treated with caution. While the presence of past regret avoidance is unambiguous, given that
past peaks are always observed by participants and are, in a sense, “tangible,” we cannot reliably
conclude from the regression analysis that participants exhibit future regret avoidance since the
significant effect of the variable future expected peak can have other sources. Regressions do
not account for the dynamic structure of the optimization problem and, essentially, just reveal
correlations between the selling events and the corresponding states of the market. Therefore,
the effect of the future expected peak can come from the attempts of participants to act upon some
kind of future expectations, which does not at all imply that they try to avoid future regret. The
same can be said about the possible interaction between past and future regret, the presence of
which our data suggest: it can simply be an artifact of optimization with some considerations
of the future. In order to resolve this issue, in the following sections we formulate and provide
estimates of the structural model, which allows us to explicitly separate the role of past and
future regret from that of future expectations while taking into account the dynamic nature of
the task.

4 Regret-Averse Utiltiy Function

We start with defining the regret-averse utility function that is further used in the structural
model. We hypothesize that the highest price in the past is a reference point, that our participants
use to measure how well they are doing (as shown in Figure 4A). This is a dynamic variable that
changes when the price gets above the observed highest peak.5 We conjecture that the higher the
past peak the more negative the feeling of past regret should be given the current price (which is
always less than or equal to the highest past peak). This implies that the past peak should exert
influence on the decision to keep the asset (past regret).

Our modelling choice is motivated by recent work (e.g., Gneezy, 2005; Strack and Viefers,
2017) which leverages on the saliency of the highest past price as the key measure of regret,
allowing us to disregard other functions of past prices that could be used as reference points

5Notice that without regret the optimal policy is to sell the asset whenever the price rises above the threshold
in Figure 2 which depends only on the number of periods left. Thus, in the no regret case the selling decision is
independent of any reference points.
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for past regret. Highest past prices were found to be important in trading decision on financial
markets. For example, in their analysis of the decision to exercise stock options, Heath et al.
(1999) found that exercising activity doubles when the current price attains the maximum level
over the past year.

Denote the maximum past price by sp,t = maxτ≤t{yτ}. Under past regret (only), or situations
when the agent knows that future prices after selling are not observable, the utility function is

u(yt, sp,t) = πyt −ωsp,t (4.1)

if the asset is sold in period t. The consumption part of the utility is given by πyt while the
disutility from regret is captured by the second term with parameter ω. The results in the previ-
ous section show a limited role of risk aversion and therefore we assume risk neutrality in this
section, though we also estimate the model assuming CRRA preferences. This utility function
offers a simple testable hypothesis: when ω = 0 the decision of the agent does not depend on
the past peak. This means that the less the agent cares about past regret, the less his selling price
is influenced by the past peak.6

If participants are aware that they will observe prices even after selling the asset, they can
anticipate a situation when the future price will exceed the selling price, which would lead to
negative emotions (future regret). In this case participants’ decisions to sell should be sensitive to
the future expected highest price, which is a dynamic variable that depends on the current price and
the number of periods left before the market closure. When this information is not available, the
future regret should not play any role in the selling decisions since participants do not anticipate
any negative emotions from observing high prices after selling.7

The expectation of the highest future peak at time t, denoted by s f ,t = E[maxt<τ≤T yτ|yt], is
a function of the price today and the number of periods left until the market closure. s f ,t is the
expectation of the maximum price achievable in T − t periods given the current price yt. In the
future regret case the agent’s utility is captured by

u(yt, sp,t, s f ,t) = πyt −ωsp,t − αs f ,t. (4.2)

We operationalize regret over future foregone outcomes as the disutility of “observing” the ex-
pected highest future price at time t.8

6It should also be acknowledged that this is not a standard regret aversion function which has one reference point
and two parameters like in Bell (1982) and Loomes and Sugden (1982). Since we eventually focus on two reference
points (past and future regret) such a function would complicate both the estimation and the interpretation of the
results across conditions.

7A similar negative response was found in Cooke et al. (2001), where reported satisfaction scores were negatively
correlated with the prices after the sale decision.

8When allowing for risk preferences (Appendix J.1) we define the future regret as the disutility at the future
highest peak, −αU(s f ,t; ρ), where U(·; ρ) is a CRRA utility with risk aversion coefficient ρ. An alternative ap-
proach would be to define it as the expectation of a regret function over possible draws of the future price, e.g.
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As an additional observation, notice that s f ,t is increasing in yt and decreasing in t because of
the presence of a terminating period (see Appendix F for the details). Conversely, notice that sp,t

is a weakly increasing function of time, since it is defined as a maximum of the past prices. This
suggests that future regret should be dominant in early periods while past regret in late periods.
In order to make the utility specification more flexible and to be able to infer whether the current
reference point is the highest price observed in the past, the expected highest price in the future,
or a combination of these two variables, we add an interaction term to the utility function. The
utility now becomes

u(yt, sp,t, s f ,t) = πyt −ωsp,t − αs f ,t − λsp,ts f ,t. (4.3)

Estimating the three regret parameters will make it possible to tell how the reference point
changes in time depending on the relative sizes of the past and future regret.

Our definition of the future regret is a major departure from the analysis in Strack and Viefers
(2017), who focus only on the regret over past decisions. The novelty of our approach is that
we consider a decision maker who takes into account both the endogenously changing past
reference point (the past peak) and the exogenously given information about the possibility of
future regret which shares features with the classical static regret. Thus, our decision maker is
affected by both the past price shocks, as in Strack and Viefers (2017), and by the knowledge
of the availability of price information after selling the asset, which comes at a cost, since the
decision maker may be future regret averse. We model these two forces with separate reference
points, one in the past and one in the future, and investigate empirically whether they subdue
or reinforce each other.

5 A Structural Model of Dynamic Regret Avoidance

To asses the role of dynamic regret avoidance in decision making we interpret the distance be-
tween the optimal policy and the actual choice in terms of consumption utility and regret. We
estimate a dynamic discrete choice model (e.g., Rust, 1987, 1994) where the value from selling
the asset is directly compared with the continuation value: participants sell when the former is
larger than the latter. This section sketches the model that will be taken to the data in Section 6.
Appendix H provides the full derivation.

In a dynamic environment participants choose their best action taking into account the Marko-
vian nature of the prices and optimal future decisions. In each period t one of two choices is
made: to sell the asset (d = 0) or to keep it (d = 1). ud(xt) denotes the per period regret-averse
utility from choosing action d when the current state is xt = (yt, sp,t, s f ,t). According to this no-
tation u0(xt) may refer to either (4.1), (4.2), or (4.3) depending on whether the subject is in the

E[U(maxt<τ≤T(yτ))|yt]. This, however, would entail significant estimation difficulties. Our definition is in line
with the idea that participants have a “target income” at any point in time (see, e.g., Camerer et al., 1997; Crawford
and Meng, 2011).
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No Info or Info condition, respectively. A participant’s intertemporal utility is

E

{ T

∑
t=1

βt−1ud(xt) + εd
t

}

where the expectation is taken over the future values of the independent variables. β ∈ (0, 1) is
the discount factor. Similarly to most of the binary static discrete choice models, it is assumed
that the value of each choice includes an additive logit error (ε1

t , ε0
t ), which accounts for unob-

served state variables that may affect choices.
The dynamic environment can be summarized using a value function vd which represents

the discounted sum of the future payoffs and is defined by the Bellman equation

vd(xt) =

0 + βE{v(xt+1)|xt, d = 1} if d = 1 (keep)

u0(xt) + 0 if d = 0 (sell).
(5.1)

Notice that the deterministic part of the per period payoff of continuing, u1(xt), and the contin-
uation value of selling the asset are zero. In fact, participants are only paid the price at which
they sell the asset at the time when they sell it. Therefore, the expected value function before a
choice is taken is the expectation (over the error term) of the utility from the optimal choice in
(5.1) and can be written as v(xt) =

∫
ε max{v0(xt) + ε0

t , v1(xt) + ε1
t )}dΛ(ε).

To solve the Bellman equation we show that the distribution of the observed choices uniquely
identifies the utility function. However, the large size of the state space (xt ∈ Xt) and the large
number of periods make a solution by backward induction (the classic method when periods are
finite) a daunting task. Yet, leveraging on the stationarity of the utility function and a contraction
mapping argument we can transform (5.1) into a set of equations that can be solved by least
squares method (e.g., Pesendorfer and Schmidt-Dengler, 2008; Aguirregabiria and Mira, 2010).

Intuitively, the participant will choose to keep or sell the asset depending on which action
provides the higher value conditional on any given realization of the state variable (xt). There-
fore, we expect this relation to be reflected in the probability of choosing each action conditional
on the state and period. For this case Hotz and Miller (1993) show the existence of an invert-
ible mapping between the value functions and the related probability of choosing each action
given xt. This probability is known as the Conditional Choice Probability (CCP) and is denoted by
p1(xt) = Pr(d = 1|xt) for the probability of continuing and p0(xt) = Pr(d = 0|xt) for the proba-
bility of selling. Importantly, the CCP can be estimated directly from the data. We therefore treat
pd(xt) as a known object for all t and xt. The identification procedure uses the CCP, together
with the properties of the logit distribution, to simplify the Bellman equation in terms of known
variables.

The logit assumption gives an analytical solution for the probability of choosing each action.
For example, the probability of choosing action 0 is p0(xt) = 1/

(
1+ exp(v1(xt)− v0(xt))

)
which
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depends on the difference of the two alternative specific value functions (in equation 5.1). This
difference is

v1(xt)− v0(xt) = −u0(xt) + β
∫
Xt+1

∫
ε
max{v0(xt+1) + ε0

t+1, v1(xt+1) + ε1
t+1)}dΛ(ε)dF(xt+1|xt)

(5.2)
where the inner integral is over the error term, and the outer one is over the state space in the
next period. The law of motion of xt across periods is characterized by the transition matrix
F(xt+1|xt) which describes the probability of moving from xt to xt+1. Note that, since the only
random variable is the current price, the transition matrix depends only on the distribution of
yt.

The last equation can be simplified further. As noted by Hotz and Miller (1993) the CCP can
be inverted resulting in v1(xt)− v0(xt) = ln(1− p0(xt))− ln(p0(xt)).9 The difference between
the value of keeping and selling the asset can, thus, be thought of in terms of changes in the
probability of selling the asset. This means that the left hand side of (5.2) is a known function of
the data, the CCP. Let us denote it by φ(p0(xt)) and rewrite (5.2) as

φ(p0(xt)) = −u0(xt) + β ∑
Xt+1

(
u0(xt+1)− ln(p0(xt+1))

)
f (xt+1|xt) (5.3)

where the summation substitutes the integration as the state space needs to be discrete (a tech-
nical requirement).10 Note also that in passing from (5.2) to (5.3) the expectation of the optimal
choice in period t + 1 is rewritten in terms of the utility from the terminating action (sale) and
the probability of selling the asset in the next period. Appendix H shows all the steps of this
derivation which is based on the properties of the logit error.

Several observations about the equation (5.3) should be made. First, it summarizes intertem-
poral choices by only comparing the utility from selling at two consecutive periods with the
expected (log) probability of selling in the next period given by −∑Xt+1

ln(p0(xt+1)) f (xt+1|xt).
This term is important because it incorporates the continuation value and can be thought of as
the utility from waiting for a better price. In fact, this expectation is proportional to the con-
tinuation value at t + 1 through the definition of the CCP.11 Hence, we know that the RHS of
(5.3) increases when agents expect high returns from keeping the asset in the following periods.
Because the LHS of (5.3) corresponds to the difference between the value function from keeping

9The CCP of selling the asset is p0(xt) = 1/(1 + exp(v1(xt)− v0(xt))). This can be transformed into v1(xt)−
v0(xt) = ln(1− p0(xt))− ln(p0(xt)).

10The discretization of the state space is necessary to estimate the model. For our experiment this is not a problem,
the participants face a discrete state space anyway as yt was rounded to cents. The discretization is implemented
according to the approach proposed by Tauchen (1986) to approximate a vector autoregression model with a finite
state Markov chain. All variables (current price, past peak and future peak) are discretized on the same support in
[0.59, 9.32]. The distance between the 400 bins is e 0.02. This method is described in detail in Appendix G.

11From the derivations above we have− ln(p0(xt+1)) = ln(1+ exp(v1(xt+1)− v0(xt+1))) which is approximately
equal to v1(xt+1)− v0(xt+1).
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and selling the asset, a greater continuation value implies that the agent is more likely to keep
the asset in period t.

Second, given the same continuation value, if ω > 0 the model predicts that the agent will be
less likely to sell in period t if the distance between the past peak and the current price is larger
than the expectation of the same difference in the following period. To see this, notice that RHS
of (5.3) increases if the difference between the past peak and the current price goes up, which in
turn should increase the LHS, or decrease the probability of selling. This reasoning can be also
applied to the future expected peak. In the Info condition, an agent will be less likely to sell the
asset in period t if s f ,t > E[s f ,t+1] and α > 0, other things equal. This follows again from the
increase in RHS of (5.3) when the expectation of the future peak changes marginally.

We have constructed a simple two-step estimator. The first step involves recovering the CCP
and the transition matrix directly from the data. In the second step these objects are plugged
into (5.2) (e.g., Hotz and Miller, 1993; Pesendorfer and Schmidt-Dengler, 2008). This gives us
the objective function (equation 5.3) used to estimate a parameterized version of the utility of
selling the asset u0(xt), which includes regret-averse components for the two conditions (Info
and No Info). In conclusion, the procedure just described relies on the common logit assumption
in the binary choice literature, the presence of a terminating action (selling the asset) and on the
Markovian structure of the state variables.

