Self-Exciting Jumps, Learning, and Asset Pricing Implications

Abstract

The paper proposes a self-exciting asset pricing model that takes into account co-jumps between prices and volatility and self-exciting jump clustering. We employ a Bayesian learning approach to implement real time sequential analysis. We find evidence of self-exciting jump clustering since the 1987 market crash, and its importance becomes more obvious at the onset of the 2008 global financial crisis. It is found that learning affects the tail behaviors of the return distributions and has important implications for risk management, volatility forecasting and option pricing.

Keywords: Self-Excitation, Jump Clustering, Tail behaviors, Parameter Learning, Sequential Bayes Factor, Excess Volatility, Volatility Forecasting, Option Pricing

JEL Classification: C11, C13, C32, G12
The financial meltdown of 2008 and the European debt crisis of 2010 to 2012 have impacted financial markets worldwide and have had far-reaching consequences for the world economy. These market turmoil raise questions about how likely extreme events are and how they can be modeled. Recent empirical studies find that a big jump in asset prices tends to be associated with an abrupt move in asset volatility, a phenomenon labeled as co-jumps of prices and volatility (Eraker, Johannes and Polson, 2003; Eraker, 2004; Jacod and Todorov, 2010; Todorov and Tauchen, 2011). A further intriguing empirical observation is that an extreme movement in markets tends to be followed by another extreme movement, resulting in self-exciting jump clustering (Carr and Wu, 2011; Aït-Sahalia, Cacho-Diaz and Laeven, 2013).

In the present paper, we propose a self-exciting asset pricing model where both co-jumps of prices and volatility and self-exciting jump clustering are allowed. In our specification, negative jumps play a crucial role. In particular, whenever there is a negative jump in asset returns, it is simultaneously passed on to both diffusion variance and the jump intensity. Therefore, the likelihood of future extreme events can be enhanced by either jumps in diffusion volatility or increases in the jump intensity or both. The importance of negative jumps is consistent with the well documented empirical regularity in financial markets that economic agents react more strongly to bad macroeconomic surprises than to good ones (Andersen et al., 2007). Our model is quite flexible, and has closed-form conditional expectations of the volatility components, making it convenient to use in volatility forecasting and risk management.

Traditional asset pricing theories usually have a strong assumption that endows economic agents with more precise information of the model and parameters than that available to econometricians. While this approach simplifies model specification and inference, it ignores the need for updating the long-run components of uncertainty, and may lead to underestimation of risks encountered by economic agents. Hansen (2007) makes the following argument:

*Should we put econometricians and economic agents on comparable footing, or should we endow economic agents with much more refined knowl-
edge? (p.1) … As the statistical problem that agents confront in our models is made complex, rational expectations’ presumed confidence in their knowledge of the probability specification becomes more tenuous. (p.2)

Given that our model has a complex structure and contains multiple unobserved dynamic factors, we take a different route and consider a Bayesian economic agent who faces the same belief updating problems as confronted by the econometrician. She takes parameters, latent states and models as unknowns and uses Bayes rule to update her beliefs sequentially over time as market information becomes available. This may lead to differences between *ex ante* beliefs and *ex post* outcomes, and could have important asset pricing implications.

Statistical learning and its implications for asset pricing have attracted an enormous amount of attention. A recent survey has been provided by Pastor and Veronesi (2009). One of the key implications is that Bayesian learning generates persistent and long-term changes to the agents’s beliefs, which have important influence on stock valuation, risk measures, and time series predictability. Among others, Timmerman (1993, 1996) and Lewellen and Shanken (2002) show that learning may generate excess volatility and predictability in stock returns. Veronesi (2004) studies implications of learning about a peso state in a Markov switching model. Pastor and Veronesi (2003, 2006) investigate stock valuation and learning about profitability. Cogley and Sargent (2008) provide an alternative explanation of the observed equity risk premium from the learning perspective. Benzoni, Collin-Dufresne and Goldstein (2011) show that updating of beliefs on jump parameters may cause permanent shifts in option prices.

However, most of the existing studies only focus on learning about either state variables or a single parameter. In contrast, in this paper, we concurrently learn about parameters and state variables. Simultaneous learning in an asset pricing model with a complex structure remains difficult, as the large number of unknowns complicates inference and slows down the learning process. We implement Bayesian learning on our self-exciting model by following the marginalized resample-move approach proposed by Fulop and Li (2013), and then study the implications of learning for risk measures,
volatility forecasting and option pricing. To highlight the effects of parameter learning and uncertainty, we compare most results in three cases: (1) parameter learning and uncertainty are present; (2) only parameter uncertainty is present – the full-sample posterior distributions of parameters are used in analysis; and (3) both parameter learning and uncertainty are ignored – the full-sample posterior means of parameters are used in analysis. Recently, similar to our approach, several papers have investigated the implications for asset pricing when the agent jointly learns about parameters and states. Johannes, Korteweg and Polson (2014) investigate sequential learning and return predictability. Johannes, Lochstoer and Mou (2014) focus on learning about consumption dynamics. Collin-Dufresne, Johannes and Lochstoer (2013) study parameter learning in a general equilibrium setup and its implications for asset pricing.

We use the S&P 500 index for inference. The data range from January 2, 1980 to December 31, 2012 and have 8,325 daily observations in total. This dataset includes the 1987 market crash, the 1997 Asian financial crisis, the 2002 dot-com bubble burst, the 2008 global financial crisis, and the recent European debt crisis of 2010 to 2012. A number of important results emerge from our empirical analysis.

First, we find that the evidence of co-jumps between diffusion volatility and asset returns is robust since the market crash of 1987. However, while the data call for co-jumps in returns and jump intensities, the parameters driving the jump intensity are hard to identify. The self-exciting jump intensity has become more important since the 2008 global financial crisis. We find that the speed of learning for the diffusion parameters is remarkably faster than that for the jump parameters. The slow speed of learning and large uncertainty on the jump parameters can be explained by the low arrival rate of extreme events.

Second, learning generates excess volatility, and does so through the jump component. For example, in the full self-exciting model, the average annualized total return volatility is about 18%, of which the jump volatility is about 9.4%. However, if we ignore learning and simply use the full-sample posterior means of the parameters, the average annualized total volatility decreases to 16.6%. This decrease is only from the
jump volatility as the diffusion volatility is approximately the same as before, whereas the jump volatility reduces to about 7.0%. Having investigated the higher conditional moments of the predictive return distribution, we find that learning makes the predictive distribution more left skewed and leptokurtic. Furthermore, we observe a strong asymmetry in the amount of learning over the tails: the left tail of the return distribution can be well pinned down after the 1987 market crash, whereas there is a great deal of uncertainty on the right tail behavior throughout the sample.

Third, from a volatility forecasting perspective, the self-exciting jump intensity is found to be important. In comparison with the more restricted specifications, the full self-exciting model always generates smaller RMSEs and larger Mincer-Zarnowitz R^2s, whether learning is present or not. Learning also has an important implication for volatility forecasting. For example, when learning is taken into account, the RMSE from the full model is about 4.9%, whereas it reduces to 4.3% when the full-sample posterior means of parameters are used. This comparison allows us to quantify the cost of not knowing parameters in volatility forecasting. However, similar to Hansen and Lunde (2005), we find that the GARCH(1,1) model cannot be beaten by the more sophisticated self-exciting models in volatility forecasting.