6 Estimation of the Structural Model

We now turn to the estimation of the dynamic discrete choice model in Section 5. However, be-
fore proceeding to the estimation of (5.2) we analyze how the CCP differs in the two conditions,
as this can further elucidate the mechanisms at play.

6.1 Estimation of the Conditional Choice Probabilities

The conditional probability of selling the asset (or continuing) at period t is computed directly
from the data. We exclude periods 15 and 50 since no one sold the asset in the former (first
choice period) and the choice is forced in the latter (last period). Participants sell their asset in
different periods, resulting in a highly unbalanced dataset. The CCPs are constructed using a
logit estimator of the choices of the active participants in each period t ∈ {16, ..., 49} as a function
of the realized state variables. It is important to stress that there are two policy functions to be
estimated for each period. This is because the experiment has two conditions. The CCP for the
No Info condition depends only on the price and the running past maximum of the process:

Pr{d = 0|No Info, xt} = Λ(β1t · yt + β2t·, sp,t) ∀t (6.1)
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while in the Info condition it also depends on the expected future maximum:

Pr{d = 0|Info, xt} = Λ(β1t · yt + β2t · sp,t + β3t · s f ,t) ∀t. (6.2)

To maintain symmetry, the two logistic regressions are very similar. In principle, several other
valid specifications can be used. However, since the sample size shrinks as participants sell their
assets over time, adding additional covariates undermines the identification of the parameters.12
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Figure 5: The effect of the past peak on the probability of selling the asset in the No Info condition.
The conditional choice probability is computed by taking the average of the fitted values from
(6.1) for all periods t ∈ {16, ..., 49}. This figure is for illustrative purpose only and is based on a
state space discretized over 200 bins.

Figure 5 shows the projections of the time-averaged fitted CCP in the No Info condition.
Specifically, each line represents the estimate of the probability of selling which results from
averaging the fitted values of 34 logit regressions (one for each time period).13 For the prices
below e 5 the probability of selling is the highest when the past peak is e 3, is lower when the
past peak is e 5 and is close to zero for past peaks e 7 and e 8. This means that, when prices are
low, the participants are strongly influenced by the size of the past peak and wait for the price
to become closer to it. For the past peaks e 7 and e 8, which are very common in our data, the

12Adding square and interaction terms creates a large multicollinearity problem, eventually impairing the iden-
tification of the βnt coefficients. In fact, the singular value decomposition of the matrices of covariates in (6.1) and
(6.2) show that including these terms makes it ill-conditioned in most periods. Also clustering at subject level does
not affect the results.

13Thus, the CCPs in Figures 5 and 6 are shown just for illustration. They are out of sample estimates which do
not take into account the influence of the current price on the past peak (i.e., the current price cannot be larger than
the highest observed price).
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probability of selling increases rapidly when the price approaches e 7. This demonstrates that
the past peak indeed serves as a reference point.
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Figure 6: The effect of the past peak and the expected future peak in the Info condition. The
conditional choice probability is computed by taking the average of the fitted values from (6.2)
for all periods t ∈ {16, ..., 49}. This figure is for illustrative purpose only and is based on a state
space discretized over 200 bins.

Figure 6 illustrates similar projections of the CCP in the Info condition. For fixed value of
future regret the relationship between the curves with past regret equal toe 5 ande 7 is the same
as in Figure 5. However, the effect of past regret is much smaller in this case. We conjecture that
this is due to the presence of the future regret term which dominates the past regret. In what
follows we show that there is a substitution effect between the past and future regret that can
explain this pattern.

6.2 Estimation of the Parameters

In order to causally connect regret avoidance and decisions to sell in our experiment, we estimate
(5.3) by non-linear least squares procedure (Pesendorfer and Schmidt-Dengler, 2008). Nonpara-
metric identification is shown in detail in Appendix I. We only provide an intuition of the proof
here, which is standard (Hotz and Miller, 1993). The most important step is to realize that the
value function of the continuation choice (alternative 1) is a contraction mapping. Therefore
there is a unique solution to v1(xt). In addition, the difference of the two value functions is ob-
tained using the formula for the CCP. Given that selling is a terminating action (v0(xt) = u0(xt)),
the per period utility, u0(xt), is found by summing the CCP with v1(xt).

We proceed with the estimation of a parametric version of (5.3). We propose different specifi-
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cations of the utility function (Section 4) to study how ω, α, and λ affect decisions. First, we focus
on a utility that includes only past and future regret in the two conditions as in (4.1) and (4.2),
and then we extend the analysis to uncover a possible interaction between the two variables as
in (4.3). Suppose that the per period utility from selling is defined as

u0(yt, sp,t, s f ,t) = πyt − R(sp,t, s f ,t) (6.3)

where R(·, ·) is the regret function which is defined as

R(sp,t, s f ,t) = 1{No Info}ωNIsp,t + 1{Info}
(
ωIsp,t + αIs f ,t

)
. (6.4)

The arguments of the regret function are the past and expected future peaks and the market
conditions are denoted by the subscripts “NI” for No Info and “I” for Info. The indicator function
distinguishes the utility derived in one condition from the other. The parameters of R(·; ρ) are
free to vary and indicate how strongly participants’ decisions are affected by regret. Note, in fact,
that, if ωNI , ωI , and αI are not significantly different from zero, the participants are categorized
as regret neutral.

The estimation of (5.3) with the regret term as in (6.4) exposes the importance of past and fu-
ture regret in dynamic decision making. The results are shown in the first three columns of Table
2 and are obtained by nonlinear least squares on the dataset including periods t ∈ {16, ..., 48}.14

The identification assumes that the discount factor is known (Magnac and Thesmar, 2002), so the
table shows utility function coefficients for β approaching 1 (i.e., β ∈ {99.65%, 99.60%, 99.55%}).
The results are robust across different designs and discount factors.15

The estimation of (6.4) in Table 2 shows that participants are both past and future regret
averse. In particular, in the specification (6.4) past regret is significant in the No Info condition,
while future regret is significant in the Info condition which means that our participants are also
influenced by future regret avoidance. Notice that past regret is not significant in the estimation
of (6.4). The absence of the effect of the past peak is surprising given the discussion in Section 3
and the regression analysis in Tables 1, 5, and 6, which shows the centrality of the sp,t term for
both conditions. The reason for this might be that the model is missing an important interaction
between the past and the future regret: they might reinforce or inhibit each other. Such an
interaction was previously exposed in the discussion of Figure 4B and regression 5 in Section 3
when we compared the decisions to sell early and late in the two conditions. Its presence was
also used to explain changes in the probability of selling the asset with different values of the past
and future peak in Figure 6 in Section 6.1. To our knowledge, no one in the literature pointed out

14For consistency period 49 is dropped because choices taken in this period are directly affected by the fact that
participants are forced to sell in period 50. This marginally shrinks the dataset from 112,137 to 111,613 observations.
Including period 49 does not change the results. Note that the CCP must still be computed for period 49.

15Estimations for different regret functions R(·) and risk preferences are provided in Appendix J.1. The analysis
in Appendix J.2 includes a loss aversion parameter.
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Estimation of (6.4) Estimation of (6.5)

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

π̂ 1.892∗∗∗ 1.890∗∗∗ 1.888∗∗∗ 1.884∗∗∗ 1.882∗∗∗ 1.880∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

ω̂NI 0.313∗ 0.379∗ 0.464∗ 0.364∗ 0.427∗∗ 0.508∗∗∗
(0.188) (0.185) (0.180) (0.188) (0.185) (0.181)

ω̂I −0.073 0.033 0.145 1.539∗∗∗ 1.636∗∗∗ 1.712∗∗∗
(0.195) (0.192) (0.188) (0.400) (0.359) (0.326)

α̂I 0.174∗∗ 0.221∗∗ 0.262∗∗∗ 1.488∗∗∗ 1.552∗∗∗ 1.595∗∗∗
(0.076) (0.074) (0.074) (0.295) (0.262) (0.238)

λ̂I −0.206∗∗∗ −0.215∗∗∗ −0.221∗∗∗
(0.045) (0.041) (0.038)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table 2: The estimation of (5.3) with the regret terms as in (6.4) and (6.5) in periods 16 to 48 for
different values of the discount factor β. The utility is assumed linear. Standard errors are in
parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

the importance of this interaction. To account for it we reformulate the regret function to include
an interaction term in the Info condition as in (4.3):

R(sp,t, s f ,t) = 1{No Info}ωNIsp,t + 1{Info}
(
ωIsp,t + αIs f ,t + λIsp,ts f ,t

)
. (6.5)

The interaction term captures the cross-partial derivative of the regret function, which allows
us to understand the degree of complementarity or substitutability of the two peaks.

The last three columns of Table 2 display the results of the estimation of (5.3) with the regret
term (6.5). The results confirm that participants are averse to past regret in both conditions and
to future regret in the Info condition. In addition, it indicates a pattern of substitution between
the two reference points, as λ̂I < 0. Notice also that the estimate of the coefficient on the con-
sumption utility is higher than either the coefficient on past or future regret in the Info condition.
As we will see below this implies that participants care more about consumption than regret.16

The utility parameters estimates in Table 2 provide strong support for our hypotheses that
past and future regret avoidance plays a significant role in the decisions to sell the asset. How-
ever, the utility as expressed in (6.3) and (6.5) cannot tell us if future regret is only operational in

16At this point we should mention that the results of the estimations are very similar in all models if we as-
sume CRRA utility function instead of the linear one. In this case the regret term becomes R(sp,t, s f ,t; ρ) =

1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t; ρ)U(s f ,t; ρ)

)
, where ρ is a risk preference pa-

rameter in U(y; ρ) = (y1−ρ − 1)/(1− ρ). The same estimation as in Table 2, only with an additional parameter
ρ, is presented in Table 10 in Appendix J.1, which also contains several other model specifications. Overall, the
estimated risk preferences are close to risk neutrality in all alternative models and the coefficients on the rest of the
parameters stay similar.
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the Info condition since this specification excludes any future influences in the No Info condition.
Indeed, some evidence that the future is taken into account in the No Info condition comes from
the regression analysis in Section 3 where the variables future expected price and future expected

peak significantly affects the probability to sell the asset (Table 1). In order to show that future
regret is not playing a role in the No Info condition we estimate an extended structural model
with past and future regret terms in both conditions. Table 3 shows the estimated parameters of
the utility function with the regret term

R(sp,t, s f ,t; ρ) = 1{No Info}
(
ωNIsp,t + αNIs f ,t + λNIsp,ts f ,t

)
+ 1{Info}

(
ωIsp,t + αIs f ,t + λIsp,ts f ,t

)
.

(6.6)

Overall, the parameter estimates of past and future regret in the Info condition are the same as
in Table 2. The estimates for past regret in both conditions (ω̂NI and ω̂I) increase because of the
introduction of the interaction term between past and future regret in the No Info condition.17

Importantly, the coefficients α̂NI and λ̂NI are not significant in all models. Thus, we conclude
that the future expected peak plays no role in the decisions to sell when the participants know
that they will not observe the future prices after selling.

Parameter β = 99.65% β = 99.60% β = 99.55%

π̂ 1.789∗∗∗ 1.788∗∗∗ 1.787∗∗∗
(0.014) (0.014) (0.014)

ω̂NI 1.432∗∗∗ 1.555∗∗∗ 1.643∗∗∗
(0.462) (0.414) (0.376)

ω̂I 2.609∗∗∗ 2.585∗∗∗ 2.562∗∗∗
(0.474) (0.424) (0.385)

α̂NI 0.134 0.229 0.296
(0.341) (0.303) (0.274)

α̂I 1.762∗∗∗ 1.719∗∗∗ 1.679∗∗∗
(0.348) (0.309) (0.281)

λ̂NI −0.046 −0.059 −0.068
(0.051) (0.046) (0.043)

λ̂I −0.265∗∗∗ −0.260∗∗∗ −0.256∗∗∗
(0.053) (0.048) (0.043)

N 111,613 111,613 111,613

Table 3: The estimation of (5.3) with the regret term (6.6) in periods 16 to 48 for different values
of the discount factor β. Standard errors are in parenthesis. The CCP is computed using the
formula in (6.2) for both conditions.
∗∗∗,∗∗ ,∗ denote statistical significance at 1, 5 and 10 percent level.

17The negative interaction term (λ̂NI) implies a larger point estimate for ω̂NI , similarly to what the introduction
of the interaction term λI did in the Info condition in Columns 4, 5 and 6 in Table 2. Because consumption utility
(π) does not vary in the two conditions, the regret parameters in the Info conditions increase as well. Notice that the
difference between ω̂I and ω̂NI is almost constant in the last three columns of Table 2 and in Table 3.
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Next, we turn to the interpretation of the coefficient λ̂I on the interaction of past and future
regret in the Info condition. Notice that it is negative as in Table 2. This confirms the presence
of a substitution effect between the two types of regret. The size of λ̂I allows us to conclude that
participants are only affected by one type of regret at a time. In particular, they pay attention
only to the largest among the two: when either past or future regret is large and the other is small,
the interaction term offsets the effect of the small term (see Figure 7 in Section 7). Moreover, the
presence of the interaction term implies that participants switch their focus between the past and
future regret dynamically within each market depending on which peak is larger. This suggests
that people can be surprisingly flexible at being past or future oriented when it comes to selling
decisions in dynamic settings.

Finally, we verify that our results cannot be explained by loss aversion. A loss occurs if the
asset is sold at a price below the purchase price in period 15. Before, in Section 3, we have pro-
vided arguments that loss aversion cannot explain our data. Here we go further and explicitly
estimate a structural model with utility that has a loss aversion term in it. The estimation is re-
ported in Appendix J.2. The loss aversion term is not significant. This also supports our results
in Table 3: the estimates of the past and future regret stay unchanged. We conclude that loss
aversion plays no role in the decision to sell the asset.

7 Discussion

We find a strong imprint of past regret on the decisions of our participants in an optimal stopping
experiment. Our main findings, however, lie in the domain of future regret and its dynamic
interaction with past regret and can be summarized as follows. First, the participants are able
to contemplate the counterfactual situation in which they sell the asset today and later regret it
when the price goes up. Moreover, they take this possibility into account by trying to sell the
asset at a price closer to the future expected maximum. Second, the participants are not always
influenced by future regret. They take it into account only when they know that the information
about future prices will be available after they sell the asset. Third, past and future regret do
not work independently. They interact by offsetting each other which leads to only the strongest
being reflected in the decisions. This means that the participants try to minimize the distance of
the selling price to the highest peak be it in the past or in the future.

When comparing the selling behavior in the No Info and Info conditions, it is important to
note that the conditions differ only in the information provided after the choice was made. Be-
fore the choice, the exactly identical information is conveyed to the decision maker. Therefore,
in principle, it is possible to choose in the same way in both conditions. Namely, nothing stops
the participants from calculating the expected future maximum value and act upon it even if
the future prices are not revealed. However, as the estimation of the structural model demon-
strates, this is not the case and the same participant, who avoids future regret in the Info condition,
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chooses to ignore it in the No Info condition. This is particularly surprising given that making op-
timal selling decisions in our dynamic environment involves calculating future expected prices
even without deliberation on future regret. This exposes the complexity of intertemporal choice
by the regret-averse participants and, particularly, its sensitivity to the context and information
available in the future. The ability to contemplate hypothetical counterfactual scenarios is also
experimentally investigated by Esponda and Vespa (2014) in a different environment with mul-
tiple agents with strategic interactions and sequential decisions.
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Figure 7: Examples of the dynamics of past and future regret in two selected markets in the Info
condition for the periods t ∈ {16, ..., 48}. The curves show the terms of the estimated regret
function (i.e., past regret = ω̂Isp,t, future regret = α̂Is f ,t and interaction term = |λ̂I |s f ,tsp,t) in
column 4 of Tabel 2. The solid vertical line shows the moment at which the participants switch
the focus from future regret to past regret.

The estimation of the structural model shows a significant interaction effect between past
and future regret in the Info condition. Specifically, this interaction is negative and, thus, works
to counteract the effect of the smaller regret term (past or future). This mechanism, though
static in nature, creates a compelling dynamic effect: the impact of the past and the future on
the probability of selling changes in time as the past and future regret terms change in relative
size. Figure 7 provides a graphical intuition. In the left graph before period 18 the past regret
term, which is dominated by the future regret term, is offset by the interaction. After this period
the roles of the past and future regret terms switch and the future regret is now offset by the
interaction term. Overall, the interaction term in both graphs is close to the minimum of the
past and future regret terms which makes the higher regret term exert most of the influence on
the decision to sell. The participants try to minimize the distance from a global highest peak or
max{sp,t, s f ,t}, thus treating the past and the (expected) future in the same way. It should be
emphasized that this result has emerged endogenously without introducing the maximum of
the two peaks as the definition of the regret function. This also explains the different rates at

21



which participants in the No Info and Info conditions sell when the current price is in the vicinity
of the past peak, as documented in Panel B of Figure 4. In the early periods future regret is a
reference point for the participants in the Info condition but not for the participants in the No

Info condition. As time goes by, the saliency of past regret increases eventually dominating the
future regret term (see Figure 7).

In our experiment this effect is detected within subjects, which means that orientation towards
the past or the future can change rapidly depending on the circumstances. More importantly,
this implies that the behavior on financial markets can potentially be influenced by seemingly
unrelated events that, nevertheless, refocus the attention of the investors on the past or expected
future developments (e.g., Klibanoff et al., 1998; Bordalo et al., 2017). For example, in our set-
ting the value of the expected future maximum depends on the number of periods left before
the market closure: for any fixed current price the closer is the end, the lower is the expected
future maximum. Therefore, sudden news that the closure will happen earlier should decrease
future regret and, thus, make investors more wary of the past. This can potentially lead to two
outcomes: if the past peak was high and was dominating the expected future peak then nothing
should change, however, if the past peak was low and was dominated by the expected future
peak, then early closure can lead to a selling spree since the dominating regret term, in this case
future regret, has decreased. A similar pattern to the dynamic substitution we elicited in our
study was also found across New York taxi drivers in their labor supply decisions (Crawford
and Meng, 2011). While drivers have flexible schedules and can stop driving after any trip, their
choices seem to target either income or hours worked. In particular, it is the furthest (from the
current state) among the two objectives that is the dominant reference point.

The findings of our study add to the existing literature on multiplicity of reference points
(e.g., Kahneman, 1992; Baucells et al., 2011) and on their endogenous formation (e.g., Kőszegi and
Rabin, 2006, 2007; Gill and Prowse, 2012) by fully spelling out their mechanism and estimating
their relationship in a dynamic setting. We conclude that ex post information shapes agents’
actions in our dynamic setting and that agents make no attempt to integrate competing/different
reference points, but rather dynamically select the most relevant one.

Our results imply another interesting behavioral effect which is concerned with the potential
choice between observing and not observing the future price after selling the asset. In particular,
the estimates of the utility parameters suggest that having no information should be preferable
to having it (ω̂NI < α̂I < ω̂I). So, it is not inconceivable that the investors would be willing
to pay for not being able to observe the future prices of the asset (e.g., Bell, 1983; Caplin and
Leahy, 2001). This can have consequences for policies directed at regulation of stock market
trading such as short selling (selling to subsequently repurchase an asset), which could be wel-
fare improving over bans (Beber and Pagano, 2013). Nevertheless, we would like to stress that
the relative size of past and future regret and their interaction is an empirical question which re-
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quires case by case analysis. Moreover, we believe that our approach could be used to investigate
the role of regret avoidance in real-life dynamic situations.

8 Conclusion

In an experimental task which resembles a stock market we study how past and future regret
avoidance influences selling decisions. We use a dynamic discrete choice model to evaluate
the parameters of a utility function that incorporates regret avoidance preferences and find that
both past and future regret play an important role in the choices to sell. When participants in the
experiment know that after they sell the asset they will no longer see the evolution of the price,
their decisions to sell are strongly influenced by past regret avoidance. Namely, participants
keep the asset longer in order to sell at a price close to the highest past price observed. When
participants are aware that after they sell the asset they will continue to observe the price on
the market, their choices to sell change: now future regret avoidance also becomes important.
Participants take into account the anticipated future regret which they would experience if the
price of the asset increased after they sold it and try to minimize this effect.

Moreover, we find that past and future regret avoidance do not just influence the decisions
in a simple additive way. They interact with each other. In particular, participants pay more at-
tention to the type of regret which is more prominent: if the past highest peak looms higher than
the expected future peak, then past regret avoidance enters the decision to sell. If the anticipated
regret in the future is larger than the potential past regret, then future regret avoidance becomes
important. This substitution effect was not previously mentioned in the literature and may be of
particular interest to policy makers.
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Supplementary Material

A Experimental Design
In the experiment participants made choices in 48 “stock markets,” presented to each of them in individ-
ually generated random order. In each market a participant was shown the price dynamics unfolding in
real time either until the asset was sold or until market closure after 50 periods. The price updated each
0.8 seconds. First, participants observed the market price evolve for 15 periods. Then they “entered” the
market. In the instructions this was presented as if they bought an asset in period 15. After this, partic-
ipants kept observing the evolution of the market price and had to decide when to “sell the asset.” The
payoff, or profit, that each participant received in each market was equal to the selling price minus the
entry price. Participants were paid for only one randomly chosen market. No one could lose money if the
profit of the chosen market was negative, since participants were given an initial endowment of e 10 that
covered the highest possible loss.

Each participant was making choices in two types of markets, which differed only in the amount of
information that participants received after they have sold the asset. In the No Info condition, after selling
the asset, no information about the future evolution of the price was provided. In the Info condition, after
selling the asset, participants observed how the price changed until the end of that market. In both cases
the participants could not change their decision after they have sold the asset. The market condition (No
Info or Info) was shown from period 1 on in the upper-left corner of the market graph (see figures below).

Overall, 154 participants took part in the experiment. All sessions were run in March 2017 at the CEEL
laboratory, Department of Economics, University of Trento. Another set of 135 participants took part in
the experiment in June 2016 in the same laboratory. These data are not reported in this paper. In the June
2016 experiment participants were not informed about the process that generated the price and were not
given initial training (see below). Otherwise the two experiments were identical. One session in the June
2016 experiment was aborted due to the network overload and the data was discarded. The data for one
participant in the June 2016 experiment was discarded, as she had to leave the experiment in the middle
of the market task. No other sessions or pilots were conducted. The experiments were programmed in
z-Tree (Fischbacher, 2007).

A.1 Market Details
The price dynamics for each market was generated randomly using the process yt+1 = αyt + (1− α)ε,
where yt+1 is the price in period t + 1, α = 0.6 is a fixed constant for all markets and ε ∼ U[0, 10] is an iid
random variable (uniform on [0, 10]). In period 1 each market started from price e 2.5, e 5, or e 7.5. Thus,
the price changed in the range from e 0 to e 10. All participants saw the same price dynamics for a given
market. Each market lasted for 50 periods, which was known to the participants. In period 15 of each
market the participants were forced to enter the market. This was explained to them in the instructions in
terms of their buying an object on the market in period 15 for the current market price (see instructions in
Appendix K). Then the participants were instructed that they can sell the asset at any time before period
50 and that their earnings in that market would be equal to the difference between the selling price and
the entry price (if they did not sell their earnings were equal to the price in period 50 minus the price
in period 15). The prices on the market were presented in actual Euros, so no tokens were used and
there was no need for having an exchange rate. All the information about the current market condition,
the entry price, the selling price and the current price was presented on the screen at appropriate times.
Descriptions under Figures 8 and 9 explain.

The timing of each market was as following. The new price was shown each 0.8 seconds.1 This was

1The experiment was implemented in z-Tree (Fischbacher, 2007), which does not allow for precise time control.
Thus, the actual time between periods could have been slightly larger.
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Figure 8: The left picture shows the market price evolution before period 15, which is marked by a
vertical red line. At period 15 the market “stopped,” so that participants could inspect the entry price.
An ENTER (ENTRATA) button should have been pressed to start the market again. After period 15 the
participants could check the entry price by looking at the top left of the screen where it was indicated in
red (right picture). To sell the asset participants needed to press EXIT (USCITA) button.

Figure 9: The right picture shows the market in Info condition after a participant sold the asset (the period
of selling is indicated by a blue vertical line). After selling the asset, the participant could see the selling
price in blue and the profit in green or red, depending on whether the profit was positive or negative
(on top of the screen). In addition, the participant observed the future evolution of the price until period
50 (the price changed each 0.8 seconds). In the No Info condition (left picture) everything was the same
except that the participant did not observe the future price, but still had to wait until the market closure.
The sentence at the bottom of the left picture says: “Please wait until the market is closed.”

long enough for participants to be able to react and sell the asset at the current price if they chose to do so.
In the Info condition participants had to observe the evolution of the price until period 50: they could not
skip to the next market. In the No Info treatment, after selling the asset, they had to wait until the market
reached period 50 (without observing the price). This was done in order to 1) remove the incentive to go
quicker through the task and 2) make No Info and Info conditions as similar as possible.

A.2 Price Dynamics and Training
Participants were explicitly informed about the process that generates the price (see instructions in Ap-
pendix K). The formula yt+1 = αyt + (1− α)ε was explained to them and four examples of the price range
in the next period depending on the current price were given.

Participants went through a series of six training markets which could not be chosen for the payment.
The training markets were in all respects identical to the real markets except the phrase ROUND DI
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PROVA (“training round”) written across the background in a very large font. Out of six training markets
two started at e 2.5, two at e 5, and two at e 7.5. One market in each pair was presented in the No Info
and one in the Info condition. The sequence of markets and conditions were independently randomized
individually for each participant.

A.3 Overall Design Details
Participants chose in 48 markets. The price dynamics for each market was pre-generated using the rule
described above (see Figure 10 below). Thus, each participant chose in exactly the same markets. For the
three subsets of 16 markets the starting price was equal to e 2.5, e 5, or e 7.5. The order of the markets
was randomized in real time for each participant. Thus, there is only an infinitesimal probability that
any two participants saw the same sequence of markets. The market condition, No Info or Info, was
determined in the following way. Half of the 16 markets of each kind (starting at e 2.5, e 5, e 7.5) were
randomly assigned to the condition No Info and another half to the condition Info. Thus, equal number
of markets of each of the three kinds were shown in the two conditions. The participants assigned to the
computers with odd numbers saw markets in these predetermined conditions. The participants assigned
to the computers with even numbers saw the same markets in the opposite conditions. Thus, for each
given market, there is an (approximately) equal number of participants who saw that market in the No
Info and Info conditions.

When participants sold the asset they could see their profit (see Figure 9). However, the participants
were informed that they will be paid for only one randomly chosen market. In order to avoid losses, the
participants were given e 10 at the beginning of the experiment, so their earnings after the market task
were e 10 plus the profit in one randomly chosen market (which could have been negative).

A.4 Additional Tasks
After choosing in the sequence of 48 markets the participants were presented with the Halt and Laury task
(Holt and Laury, 2002). We did not use the original payoffs from Holt and Laury (2002) as our participants
could have seen those before. Instead we took the equivalent payoffs from Eijkelenboom et al. (2016). The
instructions and the screenshots are presented in Appendix L.2. The participants, in addition to their
earnings in the market task, received the payoff from one of the lotteries that they chose in the Holt and
Laury task.