Fourth, learning and self-exciting jumps have important implications for option pricing. In general, we find that the existence of the self-exciting jump intensity makes the model more flexible in capturing high levels of volatility during periods of financial crisis. This feature is particularly important in pricing short maturity out-of-money put and/or in-the-money call options. Furthermore, learning has a first-order effect on pricing in-the-money and out-of-money short maturity call options, and its effect on the deep out-of-money call options is even stronger than on the deep in-the-money ones. This is closely related to the fact that learning alters the tail behaviors and introduces even larger uncertainty on the right tail of return distributions. Our results are consistent with Benzoni, Collin-Dufresne and Goldstein (2011) who argue that updating of beliefs on jump parameters can cause permanent shifts in option prices.

The last set of results relates model-implied option prices to observed option prices
between January 1996 and December 2012. First, we find that the model with self-exciting jumps fits option prices better than a specification excluding this channel, especially for short term out-of-the-money puts and during periods of financial crisis. Second, we document that updates in model-implied option prices due to parameter learning are significantly related to observed option prices, even after controlling for model-implied option prices computed with the fixed parameter estimates. These results extend those in Johannes, Lochstoer and Mou (2014) to option prices, and suggest that parameter learning is a significant issue for option market participants.

Our work makes two contributions to the literature. First, we conduct a real-time sequential analysis to examine the importance of self-exciting jump intensity. Interestingly, even though the data call for simultaneous jumps between asset returns and jump intensities from the 1987 market crash onwards, the self-exciting jump intensity becomes more important since the onset of 2008 global financial crisis. Second, we provide novel results on the implications of learning for risk measures, volatility forecasting and option pricing. Such results are quite relevant in practice as the agent needs to update her beliefs sequentially over time when new market information arrives.

The rest of the paper is organized as follows. Section 1 builds the self-exciting asset pricing model. Section 2 discusses Bayesian learning and belief updating. Section 3 implements sequential learning. Section 4 investigates asset pricing implications. Finally, Section 5 concludes the paper. Appendix collects technical details of the paper.

1 The Self-Exciting Asset Pricing Model

Under a probability space \((\Omega, \mathcal{F}, P)\) and the complete filtration \(\{\mathcal{F}_t\}_{t \geq 0}\), the dynamics of asset price, \(S_t\), are governed by the following time-changed stochastic process,

\[
\ln S_t / S_0 = \int_0^t \mu_s ds + \left(W_{T_{1,t}} - k_W(1)T_{1,t}\right) + \left(J_{T_{2,t}} - k_J(1)T_{2,t}\right),
\]

(1)
where μ_t captures the instantaneous mean rate, $W_{T_{1,t}}$ is a time-changed Brownian motion, $J_{T_{2,t}}$ is a time-changed jump component, which is time-inhomogeneous, $T_{i,t}$ represents business time and will be discussed below, and $k_W(1)$ and $k_J(1)$ are convexity adjustments for the Brownian motion and the time-homogeneous jump process, respectively, and can be computed from their respective cumulant exponents: $k(u) = \frac{1}{t} \ln \left(E[e^{uL_t}] \right)$, where L_t is either W_t or J_t.

The dynamics in (1) indicate two distinct types of shocks to asset returns: small continuous shocks, captured by a Brownian motion, and large discontinuous shocks, generated by a jump component. In this paper, the time-homogeneous jump component is modeled by the Variance Gamma process of Madan, Carr and Chang (1998), which is a stochastic process in the class of infinite activity Lévy processes. The jump component is important for capturing extreme events and generating return non-normality and implied volatility smile/skew. The empirical study by Li, Wells and Yu (2008) shows that the infinite activity Lévy models outperform the affine Poisson jump models. Furthermore, the recent nonparametric works by Aït-Sahalia and Jacod (2009, 2011) and Lee and Hannig (2010) provide strong evidence on infinite activity jumps in asset returns.

The Variance Gamma process can be constructed through subordinating a Brownian motion with drift using an independent subordinator

$$J_t = \omega S_t + \eta \tilde{W}(S_t),$$

where \tilde{W}_t is a standard Brownian motion, and S_t is a Gamma subordinator $S_t = \Gamma(t; 1, v)$ with unit mean rate and variance rate of v. Alternatively, it can be decomposed into the upside component, J_t^+, and the downside component, J_t^-, such that

$$J_t = J_t^+ + J_t^- = \Gamma_u(t; \mu_u, v_u) - \Gamma_d(t; \mu_d, v_d),$$

where Γ_u is a Gamma process with mean rate μ_u and variance rate v_u, Γ_d a Gamma
process with mean rate μ_d and variance rate v_d, and

$$
\begin{align*}
\mu_u &= \frac{1}{2} \left(\sqrt{\omega^2 + 2\eta^2/v + \omega} \right), \quad v_u = \mu_u^2 v, \\
\mu_d &= \frac{1}{2} \left(\sqrt{\omega^2 + 2\eta^2/v - \omega} \right), \quad v_d = \mu_d^2 v.
\end{align*}
$$

The decay rates and the fatness of the right and the left tails are governed by $\lambda_+ = \mu_u/v_u$ and $\lambda_- = \mu_d/v_d$, respectively.

The stochastic business time, $T_{i,t} \equiv \int_0^t V_{i,s-}ds$, captures the randomness of the diffusion variance ($i = 1$) or of the jump intensity ($i = 2$) over a time interval $[0,t]$ (Clark, 1973; Carr et al., 2003; Carr and Wu, 2004). $V_{i,t}$, which should be nonnegative, is the instantaneous variance rate ($i = 1$) or the jump arrival rate ($i = 2$), both of them reflecting the intensity of economic activity and information flow. Stochastic volatility or stochastic jump intensity is generated by replacing calendar time t with business time $T_{i,t}$. The time-changed jump component has the decomposition of $J_{T_{2,t}} = J_{T_{2,t}}^+ + J_{T_{2,t}}^-$ and its convexity adjustment term is $k_J(1)T_{2,t} = \left(k_J^+(1) + k_J^-(1) \right)T_{2,t}$.

Recent empirical studies find that a big negative jump in asset prices tends to be associated with an abrupt move in asset variance, i.e., co-jumps of prices and volatility (Jacod and Todorov, 2010; Todorov and Tauchen, 2011). Furthermore, market turmoil seems to indicate that an extreme movement in markets tends to be followed by another extreme movement, resulting in self-exciting jump clustering (Carr and Wu, 2011; Aït-Sahalia, Cacho-Díaz and Laeven, 2013). Thus, we propose to allow negative return jumps entering into both diffusion variance and the jump intensity and model the instantaneous variance rate, $V_{1,t}$, and the jump arrival rate, $V_{2,t}$, as follows,

$$
\begin{align*}
\text{d}V_{1,t} &= \kappa_1(\theta_1 - V_{1,t})dt + \sigma_{11}\sqrt{V_{1,t}}dZ_t - \sigma_{12}dJ_{T_{2,t}}^-, \\
\text{d}V_{2,t} &= \kappa_2(\theta_2 - V_{2,t})dt - \sigma_{22}dJ_{T_{2,t}}^-.
\end{align*}
$$

Equation (6) captures stochastic variance of the continuous shocks, where Z_t is a standard Brownian motion and is allowed to be correlated to W_t with a correlation
parameter ρ in order to accommodate the diffusion leverage effect. Diffusion variance also depends on the negative return jumps, indicating that there will be an abrupt increase in $V_{1,t}$ once there is a negative jump in asset return. Equation (7) models the stochastic intensity of jumps, which is a mean-reverting pure jump process. The specification implies that the jump intensity relies only on the negative jumps in asset returns. Dependence of diffusion variance and the jump intensity on negative return jumps is consistent with the well-documented empirical regularity in financial markets that investors react more strongly to bad macroeconomic surprises than to good surprises (Andersen et al., 2007).

The conditional expectation of the jump intensity (7) can be found as follows\(^1\)

$$E[V_{2,t}|\mathcal{F}_0] = \frac{\kappa_2 \theta_2}{\kappa_2 - \sigma_2 \mu_d} \left(1 - e^{-(\kappa_2 - \sigma_2 \mu_d)t} \right) + e^{-(\kappa_2 - \sigma_2 \mu_d)t} V_{2,0},$$

(8)

from which its long-run mean can be obtained by letting $t \to +\infty$,

$$\bar{V}_2 = \frac{\kappa_2 \theta_2}{\kappa_2 - \sigma_2 \mu_d}.$$

(9)

Solutions (8) and (9) indicate that the conditional expectation of the jump intensity is a weighted average between the current intensity, $V_{2,0}$, and its long-run mean, \bar{V}_2, and the speed of mean reversion of the jump intensity is controlled by $\kappa_2 - \sigma_2 \mu_d$. Using (8) and (9), the conditional expectation of diffusion variance (6) can also be found

$$E[V_{1,t}|\mathcal{F}_0] = e^{-\kappa_1 t} V_{1,0} + \theta_1 \left(1 - e^{-\kappa_1 t} \right) + \sigma_1 \mu_d \left[\frac{1 - e^{-\kappa_1 t}}{\kappa_1} \bar{V}_2 + e^{-(\kappa_2 - \sigma_2 \mu_d)t} - e^{-\kappa_1 t} \left(\bar{V}_2 - V_{2,0} \right) \right],$$

(10)

\(^1\)Define $f(t) = e^{\kappa_2 t} E[V_{2,t}|V_{2,0}]$. $f(t)$ can be analytically found by solving the ODE

$$f'(t) = \sigma_2 \mu_d f(t) + \kappa_2 \theta_2 e^{\kappa_2 t},$$

from which we obtain the conditional expectation (8).
The conditional expectation of diffusion variance consists of two parts, one arising from the square-root diffusion part (the first two terms on the right-hand side in (10)) and the other from negative return jumps (the last term on the right-hand side in (10)). If the jump intensity is constant, the contribution of jumps to the conditional diffusion variance becomes constant over time.

The above model (hereafter SE-M1) indicates that time-varying aggregate return volatility can be traced back to two sources: one arising from time-varying diffusion volatility and the other from the time-varying jump intensity. In this model, the self-exciting behavior is captured through two channels: (i) a negative jump in asset return pushes up the jump intensity, which in turn triggers more jumps in future asset returns; (ii) a negative jump in asset return makes diffusion volatility jump, and this high diffusion volatility tends to entertain big movements in future asset returns. In contrast, the existing literature allows only one of these channels at a time and is unable to compare their relative importance. In particular, Eraker, Johannes, and Polson (2003) and Eraker (2004) allow for co-movement of return jumps and diffusion volatility through a synchronized Poisson process, while Aït-Sahalia, Cacho-Diaz, and Laeven (2011) and Carr and Wu (2010) link only the jump intensity to jumps in asset returns.

One of the central questions we are concerned with in the present paper is the dynamic structure of extreme movements in asset returns. In order to explore the issue, we also investigate the following restricted models:

- **SE-M2**: the self-exciting model where diffusion volatility does not jump, \(\sigma_{12} = 0 \), and the total volatility jump and the self-exciting effect are only from the time-varying jump intensity;

- **SE-M3**: the self-exciting model where the jump intensity is constant, \(\kappa_2 = 0 \), \(\sigma_2 = 0 \), and the total volatility jump is only from the diffusion
volatility process;

- \textbf{SE-M4}: the model that has no volatility jumps and no self-exciting effect, \textit{i.e.}, $\sigma_{12} = 0$, $V_{2,0} = 1$, $\kappa_2 = 0$, and $\sigma_2 = 0$.

2 Bayesian Learning and Belief Updating

Following the suggestion by Hansen (2007), we assume that the agent in the market is Bayesian and faces the same belief updating problem as the econometrician. She simultaneously learns about parameters, hidden states and models sequentially over time when new market observations arrive.

For a given self-exciting model M_i, there is a set of unknown static parameters, Θ, and a vector of the hidden states, $x_t = \{V_{1,t}, V_{2,t}, J_{u,t}, J_{d,t}\}$, where $V_{1,t}$ denotes diffusion variance, $V_{2,t}$ the jump intensity, $J_{u,t}$ the upside jump, and $J_{d,t}$ the downside jump. The market observations include a time series of (log) stock prices, $y_{1:t} = \{\ln S_s\}_{s=1}^t$. For each time t, Bayesian learning consists of forming the joint posterior distribution of the hidden states and the static parameters based on information available up to time t, $p(x_t, \Theta | y_{1:t}, M_i) = p(x_t | \Theta, y_{1:t}, M_i)p(\Theta | y_{1:t}, M_i)$, \hspace{1cm} (12)

where $p(x_t | y_{1:t}, \Theta, M_i)$ solves the state filtering problem, and $p(\Theta | y_{1:t}, M_i)$ addresses the parameter inference issue. Updating of agent’s beliefs therefore corresponds to updating this posterior distribution.

Our self-exciting models are non-linear and non-Gaussian. Therefore, we design a hybrid particle filter, which is capable of efficiently handling outliers (see Appendix A for the detailed algorithm). The decomposition (12) suggests a hierarchical framework for model inference and learning. At each time, for a given set of model parameters proposed from some proposal, we can run a particle filter, which delivers the empirical distribution of the hidden states, $p(x_t | \Theta, y_{1:t}, M_i)$ and the estimate of the likelihood, $p(y_{1:t} | \Theta, M_i)$ that can be used for parameter learning, $p(\Theta | y_{1:t}, M_i) \propto$
To achieve this aim, we rely on the marginalized resample-move approach developed by Fulop and Li (2013). The key point here is that the likelihood estimate from the particle filter is unbiased (Del Moral, 2004). Further, in contrast to traditional Bayesian methods, this approach can be easily parallelized, making it computationally fast and convenient to use in practice.

This particle-based learning approach provides as a natural output an estimate of the marginal likelihood of the new observation

$$p(y_{1:t} | y_{1:t-1}, M_i) = \int p(y_t | x_t, \Theta, y_{1:t-1}, M_i)p(x_t | \Theta, y_{1:t-1}, M_i)p(\Theta | y_{1:t-1}, M_i) dx_t d\Theta, \quad (13)$$

which summarizes model fit over time (model learning) and can be used to construct a sequential Bayes factor for sequential model comparison. For any models M_1 and M_2, the Bayes factor at time t has the following recursive formula

$$BF_t = \frac{p(y_{1:t} | M_1)}{p(y_{1:t} | M_2)} = \frac{p(y_t | y_{1:t-1}, M_1)}{p(y_t | y_{1:t-1}, M_2)}BF_{t-1}, \quad (14)$$

which is completely out-of-sample, and can be used for sequential comparison of both nested and non-nested models.

Bayesian learning and belief updating generate persistent and long-term shocks to the agent beliefs. To see this, define $\theta_t = E[\theta | y_{1:t}]$ as the posterior mean of a parameter θ obtained using information up to time t. The iterated expectation indicates

$$E[\theta_{t+1} | y_{1:t}] = E[E[\theta | y_{1:t+1}] | y_{1:t}] = E[\theta | y_{1:t}] = \theta_t. \quad (15)$$

Therefore, θ_t is a martingale, indicating that shocks to the agent beliefs on this parameter are not only persistent but also permanent. Thus, in Bayesian learning, the agent gradually updates her beliefs that the value of a parameter is higher or lower than that previously thought and/or that a model fits the data better than the other.