In the end of the experiment the participants were given a sequence of standard demographic ques-
tions.
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A.5 Market Prices

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

Figure 10: Prices in 48 markets.
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B Behavior of Regret-Free Agent
The regret-free rational agent obtains utility U(yt) when she sells the asset at time t at the price yt. In each
period she estimates the expected future utility that takes into account her optimal choices and sells the
asset if

U(yt) ≥ max{Eyt+1 [U(yt+1)|yt], Eyt+1 [vt+2|yt]}

where vt+2 = max{Eyt+2 [U(yt+2)|yt+1], Eyt+2 [vt+3|yt+1]} and the value function in the last period T is
vT = EyT [U(yT)|yT−1].2 In the experiment the price evolution is described by a Markov chain, thus, all
expectations are conditional on the past price.

We show analytically that a risk-averse agent should optimally sell the asset at a lower price than
a risk-neutral agent and risk-loving agent should sell at a higher price. Intuitively, an extremely risk-
averse agent sells immediately at any price level as a sure outcome today outweighs an uncertain outcome
tomorrow, whereas the certainty equivalent required by a risk-loving agent to sell at the same price is
higher. Thus, we formulate a prediction concerning risk attitudes:

Proposition. Optimal policy is to sell the asset above some threshold different for each period. Other things equal,
the probability of selling the asset increases in the degree of risk aversion.
Proof. An agent without regret sells if

u(yt) ≥ max{Eyt+1 [u(yt+1)|yt], Eyt+1 [vt+2|yt]} (B.1)

where vt+2 = max{Eyt+2 [u(yt+2)|yt+1], Eyt+2 [vt+3|yt+1]} and vT = EyT [u(yT)|yT−1]. Assuming that agent
has CRRA utility function, this implies that the selling rule is

y1−ρ
t ≥ max{Eyt+1 [y

1−ρ
t+1 |yt], Eyt+1 [v̇t+2|yt]}

where v̇t+2 = max{Eyt+2 [y
1−ρ
t+2 |yt+1], Eyt+2 [v̇t+3|yt+1]} and v̇T = EyT [y

1−ρ
T |yT−1].

Let ṽt denote the value function in inequality (B.1) with u(yt) = yt and let ỹt be the price at which a
risk-neutral agent is indifferent whether to sell the asset or not:

ỹt = max{Eyt+1 [yt+1|ỹt], Eyt+1 [ṽt+2|ỹt]} (B.2)

Would a risk-seeking (averse) agent sell at the same value or continue? The answer depends on ρ. Agent
sells at ỹt if and only if

ỹ1−ρ
t ≥ max{Eyt+1 [y

1−ρ
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]}. (B.3)

Plugging (B.2) into (B.3) we get

max{Eyt+1 [yt+1|ỹt]
1−ρ, Eyt+1 [ṽt+2|ỹt]

1−ρ} ≥ max{Eyt+1 [y
1−ρ
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]}.

This inequality holds (strictly) only for a risk-averse agent with ρ ∈ (0, 1). To show this we start from
period T − 1. Notice that

EyT−1 [ṽT|yT−2]
1−ρ =

(
∑

ι

Pr{yT−1,ι|yT−2}EyT [yT|yT−1,ι]

)1−ρ

and

EyT−1 [v̇T|yT−2] = ∑
ι

Pr{yT−1,ι|yT−2}EyT [y
1−ρ
T |yT−1,ι]

(B.4)

where, given yT−2, ι enumerates all possible values of yT−1 denoted by yT−1,ι. Next notice that the RHS’s

2By design the participants in the last period are forced to sell at the current price.
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of (B.4) can be rewritten as(
∑

ι

Pr{yT−1,ι|yT−2}∑
ξι

Pr{yT,ξι
|yT−1,ι}yT,ξι

)1−ρ

=

(
∑
ζ

pζyT,ζ

)1−ρ

and

∑
ι

Pr{yT−1,ι|yT−2}∑
ξι

Pr{yT,ξι
|yT−1,ι}y

1−ρ
T,ξι

= ∑
ζ

pζy1−ρ
T,ζ

(B.5)

respectively. Here ξι enumerates yT for each ι and ζ enumerates all combinations of ι and ξι. Now, the
RHS of the first equation in (B.5) is bigger than the RHS of the second by strict concavity of (·)1−ρ. Thus
we can conclude that EyT−1 [ṽT|yT−2]

1−ρ > EyT−1 [v̇T|yT−2] for all ρ ∈ (0, 1).
Now we consider period T − 2. For some fixed yT−2 we want to show that

max{EyT−1 [yT−1|yT−2]
1−ρ, EyT−1 [ṽT|yT−2]

1−ρ} > max{EyT−1 [y
1−ρ
T−1|yT−2], EyT−1 [v̇T|yT−2]}. (B.6)

This is straightforward since we have just shown that EyT−1 [ṽT|yT−2]
1−ρ > EyT−1 [v̇T|yT−2], which are

the second terms of the max operators. According to the same strict concavity argument as above,
EyT−1 [yT−1|yT−2]

1−ρ > EyT−1 [y
1−ρ
T−1|yT−2], the first terms of the max operators. Thus, LHS max operator

has all terms bigger than corresponding terms of the RHS max operator, which proves that the inequality
(B.6) holds.

Since (B.6) holds for all yT−2, it is true that

EyT−2 [ṽT−1|yT−3]
1−ρ = EyT−2 [max{EyT−1 [yT−1|yT−2]

1−ρ, EyT−1 [ṽT|yT−2]
1−ρ}|yT−3] >

EyT−2 [max{EyT−1 [y
1−ρ
T−1|yT−2], EyT−1 [v̇T|yT−2]}|yT−3] = EyT−2 [v̇T−1|yT−3].

This is a precursor to the one more step of the same derivation for period T − 3 as EyT−1 [ṽT|yT−2]
1−ρ >

EyT−1 [v̇T|yT−2] was for the period T − 2 step. Therefore, iterating this process, we show that (B.3) holds
with strict inequality for all t as long as ρ ∈ (0, 1). When the agent is risk-seeking, or ρ < 0, (B.3) holds
strictly with the opposite sign. The proof is the same only with all > replaced by <.

Next we show that for any admissible ρ and each period there is a unique threshold such that an
agent with CRRA utility, who follows optimal policy, always sells above this threshold and always keep
the asset below it. Notice that Eyt+1 [y

1−ρ
t+1 |yt] = Eε[(αyt + (1− α)ε)1−ρ] is a strictly increasing continuous

function of yt.3 Consider m(yt) = max{Eyt+1 [y
1−ρ
t+1 |yt], Eyt+1 [v̇t+2|yt]}. This is a function of yt that for some

yt is equal to Eε[(αyt + (1− α)ε)1−ρ] and for some yt to Eyt+1 [v̇t+2|yt]. Now, we can use the expressions
v̇τ = max{Eyτ [y

1−ρ
τ |yτ−1], Eyτ [v̇τ+1|yτ−1]} for all τ ≥ t + 2 to expand Eyt+1 [v̇t+2|yt] into a sequence of

expectations and max operators. Thus, eventually, m(yt) is a piecewise function that is equal to Eε[(αyt +
(1− α)ε)1−ρ] or pieces of weighted averages of functions of the form

Eyt+1 [...Eyτ [y
1−ρ
τ |yτ−1]...|yt] = Eεt+1 ...Eετ [(α

τ−tyt + (1− ατ−t)Eτ)
1−ρ] (B.7)

where Eτ is a weighted average of random variables εt+1, εt+2, ..., ετ. All functions in (B.7) are continuous
and strictly increasing in yt. Therefore, m(yt) is a continuous and strictly increasing since it is a series of
max operators applied to weighted averages of continuous increasing functions. It is also true that m is
strictly concave (convex) for ρ ∈ (0, 1) (ρ < 0), which also follows from the fact that it is a series of max
operators of weighted averages of strictly concave (convex) functions.

Now, we would like to know the relationship between m(yt) and y1−ρ
t . This will tell us what the

optimal policy is. Notice that m(0) > 01−ρ and m(10) < 101−ρ since m(yt) consists of mean reverting

3Here and below ε, possibly with sub-indexes, is a uniformly distributed random variable on [0, 10].
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expectations. So for low yt the optimal policy is to keep the asset and for high yt to sell. It is left to show
that m(yt) crosses y1−ρ

t at a single point. Consider any point y where y1−ρ = m(y). We want to show that
at this point the derivatives of y1−ρ and m(y) are different. As was mentioned above, m(y) is a weighted
average of functions in (B.7). Thus,

y1−ρ = ∑
ι

pιEεt+1 ...Eετι
[(ατι−ty + (1− ατι−t)Eτι)

1−ρ] = ∑
ι

pιEτι [(α
τι−ty + (1− ατι−t)Eτι)

1−ρ] (B.8)

for some enumeration {pι, τι}ι and with Eτι being short for Eεt+1 ...Eετι
. Notice that the derivatives of

functions (B.7) with respect to yt are of the form ατ−t(1− ρ)Eτ(ατ−tyt + (1− ατ−t)Eτ)−ρ, since Eτ trans-
forms into a summation of the terms (ατ−ty + (1− ατ−t)Eτ)1−ρ weighted with some probabilities and the
derivative transcends the summation. Keeping this in mind let us rewrite (B.8) as

(1− ρ)y−ρ = ∑
ι

pια
τι−t(1− ρ)Eτι [(·)−ρ] +

1− ρ

y ∑
ι

pιEτι [(1− ατι−t)Eτι(·)−ρ]

where (·)−ρ stands for (ατι−ty + (1− ατι−t)Eτι)
1−ρ. This, in turn, can be seen in terms of derivatives

(1− ρ)y−ρ =
dm(y)

dy
+

1− ρ

y ∑
ι

pιEτι [(1− ατι−t)Eτι(·)−ρ].

Here LHS is the derivative of LHS of (B.8) at y and RHS is the derivative of m at y plus a positive number.
Thus, at y the derivative of y1−ρ

t is higher than the derivative of m(yt). This implies that these two func-
tions cross at a unique point: they cannot coincide on an interval, since then their derivatives would have
been equal and they cannot cross on a disjoint set since this would have contradicted the strict concavity
or convexity of m.

Thus, we have established that the optimal policy for any CRRA utility function is to sell above some
unique threshold yt and to keep the asset below it. Combining this observation with the result that risk
the averse agent sells at a price where risk-neutral agent is indifferent and that the risk-seeking agent
keeps the asset at that price, we can conclude that risk-averse agent must have the selling threshold at a
price below the risk-neutral agent and the risk-seeking agent must have the threshold above it. Therefore,
a risk-averse agent, given the same prices, sells before a risk-neutral agent and a risk-seeking agent sells
after. �
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C Supplementary Graphs
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Figure 11: The percentage of sales when the price reaches a new peak (dark grey) and when the price is
below the current past peak (light grey). Only observations above the optimal selling price threshold of
the risk-neutral no regret agent are considered. The error bars are ±1SE.
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Figure 12: The ratio of the number of sales up to period t in the No Info to Info condition starting from
period 33.
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D Description of the Variables

Variable Mean Median St. Dev. Range Definition

choice 0.94 1.00 0.24 {0, 1} 1 if the participant keeps
the asset and 0 if she sells
it

info {0, 1} 1 if the market condition is
Info and 0 if it is No Info

time 26.61 25.00 8.44 [16, 49] Time period
price 4.79 4.86 1.43 [1.20, 8.36] Current price
price2 24.96 23.59 13.83 [1.43, 69.95] Current price squared
future expected price 5.00 5.00 0.08 [3.48, 7.02] Expected future price

(over all remaining peri-
ods) conditional on the
current price

past peak 7.58 7.52 0.59 [5.53, 8.56] Highest price in the past
future expected peak 7.64 7.78 0.45 [3.48, 8.24] Highest expected future

peak conditional on the
current price and time (see
Appendix F for details)

hl 0.60 0.60 0.17 [0, 0.9] Risk aversion parameter
from Holt and Laury task
(normalized from [0, 10] to
[0, 1]). 1 is very risk-averse,
0 is very risk-seeking

early {0, 1} 1 for first 25, 28, 30, or
32 markets depending on
specification, 0 otherwise

Table 4: Variables used in the regression Tables 1, 5, and 6 (Appendix E). The statistics refers to
all periods when a choice is made (periods 16 to 49).
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E Additional Regressions

Pr[choice = keep] I II III IV V VI

price –0.497∗∗∗ –0.416∗∗∗ –0.237 –0.243∗ –0.243∗ –0.243∗
(0.146) (0.161) (0.145) (0.145) (0.145) (0.145)

price2 –0.102∗∗∗ –0.113∗∗∗ –0.136∗∗∗ –0.136∗∗∗ –0.136∗∗∗ –0.136∗∗∗
(0.013) (0.014) (0.013) (0.013) (0.013) (0.013)

time –0.088∗∗∗ –0.090∗∗∗ –0.082∗∗∗ –0.083∗∗∗ –0.083∗∗∗ –0.083∗∗∗
(0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

future expected price 1.423∗∗∗ 1.223∗∗∗ 1.226∗∗∗ 1.218∗∗∗ 1.218∗∗∗ 1.217∗∗∗
(0.230) (0.251) (0.205) (0.203) (0.203) (0.203)

past peak 0.522∗∗∗ 0.617∗∗∗ 0.617∗∗∗ 0.643∗∗∗
(0.041) (0.053) (0.053) (0.140)

future expected peak 0.343∗∗∗ 0.272∗∗∗ 0.271∗∗∗ 0.247
(0.080) (0.093) (0.093) (0.244)

future expected peak × info 0.132∗ 0.133∗ 0.133∗
(0.074) (0.074) (0.074)

past peak×info –0.208∗∗∗ –0.208∗∗∗ –0.209∗∗∗
(0.072) (0.072) (0.072)

info 0.511 0.552 0.553
(0.754) (0.757) (0.756)

hl –0.721∗∗ –0.718∗∗ –0.723∗∗ –0.689∗∗ –0.691
(0.335) (0.338) (0.339) (0.341) (3.225)

info × hl –0.069 –0.067
(0.229) (0.229)

hl × past peak –0.042
(0.224)

hl × future expected peak 0.042
(0.392)

constant 4.525∗∗∗ 5.939∗∗∗ –1.044 –1.116 –1.135 –1.139
(1.161) (1.274) (1.090) (1.214) (1.222) (2.259)