The Bayesian learning process is initialized by an agent’s initial beliefs or the prior distributions. We move the fixed parameters in one block using a Gaussian mixture
proposal. Given that in our marginalized approach the likelihood estimate is a complicated nonlinear function of the fixed parameters, conjugate priors are not available. In general, we assume normal distributions for the priors. However, if a parameter under consideration has a finite support, we take a truncated normal as its prior. The hyper-parameters of the prior distributions are calibrated using a training sample, that is, an initial dataset is used to provide information on the location and scale of the parameters. This procedure is initialized by priors with very large variances. The training-sample approach is a common way to generate the objective prior distributions (O’Hagan, 1994). We find that most of model parameters, except those controlling the self-exciting jump intensity (κ_2 and σ_2), are not so sensitive to the selection of the priors. Therefore, based on information from the training sample, we give relatively informative priors to κ_2 and σ_2, but give quite flat priors to other parameters. See Appendix B for details of the selection of functional forms and hyper-parameters for the priors, and Appendix C for Monte Carlo and sensitivity studies.

3 Information Flow and Learning

Our Bayesian agent learns about and updates her beliefs on fixed parameters, hidden states, and models as information arrives sequentially over time. We initialize the Bayesian learning process using the priors described in Appendix B. Section 3.1 presents the data used for inference. Section 3.2 implements model learning and sequential model comparison, and Section 3.3 presents results on parameter and state learning. More statistical results can be found in Appendix D.

3.1 The Data

The data used are the S&P 500 stock index ranging from January 2, 1980 to December 31, 2012, with 8,325 daily observations in total. This dataset contains the recent European debt crisis of 2010 to 2012, the global financial crisis in late 2008, the market crash on October 19, 1987 (-22.9%), and other market turmoils. The upper panel of
Figure 1: S&P 500 Index Returns and Realized Volatility

Note: The figure plots S&P 500 index returns (upper panel) and realized volatility (lower panel). The data range from January 2, 1980 to December 31, 2012. In total, there are 8,325 daily observations. Realized volatility at each time is computed from the previous 21-day (one-month) returns at each point in time, $RV_t = \sqrt{\frac{252}{21} \sum_{j=0}^{20} R^2_{t-j}}$.

Figure 1 plots the S&P 500 index returns. A striking feature of the data is the high non-normality of the return distribution, with a skewness of -1.2 and a kurtosis of 29.7. The Jarque-Bera test easily rejects the null hypothesis of normality of returns with a very small p-value (less than 0.001).

The lower panel presents realized volatility (RV_t), computed from the previous 21-day (one-month) returns at each time, $RV_t = \sqrt{\frac{252}{21} \sum_{j=0}^{20} R^2_{t-j}}$. The simultaneity of abrupt moves in realized volatility and extreme events in returns is very clear, and turbulent periods tend to be realized through many consecutive large up and down return moves. What is hard to gauge is the extent to which these are due to high diffusion volatility or persistent fat tails. The model inference that follows will shed more light on this issue from a Bayesian learning perspective.
3.2 Model Learning and Sequential Comparison

In the Bayesian framework, model comparison can be made by the Bayes factor, defined as the ratio of the marginal likelihoods of two models. This Bayesian approach penalizes unnecessarily complicated models and is completely out-of-sample. Table 1 presents the full information Bayes factors (in log) for the four models investigated using all available data. We find that the SE-M1 model and the SE-M3 model, both of which allow negative return jumps to affect diffusion volatility, outperform the SE-M2 model and the SE-M4 model that exclude this channel. For example, the log Bayes factors between the SE-M1 model and the SE-M2/SE-M4 models are about 19.9 and 25.5, respectively, and the log Bayes factors between the SE-M3 model and the SE-M2/SE-M4 models are about 8.4 and 14.1, respectively. Thus, there is decisive evidence in the data for negative return jumps affecting diffusion volatility and co-jumps of returns and volatility. Furthermore, there exists very strong evidence for negative return jumps affecting the jump intensity. Comparing the SE-M1 model, where both self-exciting channels are allowed, to the SE-M3 model where only diffusion volatility is influenced by return jumps, the former is very decisively preferred with a log Bayes factor of 11.4.

The above batch comparison does not tell us how market information accumulates and how different models perform over time. Does one model outperform another in a certain state of economy, but underperform it in other states? Our Bayesian learning approach has a recursive nature and produces the sequential marginal likelihood at each time for each model. We can then construct the sequential Bayes factors and use them for real-time model analysis and comparison.

Figure 2 presents the sequential log Bayes factors that give us a richer picture of model performance over time. A number of important features emerge. First, when market information is scarce in the beginning of the sample, the SE-M1 model performs nearly the same as the other three models despite that it is the best model according

2In Bayesian statistics, Jeffreys (1961) gave a scale for interpretation of Bayes factors. For two given models, M_1 and M_2, if the value of the log Bayes factor is between 0 and 1.1, M_1 is barely worth mentioning; if it is between 1.1 and 2.3, M_1 is substantially better than M_2; if it is between 2.3 and 3.4, M_1 is strongly better than M_2; if it is between 3.4 and 4.6, M_1 is very strongly better than M_2; and if it is larger than 4.6, M_1 is decisively better than M_2.

15
Table 1: Log Bayes Factors for the Full Sample

<table>
<thead>
<tr>
<th></th>
<th>SE-M1</th>
<th>SE-M2</th>
<th>SE-M3</th>
<th>SE-M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-M1</td>
<td>0.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SE-M2</td>
<td>19.9</td>
<td>0.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SE-M3</td>
<td>11.4</td>
<td>-8.42</td>
<td>0.00</td>
<td>—</td>
</tr>
<tr>
<td>SE-M4</td>
<td>25.5</td>
<td>5.64</td>
<td>14.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: The table presents the log Bayes factor of the column model to the row model using all available S&P 500 index data from January 2, 1980 to December 31, 2012. The interpretation of values in the table is given in Footnote 2.

Second, as the market information accumulates over time, in particular, after the 1987 market crash, the data strongly favor the SE-M1 model that allows negative return jumps to affect both diffusion volatility and jump intensity.

Third, the relative importance of diffusion volatility jumps and self-exciting jump intensities changes over time. This can be seen by comparing the SE-M2 model with the SE-M3 model at the top-right panel of Figure 2. The self-exciting jump intensity is more important over the period from 1992 up to 2001, whereas diffusion volatility jumps begin to dominate after 2001. Furthermore, the lower-left panel presents the sequential comparison between the SE-M1 model and the SE-M3 model. We clearly see the importance of introducing the self-exciting jump intensity after the 87 market crash, and it becomes even more important after Lehman Brother’s bankruptcy in September 2008, as the log Bayes factor very quickly moves up to about 9.0 from about 3.0.

Fourth, most of move-ups of Bayes factors happen during market turmoils. This phenomenon is particularly obvious during the 1987 market crash and the 2008 global financial crisis in and indicates that the market participants mainly update their beliefs on model specifications during market turmoils.
3.3 Parameter and State Learning

Different from batch estimation, our Bayesian learning approach provides us with the whole picture of how parameter posteriors evolve over time with respect to accumulation of information. Figure 3 presents the sequential learning of the fixed parameters in the SE-M1 model, which is the best-performing one. For each parameter, the posterior mean (solid line) and the (5, 95)% credible interval (dashed lines) are reported. We group the model parameters into the diffusion parameter set, $\Theta_D = (\kappa_1, \theta_1, \sigma_{11}, \rho, \sigma_{12})$, and the jump parameter set, $\Theta_J = (\omega, \eta, v, \kappa_2, \sigma_2)$.