N 112,137 89,951 89,951 89,951 89,951 89,951

Table 5: Random effects logit regression of the choice to keep the asset with risk preferences.
choice is zero at the time the participant sells the asset and one otherwise. Observations are all
periods in all markets for all participants in which they made a choice (periods 16 to 49). Partic-
ipants whose choices in Holt-Laury task were inconsistent with expected utility maximization
were dropped. Errors are clustered by participant.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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I II III IV
Pr[choice = keep] early: 25 early: 28 early: 30 early: 32

price –0.331∗∗ –0.323∗∗ –0.280∗∗ –0.292∗∗
(0.134) (0.135) (0.133) (0.134)

price2 –0.124∗∗∗ –0.124∗∗∗ –0.128∗∗∗ –0.128∗∗∗
(0.012) (0.012) (0.012) (0.012)

time –0.092∗∗∗ –0.120∗∗∗ –0.130∗∗∗ –0.112∗∗∗
(0.005) (0.006) (0.006) (0.006)

future expected price 1.470∗∗∗ 1.646∗∗∗ 1.621∗∗∗ 1.484∗∗∗
(0.191) (0.191) (0.190) (0.186)

past peak 0.602∗∗∗ 0.588∗∗∗ 0.604∗∗∗ 0.586∗∗∗
(0.045) (0.045) (0.045) (0.045)

future expected peak 0.190∗∗ 0.057 0.022 0.179∗∗
(0.084) (0.088) (0.096) (0.088)

future expected peak × info 0.089 0.095 0.227∗∗ 0.168∗∗
(0.078) (0.079) (0.088) (0.085)

past peak×info –0.204∗∗∗ –0.196∗∗∗ –0.212∗∗∗ –0.205∗∗∗
(0.065) (0.065) (0.065) (0.065)

info 0.728 0.624 –0.136 0.199
(0.726) (0.714) (0.765) (0.755)

info × early 0.176∗∗ 0.159∗∗ –0.065 0.022
(0.072) (0.081) (0.087) (0.089)

early –0.239∗∗∗ –0.718∗∗∗ –0.854∗∗∗ –0.657∗∗∗
(0.070) (0.072) (0.078) (0.074)

constant –1.670 –0.385 0.185 –0.704
(1.086) (1.095) (1.121) (1.090)

N 112,137 112,137 112,137 112,137

Table 6: The logit regressions support the intuition in Figure 4B. The dummy variable early is
1 if the current period is smaller or equal than the value specified in each column title and 0
otherwise. Participants in the Info condition sell less often early on because of the possibility of
future regret: the coefficient on the interaction of info and early is significant and positive until
Column III. Observations are all periods in all markets for all participants in which they made a
choice (periods 16 to 49). Errors are clustered by participant. The descriptions of all the variables
can be found in Appendix D.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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I II III IV
sale price t ∈ [15, 20] t ∈ (20, 25] t ∈ (25, 30] t ∈ (30, 40]

past peak –0.220∗∗∗ –0.106∗∗∗ 0.036 0.307∗∗∗

(0.043) (0.024) (0.024) (0.028)
future expected peak 10.312∗∗∗ 8.534∗∗∗ 7.716∗∗∗ 3.394∗∗∗

(0.324) (0.181) (0.232) (0.081)
info –6.108∗∗ –3.126∗ 1.188 –0.769

(2.670) (1.745) (2.350) (0.851)
future expected peak × info 0.755∗∗ 0.385∗ –0.149 0.106

(0.330) (0.217) (0.299) (0.111)
constant –74.391∗∗∗ –60.211∗∗∗ –54.062∗∗∗ –21.437∗∗∗

(2.440) (1.419) (1.781) (0.697)

R2 78.44% 83.94% 79.11% 58.70%
N 1,604 1,474 1,278 1,594

Table 7: The table reports the correlation between sale price and future regret for sales happening
at different time. Each regression is performed on a subset of the data based on when the sale
happened, as indicated in each column header. The dependent variable is the observed price at
the time of sale. The table shows that sale prices positively correlates with the future expected
peak in the Info condition only in the early periods. Errors are clustered by participant. The
descriptions of all the variables can be found in Appendix D.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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F The Computation of Future Regret
At period t future regret is defined as the expectation of the highest order statistic of the future T − t
prices. At every period t ∈ {2, ..., T}, yt+1 = αyt + (1− α)ut is observed, where ut is an i.i.d. random
draw from the uniform distribution on [a, b]. We use the notation yk

t to indicate the price expected in
period t given the current price in period k. T, α and yk (price at time k) are known. Assume a given
period k ∈ {1, ..., T − 2}, noting that the expected future peak in the period before the last is just the
expectation of the price in the next period. Then we can recover the expected price for any future period
beyond the current period (∀t > k) with the following formula:

yk
t = αt−kyk + (1− α)

t−k

∑
j=1

ut−jα
j−1 (F.1)

The distribution of yk
t is

P{yk
t ≤ v} = P{αt−kyk + (1− α)

t−1

∑
j=k

ut−jα
j−1 ≤ v}

= F(t−k)(v) =
∫ v

0
f(t−k)(s)ds

where f(t−k)(s) is the pdf of the sum of (t− k) uniform distributions with different supports. The support
of this distribution is (αt−kyk, αt−kyk + 10(1− α)∑t−k

j=1 αj−1). This is again when all u’s are 0 or all u’s are

10. Note that when t− k = 1 f(1)(s) = 1
αyk+(1−α)10−αyk

= 1
(1−α)10 and F(1)(s) =

s−αyk
(1−α)10 .

The expected future peak is computed as:

Future peakperiod k =
∫ 10

0
vd

T−k

∏
j=1

F(j)(v)

=
∫ 10

0
v

T−k

∑
j=1

f(j)(v)
T−k

∏
h 6=j

F(h)(v)dv

=
∫ 10

0
v

T−k

∑
j=1

f(j)(v)
T−k

∏
h 6=j

∫ v

0
f(h)(s)ds dv

To derive f(t−k)(v) analytically we use recent results in the statistical literature (Potuschak and Muller,
2009). For simplicity assume that k = 1. In fact, the random variable in (F.1) is the sum of independent
uniformly distributed [0,10] random variables times (1− α) × αj−1, plus αt−1 y1

t−1 , which is equal to the
summation of t − 1 uniformly distributed random variables in [αt−1 y1

t−1 , αt−1 y1
t−1 + 10(1 − α)αj−1], ∀j ∈

{1, ..., t− 1}. According to Potuschak and Muller (2009, section 2.2.2, page 180), the density is

f(n)(s) =
1

2n(n− 1)! ∏k ak

2n

∑
j=1

σj max{a.εj − |s−∑
k

ck|, 0}n−1 (F.2)

where . indicates the dot product, lower bar means vector, a = {5(1− α), 5α(1− α), 5α2(1− α), ...5αt−1(1−
α)}, c = {αt−1 y1

t−1 + 5(1− α), αt−1 y1
t−1 + 5α(1− α), αt−1 y1

t−1 + 5α2(1− α), ...αt−1 y1
t−1 + 5αt−1(1− α)}, ∀ 1 ≤

j ≤ t− 1. σj and εj are matrices which deal with positive and negative signs (see Potuschak and Muller
(2009)). We can rewrite the distribution as follows:

P{y1
t ≤ v} = F(t)(v) =

∫ v

0
f(t−1)(s)ds
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The support of this distribution is [αt−1y1, αt−1y1 + 10(1− α)∑t−1
j=1 αj−1]. Note that f(1)(s) = 1

αy1+(1−α)10−αy1
=

1
(1−α)10 and F(1)(s) =

s−αy1
(1−α)10 .

F.1 Normal Approximation
(F.2) is problematic, because, as the number of uniform RVs to be summed increases, the denominator goes
to zero since ak → 0. This makes estimation intractable. Another unappealing feature of this equation is
that computation is extremely slow. Therefore, we follow Potuschak and Muller (2009) who proposed to
approximate f(n)(v) = f(t−k)(v) with the following normal distribution:

yk
t ∼ N

(
∑

k
ck, ∑

k

(2 · ak)
2

12
)

The approximation is based on the fact that the sum of uniform distributions is centered around ∑k ck
with variance 1

12 (b − a)2, where b and a are the upper and lower bounds of the support of the sum of
uniform distributions.

It can be shown that the sum of such i.n.d. uniformly distributed random variables converges to a
normal distribution by the Liapounov Central Limit Theorem. The condition for convergence is:

lim
N→∞

∑N
i=1 E[|yi − µi|2+β]

(∑N
i=1 σ2

i )
2+β

2

= 0,

for some choice of β > 0, where E[yi] = µi and V[Xi] = σ2
i . To see this assume β = 1 for simplicity and

denote Xi = yi − µi. Because µi = ci and the support of yi is [ci − ai, ci + ai], Xi is uniformly distributed
in the interval [−ai, ai] = [−5(1 − α)αi−1, 5(1 − α)αi−1]. The numerator of the CLT condition involves
E[|Xi|3] =

∫ ai
−ai
|s|3 fi(s)ds =

∫ ai
−ai
|s|3 1

2ai
ds. Solving the integral we get:

E[|Xi|3] =
1

2ai

1
4ai

s4sgn(s)
∣∣ai

−ai

=
125

4
(1− α)3α3(i−1)

Therefore, the numerator is 125
4 ∑N

i (1 − α)3α3(i−1). Similarly, the denominator can be rewritten using

the formula for the variance of the normal distribution as
( 25

3

) 3
2
(

∑N
i (1− α)2α2(i−1)) 3

2 (use the fact that
σ2

i = 1
12 (ci + ai − (ci − ai))

2 = 1
12 (2× ai))

2). Taking the ratio of these two quantites, the result is W ×
∑N

i (1−α)3α3(i−1)(
∑N

i (1−α)2α2(i−1)
) 3

2
, where 0 < W < 1 is a constant. Finally, we can establish that:

lim
N→∞

=
∑N

i=1 E[|Xi|3]
(∑N

i=1 σ2
i )

3
2

= W × ∑N
i=1(1− α)3α3(i−1)(

∑N
i=1(1− α)2α2(i−1)

) 3
2

= 0

because the denominator contains positive interaction terms. Therefore, ∑ yi ∼ N
(

∑k ck, ∑k
(2×ak)

2

12

)
.

14



Figure 13: pdf, sum of 3 uniform RVs Figure 14: pdf, sum of 13 uniform RVs

Figure 15: CDF, sum of 3 uniform RVs Figure 16: CDF, sum of 13 uniform RVs
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G Discretization of the State Space and Transition Matrix
After discretization of the state space, the process describing the evolution of the price at each period of
time can be represented by a discrete Markov chain. In fact, the only determinant of price in the next
period is the price in the previous period. The discretization is done following Tauchen (1986). See also
Aguirregabiria and Magesan (2016, page 23).

The stochastic shock follows the following AR(1) process:

yi,t+1 = µ + ρyi,t + ε (G.1)

where yi,t+1, yi,t are the prices for participant i = {1, ..., N} at time t + 1 and t respectively, and ε ∼
N(0, σ2

i ). This panel structure is composed of 48 sequences (the individual dimension) and 50 periods
(the time dimension). µ̂ and ρ̂ are found using the covariance estimator. The estimates are µ̂ = 1.97,
ρ̂ = 0.60 and σ̂ = 1.16. The estimate of ρ is very close to the parameter α which updates the price from
period yt to yt+1 (α = 0.6).

Let {y1, ..., yK} denote the support of the discretized variable Ỹi,t, where y1 > y2 > ... > yK−1 > yK

with K = 400 are the points in the support. Tauchen (1986) suggests using

yK =
µ

1− ρ
+ m×

(
σ2

1− ρ2

) 1
2

y1 =
µ

1− ρ
−m×

(
σ2

1− ρ2

) 1
2

and yk are K − 2 equidistant points within yK and y1, such that the distance between any two points is
ω. m is the density of the K points (m is set to 3). This choice of the parameters results in a support with
lower bound (y1) equal to e0.59 ca., upper bound (y200) equal to e9.32 ca., and interval between adjacent
points (ω) equal to e0.02 ca.

The probability of transitioning from state y to y′ is defined as pi,j = Pr(y′ = yj|y = yi), which de-
scribes the element in the transition matrix in row i and column j. Because of the normality assumption,4

the transition probability to a state k, 1 < k < K, from i is:

pi,k = Φ
(

yk + ω
2 − µ̂− ρ̂yi

σ̂

)
−Φ

(
yk − ω

2 − µ̂− ρ̂yi

σ̂

)
which can be thought as the probability that ρyi + ε ∈ [ρyj − ω

2 , ρyj + ω
2 ]. Analogously, the transition

probability to the first and last state are:

pi,1 = Φ
(

y1 + ω
2 − µ̂− ρ̂yi

σ̂

)
pi,K = 1−Φ

(
yK − ω

2 − µ̂− ρ̂yi

σ̂

)
Tauchen (1986) shows that this conditional distribution converges in probability to the true conditional
distribution for the stochastic process in (G.1). In fact, it can be shown that such a discretization implies a
stationary distribution with AR(1) parameters of ρ = 0.60 (equal to the α used in the experiment).