There are a number of notable features. First, the agent’s beliefs are quite uncertain in the beginning before the 1987 market crash with large credible intervals for all parameters. Then, as information accumulates, the credible intervals of most parameters become narrower and narrower over time and parameter uncertainty diminishes.
Figure 3: **Parameter Learning**

Note: The figure presents sequential parameter estimates over time in the SE-M1 model using the S&P 500 index starting from January 2, 1980 up to December 31, 2012. In each panel, the posterior means (the solid line) and (5, 95)% quantiles (the dashed lines) are reported.
Second, the speed of learning is quite different across parameters. Learning is remarkably faster for the diffusion parameters than for the jump parameters. We can see that after the 1987 market crash, most of the diffusion parameters are quickly pinned down and have narrow credible intervals. However, for the jump parameters, their credible intervals shrink very slowly. This is particularly obvious for parameters controlling the self-exciting jump intensity, κ_2 and σ_2. The credible intervals of these two parameters barely narrow down over time. We observe a sudden tightening of the credible interval of κ_2 only from the 2008 global financial crisis onwards and a little shrinkage of the σ_2’s credible interval. The slow learning and large parameter uncertainty of the jump parameters can be explained by the low arrival rate of extreme events and could be important for risk management.

Third, in the SE-M1 model, the total return volatility consists of two components, the diffusion volatility and the jump volatility, which behave quite differently. The diffusion volatility is more persistent and less volatile than the jump volatility as the learned value of κ_1 is almost always smaller than that of κ_2 and the value σ_2 is particularly large. The evidence of co-jumps between the volatility and the return through the diffusion volatility is robust ever since the 1987 market crash. However, even though the full dataset calls for self-exciting jump intensity as seen in Figure 2, it only becomes really important at the onset of the 2008 financial crisis. The parameters driving the intensity dynamics, in particular σ_2, remain hard to identify throughout.

Finally, the agent’s beliefs on the long-run components of uncertainty vary over time. If the agent knows the fixed parameters, her beliefs on the long-run diffusion volatility, the long-run jump intensity, and the long-run return volatility should be constant over time as suggested by Equations (11) and (9). However, our agent is Bayesian, and therefore, parameter learning and uncertainty are directly transferred to her beliefs on the long-run risks. To investigate this point, we present the long-run return volatility and its components in Figure 4. We see from the upper panel that before the 1987 market crash, the long-run diffusion volatility varies dramatically, and the agent is quite uncertain about its value. Since then, it has much less variation and a narrow 90%
Figure 4: Learning about Long-Run Volatility

Note: The figure presents sequential estimates of the long-run diffusion volatility, the long-run jump intensity, and the long-run return volatility over time in the SE-M1 model, using the S&P 500 index from January 2, 1980 to December 31, 2012. In each panel, the (5, 50, 95)% quantiles are reported.

credible interval over time, though we observe a significant upward adjustment since 2008. In contrast, the long-run jump intensity in the middle panel changes over time and its 90% credible interval remains large, indicating that the agent is quite uncertain about future jumps. This pattern is even more striking during financial crises. For example, during the 2008 financial crisis, the long-run jump intensity suddenly increases and then slowly wanders up, and its 90% credible interval becomes larger than before. The agent’s uncertainty on variance components is directly reflected in her beliefs on the long-run return volatility, which is presented in the lower panel.\(^3\)

\(^3\)In Figure 4, we present the (5, 50, 95)% quantiles instead of the posterior means and (5, 95)% quantiles. This is because the long-run volatility components are nonlinear functions of model parame-
Embedded in our learning algorithm is an efficient hybrid particle filter. One advantage of this particle filter is that it can separate positive jumps and negative jumps. This separation is important from both the statistical and the practical perspectives. Statistically, it makes our self-exciting models feasible to estimate since both the diffusion volatility and the jump intensity depend only on negative jumps. Practically, investors are mostly concerned about negative jumps. The ability to disentangle the negative jumps provides us with an important tool for risk management.

The left panels of Figure 5 present the filtered diffusion volatility, the jump intensity, and the return volatility using the parameters learned at each time. We can see that whenever there is a big negative return jump, the diffusion volatility and the jump intensity abruptly move up to a high level. However, there are some important differences between the two state variables. The diffusion volatility is well identified with a tight 90% credible interval. In contrast, our ability to pin down the jump intensity is limited as we can see that its credible intervals are wide during the crisis periods. Furthermore, there seems to be an abrupt change in the behavior of the jump intensity since the 2008 crisis. Prior to this episode, during a turbulent period, the credible interval of the jump intensity first widens and then quickly reverts to its long-run mean. Ever since the 2008 crisis, however, it has remained consistently high and wide. This suggests that, as far as the tails are concerned, the recent crisis is special, with a sustained probability of large extreme events going forward. The lower panel presents the return volatility, which is computed as $\sqrt{V_{1,t} + \text{Var}_t(J_1)V_{2,t}}$. It has a large credible interval in the beginning, and because of the information accumulation, its credible interval slowly becomes tighter and tighter.

The right panels of Figure 5 present the filtered positive, negative, and return jumps. The filtered negative jumps in the middle panel can effectively capture all market turbmosils, such as the 1987 market crash, the 1997 Asian financial crisis, the 2008 financial crises. Any extreme values of model parameters could result in very unreasonable long-run components, which may dominate the computation of the posterior means such that they could be larger than the 95% quantiles. This issue is particularly striking in the early stage of learning when the market information is minimal and the posterior distributions have large dispersions.
Figure 5: Volatility and Jumps Learning

Note: The left panels present the sequential posterior means and the (5, 95)\% quantiles of the diffusion volatility ($\sqrt{V_{1,t}}$), the jump intensity ($V_{2,t}$), and the return volatility ($\sqrt{V_{1,t} + \text{Var}(J_{t})V_{2,t}}$). The right panels present the sequential posterior means of the positive jumps ($J_{u,t}$), the negative jumps ($J_{d,t}$) and the return jumps ($J_{u,t} + J_{d,t}$) in the SE-M1 model. The data used are the S&P 500 index from January 2, 1980 to December 31, 2012.
crisis and the 2010 to 2012 European debt crisis. However, as shown in the upper and the lower panels, the positive jumps are quite small, most of them less than 1%. This is a new and potentially important empirical result, suggesting that whenever jumps in the diffusion volatility are taken into account, the positive jump component in the index return is not so important and the positive movements in the return can be captured by the diffusion component. This finding reinforces our choice of giving the negative jumps more prominence.

4 Economic and Empirical Implications

4.1 Excess Volatility and Tail Behaviors

In Bayesian learning, the model parameters have quite large 90% credible intervals in the early stage of learning, and they slowly narrow when market information accumulates over time. It is therefore interesting to examine how learning affects return volatility. For this purpose, we consider the following three cases when estimating return volatility. Case I: we take into account both parameter learning and uncertainty. Case II: we only allow for parameter uncertainty but not for learning, that is, we use the full-sample posterior distributions of parameters. Case III: we ignore both parameter learning and uncertainty, and instead use the full-sample posterior means of parameters.

Table 2 presents the average annualized total volatility and its components. There are a number of notable findings. First, for all models, the total return volatility is the largest in Case I, when parameter learning and uncertainty are taken into account, and it is the smallest in Case III, when both parameter learning and uncertainty are ignored. For example, in the SE-M1 model, the total return volatility is 18.0% in Case I, but it is only 16.6% in Case III. Second, parameter learning and uncertainty do not have any impact on the diffusion volatility estimate. For example, the average annualized diffusion volatility is about 15.0% in the SE-M1 model, whether parameter learning and/or uncertainty are taken into account or ignored. A similar result can be found for other models as well.
Table 2: Excess Volatility and Jump Contributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case I</td>
<td>18.0</td>
<td>15.1</td>
<td>9.36</td>
<td>30.2</td>
</tr>
<tr>
<td>Case II</td>
<td>16.7</td>
<td>15.0</td>
<td>7.16</td>
<td>19.9</td>
</tr>
<tr>
<td>Case III</td>
<td>16.6</td>
<td>15.0</td>
<td>7.00</td>
<td>19.6</td>
</tr>
<tr>
<td>SE-M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case I</td>
<td>17.5</td>
<td>14.8</td>
<td>8.93</td>
<td>29.0</td>
</tr>
<tr>
<td>Case II</td>
<td>16.7</td>
<td>15.0</td>
<td>6.98</td>
<td>20.6</td>
</tr>
<tr>
<td>Case III</td>
<td>16.5</td>
<td>15.0</td>
<td>6.52</td>
<td>18.8</td>
</tr>
<tr>
<td>SE-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case I</td>
<td>18.0</td>
<td>15.2</td>
<td>9.09</td>
<td>30.3</td>
</tr>
<tr>
<td>Case II</td>
<td>16.8</td>
<td>15.2</td>
<td>6.66</td>
<td>19.9</td>
</tr>
<tr>
<td>Case III</td>
<td>16.8</td>
<td>15.2</td>
<td>6.63</td>
<td>19.8</td>
</tr>
<tr>
<td>SE-M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case I</td>
<td>17.7</td>
<td>15.1</td>
<td>8.57</td>
<td>28.3</td>
</tr>
<tr>
<td>Case II</td>
<td>16.4</td>
<td>15.3</td>
<td>5.58</td>
<td>15.0</td>
</tr>
<tr>
<td>Case III</td>
<td>16.4</td>
<td>15.3</td>
<td>5.44</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Note: The table presents the average annualized total return volatility ($\sqrt{\text{Var}(\tilde{t})}$), its diffusion and jump components ($\sqrt{\text{Var}(\tilde{t})}$ and $\sqrt{\text{Var}(J_1(\tilde{t})/V_{2,t})}$), and the jump contribution to total return variance in percentage ($\text{Var}(J_1(\tilde{t})/V_{2,t})/(\sqrt{\text{Var}(\tilde{t})} + \text{Var}(J_1(\tilde{t})/V_{2,t})$). Three cases are considered. Case I: both parameter learning and uncertainty is taken into account. Case II: only parameter uncertainty is allowed, that is, the full-sample posterior distributions of parameters are used. Case III: both parameter learning and uncertainty are ignored and simply the full-sample posterior means of parameters are used.

Third, parameter learning and uncertainty have an important impact on the jump volatility estimate. We can clearly see that learning increases the importance of the jump component. For example, the average annualized jump volatility is about 9.4%, contributing 30.2% to the total volatility in the SE-M1 model in Case I. However, if we ignore learning and only take into account parameter uncertainty, the estimated jump volatility becomes 7.2%, which contributes 19.9% to the total volatility in Case II. When we move to Case III where there is no parameter learning and uncertainty, the jump volatility is only about 7.0%, accounting for about 19.6% of total volatility. Comparing Cases I and II with Case III, it can be seen that learning has a first-order impact compared to uncertainty.

Our estimates of jump contributions to total volatility are larger than those obtained non-parametrically. For example, Huang and Tauchen (2005) find that the jump component takes about 7% of total volatility, and Andersen, Bollerslev and Diebold (2007) find that it accounts for about 15% of total volatility. The main reason for this difference is that the data span in both studies is quite short and does not include the 87's market crash, the 08’s global financial crisis and the recent European debt crisis.
Figure 6: Skewness, Kurtosis, and Tail Indices

Note: The upper panels present the sequential mean ratios of the conditional skewness (left) and the sequential mean ratios of the conditional kurtosis (right), between with and without learning. The dashed red lines indicate the level of 1. The lower panels present the sequential ratio of t-statistics of the right tail index estimates (λ_+) and the left tail index estimates (λ_-) in the SE-M1 model.

In particular, if we take a look at higher conditional moments, we find that learning generates even more left-skewed and leptokurtic predictive distributions. The upper panels of Figure 6 present the sequential mean ratios of the conditional skewness and the sequential mean ratios of the conditional kurtosis, between with and without learning (Case I and Case III). We can see that nearly all the ratios are larger than one, and this feature is particularly obvious in the early stage of learning when the market information is minimal and after the 1987 market crash. As the market information accumulates, the ratio slowly converges to one. Furthermore, in our model, the right and the left tails are determined by the positive and the negative jump components, which follow the Gamma processes. The fatness and the decay rates of the two tails are controlled by λ_+ and λ_- respective for the right and the left tails (Madan, Carr, and Chang, 1998). The lower panels of Figure 6 present the sequential t-statistics, defined as the ratios of the posterior means to the posterior standard deviations, for the two tail indices. The t-ratio for the right tail index is always much less than 2. When we take a closer look
at the posterior standard deviations of the same parameter, we find them very large. Hence, we can conclude that the information accumulation is not helpful in reducing the uncertainty on the right tail. However, the left tail can be pinned down very quickly after the 1987 market crash, since the t-ratio after October, 1987 is larger than 2, and the posterior standard deviation (not reported) gets smaller as the market information accumulates. Clearly, the agent is more confident about the behavior of the left tail.

4.2 Learning and Volatility Forecasting

In this subsection, we evaluate the relative performance of the four jump models for predicting daily total volatility, and quantify the cost of not knowing the parameters. For each model, expected one-day ahead return variance at time t is given by

$$E_t[\int_t^{t+\tau} V_{1,s} ds] + Var_t(J_1)E_t[\int_t^{t+\tau} V_{2,s} ds],$$

which is known analytically. As a comparison, we also take a look at the performance of the GARCH(1,1) model. True volatility is approximated by the realized one, computed from the previous 21-day (one-month) returns at each time, as in Subsection 3.1.

We again consider the three cases that were defined in the previous subsection. Table 3 reports the forecasting results including the RMSEs, the R^2s from the Mincer-Zarnowitz (MZ hereafter) regressions, and the Diebold-Mariano (DM hereafter) statistics. We have the following findings. First, the SE-M1 model, which takes into account both diffusion volatility jumps and self-exciting jump intensity, always outperforms the other three jump models, whether parameter learning and/or uncertainty are present or not. For example, in Case I, the RMSE and MZ R^2 from the SE-M1 model are 4.94% and 83.8%, respectively, whereas the other three jump models generate larger RMSEs and smaller MZ R^2s.