4The standardization implies that the distribution is a standard normal.
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H Full Derivation of the Dynamic Discrete Choice Model
In this section we present the dynamic discrete choice model that will be used for the structural estimation
of the risk and regret parameters of the utility function. The following derivations are also sketched in
Section 5. Analogously to the logit panel regressions in Table 1, participants’ choice between selling the
asset or continuing still follows a threshold rule. However, they now take into account the Markovian
nature of the problem. In particular, a participant’s intertemporal utility is

E

{
∑
t=1

βt−1ud(xt) + εd
t

}
where β ∈ (0, 1) is a discount factor and εd

t is an error term. As is customary in the dynamic discrete
choice literature (Abbring, 2010; Aguirregabiria and Mira, 2010) it is assumed to be known and equal for
all participants.5 d is the participant’s binary choice at time t ≤ T:

d =

{
1, keep the asset
0, sell the asset.

ud(xt) is the payoff after choosing alternative d; the observables are described by the realization of xt,
which is a tuple consisting of the current price yt, the past maximum sp,t, and the expected future maxi-
mum price s f ,t. We use a utility function which incorporates past and future regret as well as risk prefer-
ences. That is, we are interested in a utility function of the type u(xt) = U(xt)− R(xt), where U(xt) is a
consumption utility function and R(xt) measures regret.

The flow (per period) payoff from choice d at period t is ud + εd
t where the error term εd

t is independent
of x. As in Murphy (2015), the error term is assumed to be εd = ε̃d − σεγ where ε̃d is distributed Type I
extreme value with location parameter equal to zero and scale parameter σε = 16. By the properties of
the Type I extreme value distribution, the mean of ε̃d is γ (the Euler’s constant). εd is therefore mean
zero. Given these preliminaries, denote by V(xt, εt) = maxd∈{0,1}{vd(xt) + εd} the value function at the
beginning of period t with εt = {ε0

t , ε1
t} and define the alternative specific value function (ASVF) for option

d ∈ {0, 1} at time t as:

vd(xt) =

{
0 + βE{v(xt+1)|xt, d = 1} if d = 1 (keep)
u0(xt) if d = 0 (sell)

(H.1)

where the payoff of continuing is normalized to 0. Note that choosing to sell the asset implies null future
payoffs (terminating action). The ex-ante value function in (H.1), can be rewritten as the expectation over
the error term, εt, of the value function at time t

v(xt) ≡
∫

V(xt, εt)dΛ(εt)

where Λ(·) is the logit distribution and V(xt, εt) = maxd∈{0,1}{vd(xt) + εd
t}. Define the alternative specific

value function (ASVF) as:

vd(xt) = ud(xt) + βE{vt+1(xt+1)|xt, }, d ∈ {0, 1}. (H.2)

5Identification of the discount factor is possible only under an exclusion restriction (Magnac and Thesmar, 2002),
and its estimation is generally hard. In order to circumvent this issue, we show that the estimations are robust to
different values of β.

6The standard deviation of the error term is not identifiable in general, and therefore assumed to be equal to 1.
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Because of the property of the Bellman equation, the optimal decision rule can be summarized as follows:

d =

{
1 if v1(xt)− v0(xt) ≥ ε0

t − ε1
t at t

0 otherwise

where vd(·) is defined as in (H.2). Denote the Conditional Choice Probability (CCP) of selling (action 0) as
Pr{d = 0|xt} ≡ p0(xt):

p0(xt) =
exp(v0(xt))

exp(v0(xt)) + exp(v1(xt))
=

1
1 + exp(v1(xt)− v0(xt))

. (H.3)

Therefore p0(xt) = Λ{v1(xt)− v0(xt)}. Due to the properties of the logit distribution Λ{·}:

φ
(

p0(xt)
)
≡ ln

(
1− p0(xt)

)
− ln

(
p0(xt)

)
≡ v1(xt)− v0(xt). (H.4)

φ(·) is estimable from choice data using (H.3) and (H.4). Hence the difference in the alternative specific
value functions, v1(xt)− v0(xt), is known for every t. We can write the two ASVFs as follows:

v0(xt) = u0(xt)

v1(xt) = 0 + β
∫
Xt+1

∫
ε
max{v0(xt+1) + ε0

t+1, v1(xt+1) + ε1
t+1)}dΛ(ε)dF(xt+1|xt),

(H.5)

where the expectation in the second equation is only over the continuation alternative (1), because the
transition matrix in case the absorbing choice (0) is chosen is zero for all xt (i.e. F(xt+1|xt, d = 0) = 0).
The estimation is based on the difference of the two ASVFs in (H.5):

v1(xt)− v0(xt) = −u(xt) + β
∫
Xt+1

∫
ε
max{v0(xt+1) + ε0

t+1, v1(xt+1) + ε1
t+1)}dΛ(ε)dF(xt+1|xt) (H.6)

Notice that the LHS of (H.6) can be computed directly from the data using (H.4). The properties of the
logit distribution are helpful to rewrite equation H.6 in a form that allows for estimation by non-linear
least squares. In fact, the ASVF for continuing (second equation in H.5) can be rewritten as follows

v1(xt) = β
∫
Xt+1

∫
ε
max{v0(xt+1) + ε0

t+1, v1(xt+1) + ε1
t+1}dΛ(ε)dF(xt+1|xt)

= β
∫
Xt+1

γ + log
(

exp(v0(xt+1)− γ) + exp(v1(xt+1)− γ)
)
dF(xt+1|xt)

= β
∫
Xt+1

γ + log
((

1 + exp(v1(xt+1)− v0(xt+1))
)

exp(v0(xt+1)− γ)

)
dF(xt+1|xt)

= β
∫
Xt+1

(
u0(xt+1)− log(Pr{dt+1 = 0|xt+1})

)
dF(xt+1|xt)

where dt+1 is the decision in the next period and γ is the Euler’s constant. The last row uses (H.3).
Therefore the difference of the two ASVFs in (H.6) becomes

v1(xt)− v0(xt) = −u0(xt) + β
∫
Xt+1

(
v0(xt+1)− log(Pr{dt+1 = 0|xt+1})

)
dF(xt+1|xt).

By replacing the dependent variable in the last equation with φ(p0(xt)) and by discretizing the state space
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Xt the objective function can be rewritten in an estimable form:

φ(p0(xt)) = −u0(xt) + β ∑
Xt+1

(
v0(xt+1)− log(Pr{dt+1 = 0|xt+1})

)
f (xt+1|xt)

= −u0(xt) + β ∑
Xt+1

(
u0(xt+1)− log(p0(xt+1))

)
f (xt+1|xt)

which concludes the derivation.
Note that the regret components are functions of price (yt is the only random variable) and time.

In fact, sp,t = maxτ≤t yτ and s f ,t = g(yt, t), where g is a known function that is increasing in the first
argument and decreasing in the second.7 Therefore,

Pr{yt+1, sp,t+1, s f ,t+1|xt, d = 1} = f (yt+1, sp,t+1, s f ,t+1|yt, sp,t, s f ,t) = f (yt+1, sp,t+1, s f ,t+1|yt, sp,t).

The transition of the past peak is fully defined by the future price: if yt+1 ≥ sp,t then sp,t+1 = yt+1 and
sp,t+1 = sp,t otherwise. For clarity, consider the following example: given the information available at
period t < T, the expected utility from keeping the asset one period longer, in the Info condition, is given
by

E[u(xt+1)|xt] = ∑
yt+1

[1{yt+1≥sp,t}u(yt+1, yt+1, g(·)) + 1{yt+1<sp,t}u(yt+1, max
τ≤t

yτ, g(·))] f (yt+1|yt).

Finally, the transition of the expected future peak is completely determined by the price and time accord-
ing to the function g(yt, t).

7g(·) is not strictly monotonic in the two arguments because of the discretization imposed to the data.
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I Nonparametric Identification
Identification of the objects of interest is standard and the proof is exposed here for completeness.

The first step of the identification procedure requires the identification of the transition matrix of the
Markovian process and of the conditional choice probabilities (CCP) (see equations 6.1 and 6.2), which
are obtained directly from the data.

The second step involves the nonparametric identification of the utility function, and is standard.
Consider the following assumptions:

Assumption 1: Additive separability. The flow utility is separable in the observables and unobservable
arguments, U(d, xt, ε) = ud(xt) + εd.

Assumption 2: The unobservables are iid. The unobservable state variables, εt = (ε0
t , ε1

t ), are iid across time.
Moreover εd is distributed Type I extreme value.

Assumption 3: Transition matrix. Next period state variables, xt+1, are independent on the realization of
this period unobservable state variables, εt. The support of the observable state variables is finite and
discrete. The transition across periods follows a first order Markov process.

Assumption 4: Flow utility. The flow utility of action 1 (continue to next period) is zero. Action 0 is a
terminating action.

Assumption 5: Discount factor. The discount factor is known (β ∈ (0, 1)).

Nonparametric identification of the utility function is obtained employing a contraction mapping
argument, given that the transition matrix and the CCP are known. Therefore, ∆v(xt) = v1(xt)− v0(xt)
is known (obtained by inverting the CCP as shown in the main text - Section 5). Also, as a reminder, the
alternative specific value functions are defined by

vd(xt) =

{
0 + βEd{vt+1(xt+1)|xt} if d = 1 (keep)
u0(xt) if d = 0 (sell)

Step 1: Define the function Ĥ(r0, r1|xt) = E[maxd∈{0,1}{rd + εd}|xt]. Under the distributional assumption
on the error term8, Ĥ(·|xt) exists and has the additive property: Ĥ(r0 + κ, r1 + κ|xt) = Ĥ(r0, r1|xt) + κ
(see Rust (1994) and Magnac and Thesmar (2002)). This property is useful as it allows us to rewrite the
emax function as the sum of a known object and an unknown function:

Ĥ(v0(xt), v1(xt); xt) = Ĥ(v0(xt)− v1(xt), 0|xt) + v1(xt) ≡ Ĥ(∆v(xt), 0|xt) + v1(xt)

where Ĥ(∆v(xt), 0|xt) is identified because the difference in value function, ∆v(xt) = v0(xt)− v1(xt), and
the distribution of the error term, Λ(·), are known. To simplify the notation set Ĥ(xt+1) = Ĥ(∆v(xt), 0|xt).

Step 2: The alternative specific value function when the participant chooses to keep the asset, v1(xt), is
the unique solution of a functional equation. The following Lemma proves that v1(xt) is a contraction.

Lemma: Denote by X the space of the observables and by C(X ) the Banach space of all continuous,
bounded functions ω : X → R. And define the operator Γ : C(X )→ C(X ) by:

Γω(x) = βE1{ω(xt+1)|xt}

Then, under the supremum norm, ||ω|| = supx∈X |ω(x)|, Γ is a contraction mapping with modulus β.

Proof: For any two functions ω, ω̂ ∈ C(X ), we need to establish that ||Γω − Γω̂|| ≤ µ||ω − ω̂||, for
µ ∈ (0, 1). First, rewrite E1{ω(xt+1)|xt} = E[maxd∈{0,1}{ωd(xt+1) + εd}|dt = 1, xt] = E{H(xt+1) +

8The error term, εt = (ε0
t , ε1

t ), has support on R2 and finite expectation E[εd] < ∞ for d ∈ {0, 1}.
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ω1(xt+1)|d = 1, xt} by using the derivation in the first step. Then proceed as follows:

||Γω− Γω̂|| = sup
xt∈X

∣∣∣βE{H(xt+1) + ω1(xt+1)|dt = 1, xt} − βE{H(xt+1) + ω̂1(xt+1)|dt = 1, xt}
∣∣∣

= sup
xt∈X

β
∣∣∣E{H(xt+1) + ω1(xt+1)− H(xt+1)− ω̂1(xt+1)|dt = 1, xt}

∣∣∣
≤ β sup

xt+1∈X

∣∣∣ω1(xt+1)− ω̂1(xt+1)
∣∣∣

= β||ω− ω̂||

Therefore Γ is a contraction mapping with modulus β. The second line moves the arguments from the
second expectation to the first. The third line removes the equal terms (H(xt+1)) and the conditional
expectation (≤ follows from this). The fourth line is from the definition of the supremum norm. �
Therefore, v1(xt) exists and is unique.

Step 3: In the previous steps we identified nonparametrically ∆v(xt) = v0(xt) − v1(xt) (directly from
the data), and v1(xt) (by the Contraction Mapping Theorem). Therefore, v0(xt) = ∆v(xt) + v1(xt) and
because v0(xt) consists only of the flow utility (it corresponds to the terminating action), then u0(xt) =
∆v(xt) + v1(xt). �
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J Additional Estimations of the Structural Model

J.1 Different Regret Functions
This section reports estimates for several models displaying different parameterization of the regret-
averse utility function and risk-aversion. All estimations are consistents with the findings displayed in
Section 6. The tables below show NLS estimates assuming the following discount rates: β ∈ {99.65%,
99.60%, 99.55%}. The objective function is (5.3) in Section 5. The utility function is u(yt, sp,t, s f ,t) =
πU(yt; ρ) − R(sp,t, s f ,t; ρ), where U(yt; ρ) represents either a risk-neutral agent (ρ = 0) or CRRA with
risk aversion parameter ρ (e.g., x1−ρ−1

1−ρ ), and R(·, ·; ρ) is the regret function. The dataset is discretized over
400 points according to the procedure laid out in Section G.

The following utility function (Model 1) is estimated in Table 8

u(yt, sp,t, s f ,t; ρ) = πU(yt; ρ)−ωU(sp,t; ρ)− αU(s f ,t; ρ).

The first three columns refer to the linear utility case while the remaining part of the table reports estimates
for the CRRA case.

Table 9 includes different coefficients for the two conditions and an interaction term as shown in (6.5).
Two models are reported with different interaction terms. In Model 2 the regret term is specified as

R = 1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
while in Model 3 the regret term is:

R = 1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIs f ,t + λIsp,t

)
.

The last two equations assume CRRA utility because in the linear case they would produce the same
estimate as those in the rightmost columns of Table 2.

Table 10 replicates the results of Table 2. The estimates show that the utility function is almost linear
the regret parameters stay qualitatively unchanged.

Finally, Table 11 estimates πU(yt; ρ)− R(sp,t, s f ,t, ρ) where the regret term is defined as

R(sp,t, s f ,t; ρ) = 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t; ρ)U(s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
in Model 4 and

R(sp,t, s f ,t; ρ) = 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t × s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
in Model 5, where U(·; ρ) is a CRRA utility function (the estimates report very mild risk-seeking pref-
erences, while the regret parameters do not change substantially). Overall, the results are very similar
across all tables, and corroborate our conclusions outlined in Section 7.

Section J.2 estimates a similar model allowing for loss aversion.
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Model 1
Linear Utility CRRA Utility

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

ρ̂ 0.061∗∗∗ 0.061∗∗∗ 0.062∗∗∗
(0.017) (0.017) (0.017)

π̂ 2.068∗∗∗ 1.890∗∗∗ 1.888∗∗∗ 2.068∗∗∗ 2.068∗∗∗ 2.069∗∗∗
(0.011) (0.011) (0.011) (0.052) (0.052) (0.052)

ω̂ 0.168 0.213 0.313∗ 0.236 0.308∗ 0.400∗∗
(0.144) (0.142) (0.139) (0.170) (0.170) (0.169)

α̂ 0.198∗∗∗ 0.219∗∗ 0.255∗∗∗ 0.122 0.161∗ 0.196∗∗
(0.075) (0.074) (0.073) (0.086) (0.085) (0.083)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table 8: The estimation of (5.3) with the regret terms as in Model 1, specified in Appendix J.1 in
periods 16 to 48 for different values of the discount factor β. The CCP are defined as in (6.1) and
(6.2). Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

Model 2 Model 3

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ 0.070∗∗∗ 0.071∗∗∗ 0.072∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.076∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)
π̂ 2.089∗∗∗ 2.090∗∗∗ 2.092∗∗∗ 2.100∗∗∗ 2.101∗∗∗ 2.103∗∗∗

(0.053) (0.053) (0.053) (0.054) (0.052) (0.054)
ω̂NI 0.548∗∗ 0.596∗∗∗ 0.663∗∗∗ 0.567∗∗ 0.616∗∗∗ 0.683∗∗∗

(0.225) (0.224) (0.221) (0.227) (0.226) (0.223)
ω̂I 2.234∗∗∗ 2.351∗∗∗ 2.442∗∗∗ 2.272∗∗∗ 2.368∗∗∗ 2.442∗∗∗

(0.588) (0.530) (0.484) (0.570) (0.511) (0.465)
α̂I 1.965∗∗∗ 2.044∗∗∗ 2.099∗∗∗ 1.948∗∗∗ 2.007∗∗∗ 2.046∗∗∗

(0.450) (0.401) (0.365) (0.424) (0.376) (0.340)
λ̂I −0.318∗∗∗ −0.331∗∗∗ −0.341∗∗∗ −0.241∗∗∗ −0.248∗∗∗ −0.253∗∗

(0.080) (0.074) (0.068) (0.054) (0.049) (0.045)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table 9: The estimation of (5.3) with the regret terms as in Models 2 and 3, specified in Appendix
J.1 in periods 16 to 48 for different values of the discount factor β. The CCP are defined as in
(6.1) and (6.2). Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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Estimation of (6.4) Estimation of (6.5)

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ 0.060∗∗∗ 0.060∗∗∗ 0.062∗∗∗ 0.070∗∗∗ 0.071∗∗∗ 0.073∗∗∗

(0.017) (0.017) (0.017) (0.053) (0.017) (0.017)
π̂ 2.066∗∗∗ 2.066∗∗∗ 2.068∗∗∗ 2.089∗∗∗ 2.090∗∗∗ 2.092∗∗∗

(0.052) (0.052) (0.052) (0.053) (0.053) (0.053)
ω̂NI 0.454∗∗ 0.499∗∗ 0.567∗∗∗ 0.548∗∗ 0.596∗∗ 0.662∗∗

(0.219) (0.218) (0.215) (0.225) (0.224) (0.221)
ω̂I −0.007 0.092 0.202 1.917∗∗∗ 2.020∗∗∗ 2.100∗∗∗

(0.224) (0.223) (0.221) (0.515) (0.464) (0.424)
α̂I 0.120 0.169∗∗ 0.212∗∗ 1.647∗∗∗ 1.714∗∗∗ 1.757∗∗∗

(0.086) (0.085) (0.084) (0.374) (0.332) (0.300)
λ̂I −0.295∗∗∗ −0.307∗∗∗ −0.317∗∗∗

(0.072) (0.066) (0.061)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table 10: The estimation of (5.3) with the regret terms as in (6.4) and (6.5) in periods 16 to 48 for
different values of the discount factor β. Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

Model 4 Model 5

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ −0.134∗∗∗ −0.131∗∗∗ −0.133∗∗∗ −0.134∗∗∗ −0.133∗∗∗ −0.131∗∗∗

(0.022) (0.022) (0.026) (0.021) (0.022) (0.021)
π̂ 1.474∗∗∗ 1.476∗∗∗ 1.478∗∗∗ 1.474∗∗∗ 1.476∗∗∗ 1.478∗∗∗

(0.048) (0.048) (0.048) (0.048) (0.048) (0.048)
ω̂NI 0.431 0.633 0.784∗∗ 0.415 0.635 0.799∗∗

(0.435) (0.393) (0.360) (0.470) (0.425) (0.388)
ω̂I 1.526∗∗∗ 1.600∗∗∗ 1.650∗∗∗ 1.670∗∗∗ 1.751∗∗∗ 1.804∗∗∗

(0.459) (0.415) (0.380) (0.499) (0.451) (0.413)
α̂NI −0.235 −0.075 0.042 −0.252 −0.074 0.057

(0.314) (0.278) (0.250) (0.351) (0.311) (0.280)
α̂I 1.189∗∗∗ 1.230∗∗∗ 1.252∗∗∗ 1.332∗∗∗ 1.380∗∗∗ 1.406∗∗∗

(0.329) (0.291) (0.262) (0.371) (0.329) (0.297)
λ̂NI 0.018 −0.002 −0.017 0.016 −0.002 −0.015

(0.043) (0.039) (0.036) (0.038) (0.035) (0.032)
λ̂I −0.163∗∗∗ −0.170∗∗∗ −0.174∗∗∗ −0.144∗∗∗ −0.150∗∗∗ −0.154∗∗

(0.048) (0.044) (0.040) (0.040) (0.049) (0.037)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table 11: The estimation of (5.3) with the regret terms as as in Model 4 and 5, specified in Ap-
pendix J.1 in periods 16 to 48 for different values of the discount factor β. The CCP are defined
as in (6.2) for both conditions. Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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J.2 Loss Aversion
Table 12 reports estimates for the model in (6.6) allowing for loss aversion. Loss aversion is defined as
the utility loss due to selling at a price below the entry price. The regret function including loss aversion,
R̃(sp,t, s f ,t) is defined as:

1{No Info}
(
ωNIsp,t + αNIs f ,t +λNIsp,t× s f ,t

)
+1{Info}

(
ωIsp,t + αIs f ,t +λIsp,t× s f ,t

)
+ψ1{yt<entry price}(yt− entry price)

Table 13 shows the same analysis allowing for CRRA risk preferences. In both models the coefficient
ψ multiplies the negative loss. Define R̃(sp,t, s f ,t; ρ, ψ) to include both regret and loss aversion as:

1. 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t; ρ)×U(sp,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t; ρ)×U(s f ,t; ρ)

)
+ ψ1{yt<entry price}(yt − entry price)

2. 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t × s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
+ ψ1{yt<entry price}(yt − entry price)

In these tables ψ is constrained to be non-negative, as participants would enjoy a loss otherwise.

Parameter β = 99.65% β = 99.60% β = 99.55%

Linear Utility
π̂ 1.789∗∗∗ 1.830∗∗∗ 1.829∗∗∗

(0.022) (0.022) (0.022)
ω̂NI 1.432∗∗∗ 1.255∗∗∗ 1.386∗∗∗

(0.464) (0.416) (0.378)
ω̂I 2.609∗∗∗ 2.240∗∗∗ 2.267∗∗∗

(0.477) (0.427) (0.388)
α̂NI 0.134 0.214 0.316

(0.341) (0.303) (0.274)
α̂I 1.761∗∗∗ 1.680∗∗∗ 1.682∗∗∗

(0.348) (0.309) (0.281)
λ̂NI −0.265 −0.247 −0.064

(0.053) (0.048) (0.043)
λ̂I −0.046∗∗∗ −0.050∗∗∗ −0.249∗∗∗

(0.005) (0.046) (0.044)
ψ̂ 0.000 0.000 0.000

(0.024) (0.024) (0.024)

N 111,613 111,613 111,613

Table 12: Estimation of regret and loss-aversion parameter in the risk-neutral case. Periods: 16
to 48. Standard errors are in parenthesis. ψ̂ is the estimated coefficient of loss aversion.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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Parameter β = 99.65% β = 99.60% β = 99.55%

Model 1
ρ̂ −0.134∗∗∗ −0.050∗∗ −0.048∗∗

(0.025) (0.024) (0.024)
π̂ 1.474∗∗∗ 1.695∗∗∗ 1.699∗∗∗

(0.063) (0.069) (0.070)
ω̂NI 0.431 0.805∗ 1.062∗∗

(0.435) (0.444) (0.407)
ω̂I 1.526∗∗∗ 1.974∗∗∗ 1.983∗∗∗

(0.459) (0.469) (0.429)
α̂NI −0.235 −0.030 0.119

(0.314) (0.314) (0.283)
α̂I 1.189∗∗∗ 1.530∗∗∗ 1.514∗∗∗

(0.329) (0.330) (0.298)
λ̂NI 0.018 −0.013 −0.035

(0.043) (0.050) (0.046)
λ̂I −0.163∗∗∗ −0.238∗∗∗ −0.237∗∗∗

(0.048) (0.056) (0.052)
ψ̂ 0.000 0.000 0.000

(0.026) (0.027) (0.027)
Model 2

ρ̂ −0.054∗∗ −0.045∗ −0.051∗∗
(0.025) (0.024) (0.024)

π̂ 1.691∗∗∗ 1.709∗∗∗ 1.693∗∗∗
(0.069) (0.070) (0.070)

ω̂NI 0.484 0.663 0.949∗∗
(0.537) (0.489) (0.443)

ω̂I 1.846∗∗∗ 2.443∗∗∗ 2.040∗∗∗
(0.569) (0.526) (0.470)

α̂NI −0.255 −0.138 0.109
(0.404) (0.363) (0.324)

α̂I 1.516∗∗∗ 1.983∗∗∗ 1.622∗∗∗
(0.427) (0.389) (0.344)

λ̂NI 0.017 0.004 −0.027
(0.052) (0.049) (0.044)

λ̂I −0.192∗∗∗ −0.260∗∗∗ −0.208∗∗∗
(0.059) (0.058) (0.051)

ψ̂ 0.000 0.000 0.000
(0.027) (0.027) (0.027)

N 111,613 111,613 111,613

Table 13: Estimation of models 1 and 2. Periods: 16 to 48. Standard errors are in parenthesis. ψ̂
is the estimated coefficient of loss aversion.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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K Instructions (English)

K.1 Market Task
K.1.1 General Instructions

Dear Participants,
You are participating in a decision making experiment which consists of a main part and a questionnaire.
If you follow the instructions carefully, you can earn a considerable amount of money depending on your
decisions and random events. Your earnings will be paid to you at the end of the experiment.

During the experiment you are not allowed to communicate with anybody. In case of questions,
please raise your hand. Then we will come to your seat and answer your questions. Any violation of this
rule excludes you immediately from the experiment and all payments.

In the end of the experiment the payment will be made in CASH.

K.1.2 The Task

In this experiment you will make decisions in 48 different tasks. Each task is separate and does not depend
on the previous tasks in any way. At the beginning of each task you receive 10 Euro. You can earn or lose
money depending on your choices. This money will be added or subtracted from 10 Euro.
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K.1.3 Structure of the Task

Imagine that you are participating in a financial market and that you should decide at each market (trial)
when to sell an object. At the beginning of each market (trial) you observe the price of an object for 15
periods (each period lasts 0.8 seconds). During these periods you can see how the price of the object
evolves before you enter the market which means that you cannot make any decisions during these 15
periods. The picture on the right shows the example of the price of the object varying during this starting
phase. When you see a vertical red line drawn across the graph, this means that the starting phase of
price observation is over. The current price of the object at this point corresponds to the price at which
you enter the market. On the top of the screen you can see the current price displayed in each period
(between e 0 and e 10).
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K.1.4 The Process Guiding the Value

In every market the value changes according to the following process. If the value in the current period
is V, then the value in the next period depends on 1) the current value V and 2) the randomly generated
number S. In particular, the value in the next period is equal to 0.6V + S, where S is a number between
0 and 4. This means that in each period any number between 0 and 4 (for example, 2.1789 or 3.51) has
equal probability of being chosen and will contribute to the future value. Therefore, any number in the
interval between 0.6V and 0.6V + 4 has equal probability to be the value of the object in the next period.
The table below shows some examples. Notice also that in each period the current value cannot be higher
than e 10 and lower than e 0.