Second, the existence of parameter learning and/or uncertainty makes volatility more difficult to forecast. This feature holds for all models. The RMSEs (MZ R^2s) are the highest (smallest) in Case I and the smallest (highest) in Case III. For example, for the SE-M1 model, the RMSE is about 4.9% in Case I, whereas it decreases to 4.3% in Case III, and the MZ R^2 is about 83.8% in Case I, while it increases to 85.5% in Case
Table 3: Volatility Forecasting

<table>
<thead>
<tr>
<th></th>
<th>SE-M1</th>
<th>SE-M2</th>
<th>SE-M3</th>
<th>SE-M4</th>
<th>GARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>RMSE</td>
<td>4.94</td>
<td>5.36</td>
<td>5.49</td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>MZ R^2</td>
<td>83.8</td>
<td>78.4</td>
<td>80.5</td>
<td>69.4</td>
</tr>
<tr>
<td></td>
<td>DM</td>
<td>–</td>
<td>-1.94</td>
<td>-3.67</td>
<td>-1.55</td>
</tr>
<tr>
<td>Case II</td>
<td>RMSE</td>
<td>4.40</td>
<td>5.24</td>
<td>5.08</td>
<td>5.40</td>
</tr>
<tr>
<td></td>
<td>MZ R^2</td>
<td>85.9</td>
<td>78.6</td>
<td>82.6</td>
<td>74.8</td>
</tr>
<tr>
<td></td>
<td>DM</td>
<td>–</td>
<td>-2.00</td>
<td>-2.20</td>
<td>-1.88</td>
</tr>
<tr>
<td>Case III</td>
<td>RMSE</td>
<td>4.36</td>
<td>5.16</td>
<td>5.03</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>MZ R^2</td>
<td>86.3</td>
<td>78.9</td>
<td>82.8</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>DM</td>
<td>–</td>
<td>-1.92</td>
<td>-2.14</td>
<td>-1.82</td>
</tr>
</tbody>
</table>

Note: The table presents the volatility forecasting results. True volatility is approximated by the realized one, computed from the previous 21-day (one-month) returns at each time, i.e., $RV_t = \sqrt{\frac{252}{21} \sum_{j=0}^{20} R^2_{t-j}}$. RMSE is the root mean squared error between forecasted and realized volatility. MZ R^2 represents the R^2 from the Mincer-Zarnowitz regression, and DM stands for the Diebold-Mariano statistic, where the squared error loss function and the HAC-type variance with 21 lags are adopted and the benchmark model is chosen to be the SE-M1 model in each case. Three cases are considered. Case I: both parameter learning and uncertainty is taken into account. Case II: only parameter uncertainty is allowed, that is, the full-sample posterior distributions of parameters are used. Case III: both parameter learning and uncertainty are ignored and simply the full-sample posterior means of parameters are used.

Third, we measure the forecast accuracy using the DM statistic, where the squared error loss function and the HAC-type variance (with 21 lags) are adopted and the benchmark model is chosen to be the SE-M1 model in each case. The forecasting errors in the DM statistic are measured using the residuals from the corresponding MZ regression. The SE-M1 model outperforms the other three jump models in all three cases but the significance level is different. For example, the SE-M1 model significantly outperforms the SE-M2 model and the SE-M3 model at the 10% level and the 5% level, respectively, for all three cases. However, the SE-M1 model significantly outperforms the SE-M4 model only at the 10% level in Cases II and III.

Fourth, when comparing the SE-M1 model to the GARCH(1,1) model, we find that the GARCH(1,1) model cannot be beaten by the more sophisticated models, even though the sequential Bayes factors indicate that the SE-M1 model performs much
better than the GARCH(1,1) model in modeling the S&P 500 index returns.5 This result is similar to what Hansen and Lunde (2005) find.

4.3 Option Pricing Implications

4.3.1 Simulation-based Results

Now we begin to investigate how self-excitation and learning affect the implied volatility surface. As we only use the underlying return data to estimate the models, the problem of unavailability of the risk-premium parameters remains. For simplicity, we assume that the jump and the volatility parameters remain the same under the change of measure. In the next subsection, we will calibrate the risk-premium parameters using the observed options data. The risk-free interest rate is fixed at 4.00%. At each time starting from January 1981, whenever we obtain the parameter and volatility particles in learning, we use the Monte-Carlo method to price call options with maturity 7, 30, 90, and 250 days and with moneyness (define as K/S) 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. Therefore, both parameter and volatility uncertainties are taken into account at each time in this practice. We price the same cross-section of options again using the full-sample posterior means of the parameters and filtered volatility obtained from these estimates. Thus, in the latter, the parameter learning and uncertainty are ignored.

Table 4 presents the time-series mean of the implied volatility ratios, with and without learning, for each option in the SE-M1 model and the SE-M3 model. For both models, all ratios are either larger than or equal to one, indicating that learning does (positively) affect the option pricing. In particular, we find that the learning effect on the in-the-money and the out-of-the-money options than on the near-the-money options, and it is more pronounced for deep out-of-the-money options than for deep in-the-money options. These results are closely related to the results that learning alters the tail behaviors and introduces even larger uncertainty on the right tail of the

5Bayesian learning of the GARCH(1,1) model is efficient and very fast as the likelihood function is in closed form and we do not need any filtering methods. The full-sample log Bayes factor between the SE-M1 model and the GARCH(1,1) model is as large as 275.
Table 4: Effects of Learning on Option Pricing

<table>
<thead>
<tr>
<th>K/S</th>
<th>SE-M1</th>
<th></th>
<th></th>
<th></th>
<th>SE-M3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 Days</td>
<td>30 Days</td>
<td>90 Days</td>
<td>250 Days</td>
<td>7 Days</td>
<td>30 Days</td>
<td>90 Days</td>
<td>250 Days</td>
</tr>
<tr>
<td>0.85</td>
<td>1.13</td>
<td>1.05</td>
<td>1.01</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>0.90</td>
<td>1.09</td>
<td>1.02</td>
<td>1.00</td>
<td>1.00</td>
<td>1.01</td>
<td>1.01</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.95</td>
<td>1.04</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.05</td>
<td>1.11</td>
<td>1.06</td>
<td>1.02</td>
<td>1.01</td>
<td>1.06</td>
<td>1.05</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>1.10</td>
<td>1.37</td>
<td>1.12</td>
<td>1.05</td>
<td>1.02</td>
<td>1.30</td>
<td>1.09</td>
<td>1.04</td>
<td>1.01</td>
</tr>
<tr>
<td>1.15</td>
<td>1.78</td>
<td>1.21</td>
<td>1.09</td>
<td>1.03</td>
<td>1.74</td>
<td>1.16</td>
<td>1.07</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Note: The table presents the mean ratios of the BS implied volatility between with and without learning (Case I and Case III) in the SE-M1 model and the SE-M3 model. We consider call options with maturity 7, 30, 90, and 250 days and with moneyness (define as K/S) 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. Option prices are computed using the Monte Carlo simulation method.

predictive return distributions. We also find that in general the learning effect decreases with respect to maturity. Moreover, we find that the main difference between the SE-M1 model and the SE-M3 model is in the short maturity in-the-money options, indicating the self-exciting jump intensity mainly affects the left tail of return distributions.

To further investigate the learning effect, Figure 7 plots the time series of the implied volatility computed from the SE-M1 model (left panels) and the SE-M3 model (right panels). The solid and the dashed lines plot the implied volatility for contracts with maturity 7 days when learning is taken into account and when it is ignored, respectively. We first focus on the SE-M1 model. As shown in the middle panel, learning does not seem to have a first-order effect on pricing the at-the-money options, except during the market crash in October 1987 when the implied volatility from learning is much higher. However, the picture is starkly different in the upper and the lower panels for the implied volatility of the deep in-the-money and the deep out-of-the-money call options. Learning does have a first-order effect here.