CURRENT INTERVAL FOR THE VALUE IN THE NEXT PERIOD
VALUE MINIMAL VALUE MAXIMAL VALUE

e 2 e 1.2 e 5.2
e 4 e 2.4 e 6.4
e 6 e 3.6 e 7.6
e 8 e 4.8 e 8.8
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K.1.5 Entering the Market

After you have observed the evolution of the value for 15 periods the market stops at the red vertical line
and the button ENTRATA (ENTER) appears at the bottom of the screen (see top figure). When you press
the button you enter the market. This means that you “buy” the object at the current value and spend 2.59
as indicated at the top of the screen. You do not have a choice at which price to buy the object. Once you
press the button three things happen: 1) the Valore di entrata (Entry price) appears on top of the screen in
red (see bottom figure); 2) the value starts to change again and 3) the button changes to USCITA (EXIT).

K.1.6 Exiting the Market

The choice you make in the market is when to exit. This is the point at which you “sell” the object and
obtain the amount of money equal to the current value. Your profit in the market is the amount you
received at the exit minus the amount you paid when you entered. For example, if you entered at the
value of e 2.59 and exited at the value of e 2.68 your profit is 2.68 2.59 = 0.09, or 9 cents. If you entered
at the value of e 2.59 and exited at the value of e 2.45 your profit is 2.45 2.59 = -0.14, or minus 14 cents.
Thus, YOUR PROFIT CAN BE NEGATIVE. If you do not choose to exit before the closure of the market
at period 50, your profit will be calculated using the last period value of the object.
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K.1.7 Observed and Unobserved Future

There are two possible scenarios, which can happen after you press the USCITA (EXIT) button, or sell
the object. In one scenario you will observe the evolution of the value of the object until the market
closure (after period 50). In the other case you will not observe the evolution of the value. You will be
informed about which scenario you are in BEFORE the opening of each market. Before each market you
will observe a screen with two possible phrases: “INFO DOPO luscita” (Information after exit) or “NO
INFO aluscita” (No information after exit) (see figures). The former indicates that the market which you
will choose in next is the one with observable future value and the latter the market with non-observable
future value. To make sure that you remember which scenario you are in, the “INFO DOPO” and “NO
INFO signs will appear in the top left corner of the screen while the market is evolving.
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K.1.8 After Exiting the Market

After you exit the market, or press USCITA (EXIT) button, you will be provided with the information on
your profit. Top figure illustrates the scenario with observable future and the bottom figure with non-
observable future. In both cases, you will see the “Valore di uscita” (exit value) in blue and profit in green
(if positive) or red (if negative). In case of non-observable future you will be also asked to wait until the
market closure which is the same time it would have taken the market to reach closure if you could have
observed the future value. When the market closes you can press PROSEGUI (CONTINUE) button to
proceed to the next market.

K.1.9 Payment

You payment in the experiment is determined as follows. Before the experiment you are given an endow-
ment of e 10. After you finish choosing in all 50 markets, one of them will be chosen at random and the
profit that you made in that market will be added to your endowment. So, if you earned e 3 in the chosen
market, your total payment will be e 10 + e 3 = e 13. If your profit was -e 3, your total payment will be
e 10 - e 3 = e 7. Notice that your profit can change between -e 10 and e 10. Thus you can earn minimum
of e 0 and maximum of e 20.

K.1.10 Trial Markets

Before the beginning of the task you will have an opportunity to familiarize yourself with the interface in
6 trial markets which will look exactly the same as the actual markets but with TRIAL DI PROVA (TRIAL
MARKET) written on the screen. You will not be paid for your decisions in trial markets.
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L Instructions (Italian)

L.1 Market Task
L.1.1 Informazioni Generali

Gentile partecipante,
Prenderai parte ad un esperimento comprendente due compiti decisionali e un questionario. Se segui
le istruzioni attentamente potrai guadagnare una considerevole somma di denaro, che dipenderà dalle
decisioni che prenderai durante l’esperimento. La somma da te guadagnata ti verrà pagata al termine
dell’esperimento.

Ti chiediamo per favore di non comunicare con gli altri partecipanti durante l’esperimento. Nel
caso tu abbia delle domande, chiedi allo sperimentatore alzando la mano. A quel punto lo sperimentatore
verrà alla tua postazione e risponderà alle tue domande.

Al termine dell’esperimento il pagamento verrà effettuato in CONTANTI.

L.1.2 Compito di Scelta

In questo compito ti verrà chiesto di prendere una decisione in 48 diversi problemi. Ogni problema è a
se stante e non dipende dall’esito ottenuto nei problemi precedenti. All’inizio del compito riceverai una
somma di partenza pari a 10 euro. In ogni problema potrai guadagnare o perdere un certo ammontare di
denaro, il quale verrà sommato o sottratto a questi 10 euro.
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L.1.3 Struttura di Campito di Scelta

Immagina di essere all’interno di un mercato finanziario e di dover decidere, ad ogni trial, quando incas-
sare l’ammontare investito. Ogni mercato (trial) inizia osservando il valore dell’oggetto del tuo investi-
mento per 15 periodi (ogni period dura 0.8 secondi). Durante questa prima fase, vedrai come il valore
dell’oggetto si è evoluto nei precedenti 15 periodi del mercato. Durante questi 15 periodi non potrai pren-
dere nessuna decisione. La figura a destra ti mostra un esempio di come il valore dell’oggetto pu variare
durante questa prima fase. Quando la linea verticale rossa verrà raggiunta, significa che i 15 periodi della
fase di osservazione saranno terminati. A quel punto il valore corrente dell’oggetto corrisponderà al tuo
valore d’entrata nel mercato. La dicitura “Valore corrente” in alto ti mostra il valore dell’oggetto in ogni
periodo (tra e 0 e e 10).
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L.1.4 Il Processo Che Stabilisce il Valore

In ogni mercato il prezzo cambia seguendo un particolare processo. Dato il valore corrente in un periodo
del mercato, V, il valore nel periodo successivo (all’interno dello stesso mercato) dipende da 1) il valore
corrente, V, e 2) un numero generato in maniera random, S. In particolare, il valore nel periodo seguente
è uguale a 0.6V + S, dove S è un numero tra 0 e 4. Ciò significa che in ogni periodo qualunque numero tra
0 e 4 (per es. 2.1789 o 3.51) ha la stessa probabilità di essere scelto e di contribuire al valore futuro. Perciò
ogni numero nell’intervallo tra 0.6V e 0.6V + 4 ha la stessa probabilità di essere il valore dell’oggetto nel
prossimo periodo. La tabella qui di seguito riporta alcuni esempi. Nota che in ogni periodo il valore
corrente non può essere maggiore di e 10 né minore di e 0.

VALORE INTERVALLO DEL VALORE NEL PERIODO SUCCESSIVO
CORRENTE VALORE MINIMO VALORE MASSIMO

e 2 e 1.2 e 5.2
e 4 e 2.4 e 6.4
e 6 e 3.6 e 7.6
e 8 e 4.8 e 8.8
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L.1.5 Entrare nel Mercato

Dopo aver osservato 15 periodi il mercato si fermerà alla linea verticale rossa e il pulsante “ENTRATA”
apparirà in basso (vedi la figura in alto a destra). A questo punto per entrare nel mercato dovrai pre-
mere il tasto “ENTRATA.” Questo significa che effettivamente tu compri l’oggetto al valore corrente.
Nell’esempio indicato nella figura in alto spenderesti e 2.59. Non ti sarà possibile evitare di entrare nel
mercato e non potrai scegliere tu stesso a quale prezzo comprare l’oggetto. Una volta premuto il pulsante
“ENTRATA” il valore dell’oggetto comincerà a variare nuovamente e ti compariranno tre nuove infor-
mazioni a schermo (figura in basso a destra): 1) il “Valore di entrata” in rosso in alto a sinistra; 2) il valore
attuale dell’oggetto; 3) il pulsante “USCITA.”

L.1.6 Uscire dal Mercato (Uscita)

L’unica scelta a tua disposizione in ogni mercato sarà quando uscire. Questa scelta corrisponde al mo-
mento in cui decidi di vendere l’oggetto e intascare la somma di denaro pari al “Valore corrente.” Il tuo
guadagno nel mercato sarà la differenza tra il “Valore corrente” al momento di vendita dell’oggetto e il
“Valore di entrata.” Ad esempio, se tu entri quando l’oggetto vale e 2.59 ed esci al valore di e 2.68 il tuo
guadagno sarà pari a e 2.68 - e 2.59 = e 0.09, o 9 centesimi. Se invece entri al “Valore di entrata” pari
a e 2.59 ed esci quando il “Valore corrente” è e 2.45, il tuo guadagno sarà di e 2.45 - e 2.59 = e -0.14, o
un guadagno negativo di 14 centesimi. Perciò, IL TUO GUADAGNO NEL MERCATO PUO’ ESSERE
NEGATIVO. Se non esci prima della fine del mercato, che dura 50 periodi, il tuo guadagno sarà calcolato
usando il valore corrente nell’ultimo periodo.
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L.1.7 Futuro Osservato o non Osservato

Ci sono due possibili scenari alternativi che si possono realizzare dopo che hai cliccato sul pulsante “US-
CITA,” ovvero venduto l’oggetto. In uno scenario ti verrà mostrata l’evoluzione del valore dell’oggetto
fino alla chiusura del mercato (50esimo periodo). Nell’altro caso, dopo la vendita dell’oggetto non os-
serverai nulla, e un nuovo mercato inizierà. Sarai informato riguardo allo scenario in cui cui ti trovi
PRIMA dell’inizio di ogni mercato. Prima di ogni mercato, osserverai una schermata con due possibili
frasi: “INFO DOPO l’uscita” o “NO INFO all’uscita” (vedi le figure a destra). La prima dicitura indica
che ti trovi in un mercato in cui l’evoluzione del valore dopo la vendita è osservabile, mentre la seconda
dicitura ti informa che il futuro valore dell’oggetto non è osservabile. Per ricordarti in quale scenario ti
trovi, le diciture “INFO DOPO” e “NO INFO” sono mostrate in alto a sinistra della schermata in cui vedi
l’evoluzione del mercato.
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L.1.8 Dopo Essere Usciti dal Mercato

Dopo la tua uscita dal mercato, o dopo aver premuto il pulsante “USCITA,” riceverai informazioni sul
tuo guadagno. La figura in alto a destra ti mostra lo scenario “INFO DOPO,” dove il futuro è osservabile,
mentre la figura in basso ti mostra lo scenario “NO INFO,” dove il futuro non è osservabile. In entrambi
i casi, in alto a destra visualizzerai il “Valore di uscita” in blu, ed il tuo “Guadagno” in verde se positivo
e in rosso se negativo. Inoltre, nello scenario Info Dopo dovrai attendere il termine del mercato, che
corrisponde al tempo che il mercato avrebbe impiegato per raggiungere la sua naturale conclusione (50
periodi) se tu non avessi venduto l’oggetto prima. Raggiunto l’ultimo periodo potrai esaminare la tua
prova; per accedere al prossimo mercato dovrai cliccare sul pulsante “Prosegui.”

L.1.9 Pagamento

Il tuo guadagno nell’esperimento viene calcolato come segue. Prima dell’esperimento ti vengono dati
e 10 a disposizione. Quando hai finito di scegliere in tutti i 48 mercati, uno di questi verrà scelta in modo
casuale e il guadagno che tu fai in quel mercato sarà sommato ai e 10 di partenza. Perciò, se tu guadagni
e 3 nel mercato scelto, il tuo pagamento totale sarà e 10 + e 3 = e 13. Nel caso di un guadagno negativo,
ad esempio -e 3, il tuo pagamento totale sarà e 10 - e 3 = e 7. Nota che il tuo guadagno può variare tra
-e 10 e +e 10, perciò il tuo pagamento totale varia tra un minimo di e 0 e un massimo di e 20.

L.1.10 Mercati di Prova

Prima dell’inizio del compito ti viene data l’opportunità di familiarizzare con l’interfaccia in 6 mercati di
prova che assomigliano in tutto e per tutto ai mercati reali a cui parteciperai successivamente, con l’unica
differenza che in questi mercati la dicitura TRIAL DI PROVA compare sullo schermo. Non verrai pagato
per le tue decisioni nei mercati di prova.
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L.2 Holt and Laury Task (Italian)
DESCRIZIONE DELLA SECONDA PARTE DELL’ESPERIMENTO

In questa parte dell’esperimento ti verranno presentate 10 coppie di lotterie. Ogni lotteria ti garantisce
di ottenere, con una certa probabilità, una tra due possibili vincite. Per ogni coppia di lotterie, il tuo com-
pito sarà quello di scegliere la lotteria che preferisci giocare. Di seguito ti verrà presenata una descrizione
dettagliata del compito. Premere il pulsante OK per continuare.

DESCRIZIONE DEL COMPITO
Nella parte destra dello schermo sono riportate le 10 coppie di lotterie. Ci sono 10 righe che corrispon-

dono alle 10 scelte che dovrai effettuare. Ogni riga rappresenta una scelta tra due lotterie.
Per effettuare le tue scelte sarà sufficiente cliccare in corrispondenza della lotteria che preferisci. Una

volta che avrai scelto una lotteria, essa diventerà di colore rosso.
Dopo che avrai effettuato le tue 10 scelte, il computer selezionerà in modo casuale una delle 10 righe.

Infine, la lotteria da te scelta verrà giocata dal computer e tu riceverai la vincita corrispondente all’esito
della lotteria. La tua vincita ti verrà mostrata a schermo dopo che avrai completato e validato tutte le tue
scelte.

Ricorda, l’ammontare di denaro rappresentato nelle diverse lotterie è reale, perciò sarai pagato/a in
base alle scelte che effettuerai e secondo le regole appena descritte.

Se hai qualche dubbio sulla procedura ed il metodo di pagamento sentiti libero/a di chiedere chiari-
menti allo sperimentatore.
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