For deep in-the-money options, when learning is ignored, the implied volatility has little variation with abrupt bursts and drop-backs during the financial crisis periods, whereas when learning is taken into account, the implied volatility moves up to high levels during the crisis periods and stays there for a very long time. The deep in-
Figure 7: Learning and Implied Volatility

Note: The figure plots the time-series of implied volatility for call options with maturity 7 days computed from the SE-M1 model (left panels) and the SE-M3 model (right panels). Options are priced using the Monte Carlo simulation method. The solid line plots the implied volatility when learning is taken into account, whereas the dashed (red) line plots the implied volatility when learning is ignored. We consider options with moneyness (K/S) equal to 0.85 in the upper panels, 1.00 in the middle panels, and 1.15 in the lower panels.
the-money options are sensitive to extreme downside movements. These observations seem to indicate that learning leads to a long-lasting shift of beliefs on the left tail of the predictive return distribution. Benzoni, Collin-Dufresne, and Goldstein (2011) argue that updating of beliefs about jump parameters may cause a permanent shift in option prices. Our investigation reinforces this intuition. For the deep out-of-money options, the implied volatility is in general larger when learning is allowed than when learning is ignored, indicating learning can also generate the fat right tail. Overall, the above results suggest that parameter learning and uncertainty are likely to have important implications for pricing options that depend on the tails of the predictive return distribution. However, as the sample size grows, the effect of learning diminishes. But the rate of the diminishing effect differs for the in-the-money compared to the out-of-money options. For the in-the-money options, the implied volatility is similar, whether learning is allowed or ignored. This indicates that the left-tail uncertainty vanishes at the end of the sample. However, this is not the case for the out-of-money options, indicating that the right-tail uncertainty remains. This result is consistent with what we have found in Figure 6.

We now further compare the SE-M1 model and the SE-M3 model and examine what roles the self-exciting jump intensity plays. Comparing the right panels to the left ones in Figure 7, we have the following findings. First, as seen from the middle panels, regardless of learning, the SE-M1 model prices the at-the-money options quite similarly to the SE-M3 model during the calm periods, whereas during the crisis periods, the SE-M1 model seems to be more flexible to capture high levels of volatility than the SE-M3 model. Second, when pricing the deep in-the-money options, the upper panels indicate that (1) the SE-M1 model is more flexible at tracking fluctuations of volatility and at capturing high levels of volatility during the financial crisis; and (2) learning can generate an even more persistent and fatter left tail in the short term in the SE-M1 model compared to the SE-M3 model. Third, the SE-M1 model and the SE-M3 model produce similar deep out-of-money option prices, whether learning is considered or not.

However, for options with longer maturities, the learning effect becomes smaller,
and both models perform quite similarly at different moneyness (not reported). The findings are consistent with what we have found in Table 4, and imply that the two models differ mainly in their ability to price the short maturity options.

4.3.2 Real Data Applications

In addition to the simulation-based results, we also use real option data to evaluate the model performance and learning effects. The S&P 500 index option data are obtained from the OptionMetrics volatility surface that provides daily call and put prices, BS implied volatility for the standardized maturities, and Deltas between January 1996 and December 2012. In accordance with the option pricing literature, we only keep Wednesday put prices and exclude options with maturity larger than a half year.

Option prices not only reflect agent’s expectations over the evolution of the underlying but also contain risk premium information. In derivative pricing theory, they are reflected in the stochastic discount factor (SDF) that drives a wedge between the real world and the pricing measures. We assume a simple reduced-form SDF with two free parameters: γ_J, the jump risk premium parameter distorting the Lévy density of the jump component, and γ_V, the risk premium parameter connected to the diffusion volatility shocks (see Appendix E for the change of measure).\footnote{Under this change of measure, only ω, η, κ_1, and θ_1 are different, and the other parameters remain unchanged. The jump risk-premium parameter is bounded, $-\lambda_+ < \gamma_J < \lambda_-$, such that the risk-neutral tail indices, $\lambda_+^Q = \lambda_+ + \gamma_J$ and $\lambda_-^Q = \lambda_- - \gamma_J$, are positive.}

To simplify the analysis, we assume that agents know the exact risk premium parameters and only learn about the other parameters of the system, which are obtained from Section 3. Furthermore, we do not take into account the equilibrium implications of learning for risk premia, and hence, our treatment is in the spirit of Johannes, Korteweg and Polson (2014) and Johannes, Lochstoer and Mou (2014). The risk premium parameters are calibrated using option prices. A consistent treatment of pricing should condition on the agent’s information set. In our case, however, the complexity of learning over states and parameters results in an infinite dimensional state space similar to that in Johannes, Lochstoer and Mou (2014) which makes the problem intractable.
Hence, we resort to a simplified treatment of option pricing learning, where we integrate over state and parameter uncertainty, but risk aversion is taken into account through two fixed parameters, leading to a deterministic shift of the distribution under the risk neutral measure.

To calibrate the risk-premium parameters, we compute model-implied option prices on a 2-dimensional grid of risk premia using equidistant grid points in both directions. For each specification, we pick the risk premium parameters minimizing the mean squared errors between the model-implied and observed option prices, weighted by the BS Vega,

\[\hat{\gamma}_J, \hat{\gamma}_V = \arg \min_{\gamma_J, \gamma_V} \frac{1}{N} \sum_{i=1}^{N} \left(\frac{O_{i}^{obs} - O_{i}^{M}}{Vega_i} \right)^2 \]

where \(N \) is the number of options, \(O_{i}^{obs} \) is the observed option price, and \(O_{i}^{M} \) is the model-implied option price. Given that the SE-M1 model and the SE-M3 model dominate the other models, we focus on these two specifications in what follows.

Table 5 reports the calibrated risk premia and the implied risk-neutral parameters both for the case when learning is taken into account and for the case when parameter uncertainty is ignored and the full sample posterior means are plugged into the option pricing routine. For the SE-M1 model, the calibrated jump risk premium, \(\gamma_J \), is positive under both cases. A positive \(\gamma_J \) indicates that the risk-neutral return distribution is more left-skewed and more leptokurtic than the physical counterpart. However, one can see in the table that the implied risk-neutral jump parameters, \(\omega \) and \(\eta \), stay well within the central 90% credible intervals of their physical counterparts, suggesting that there is a greater degree of statistical uncertainty about the exact location of the jump risk-premium parameter. This result is unsurprising given that jumps are rare events and we only use underlying return data to estimate the physical jump parameters. By contrast, the diffusion volatility risk premium, \(\gamma_V \), is negative, resulting in a slower mean reversion and a higher stationary mean risk-neutral diffusion volatility process than the physical one. Furthermore, the implied risk-neutral parameters are well outside the central 90% credible intervals of their physical counterparts, pointing towards the reliability of the

Table 5: **Risk Premia and Implied Risk-Neutral Parameters**

<table>
<thead>
<tr>
<th></th>
<th>A. SE-M1</th>
<th></th>
<th>B. SE-M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case I</td>
<td>Case III</td>
<td></td>
</tr>
<tr>
<td>γ_J &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_V &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω & Mean</td>
<td>5th Prcntile</td>
<td>95th Prcntile</td>
<td>Implied Risk-Neutral Mean</td>
</tr>
<tr>
<td>η & 0.023</td>
<td>0.04</td>
<td>0.041</td>
<td>0.025</td>
</tr>
<tr>
<td>κ_1 & 5.793</td>
<td>4.555</td>
<td>7.062</td>
<td>3.174</td>
</tr>
<tr>
<td>θ_1 & 0.021</td>
<td>0.017</td>
<td>0.025</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Note: This table presents the calibrated risk premia from a grid search on S&P 500 index option data obtained from the *OptionMetrics* volatility surface on Wednesdays between January 1996 and December 2012. Results are shown both for the SE-M1 model and the SE-M3 model and both when parameter learning is taken into account and when parameter learning and uncertainty are ignored. The risk-neutral parameters implied by the calibrated risk premia are also reported.

Calibrated risk premium. For the SE-M3 model, under the case of parameter learning, we obtain similar results to the SE-M1 model. However, when we ignore parameter learning and simply use the fixed full-sample posterior means, the calibration becomes more involved and we get a negative γ_J, further indicating unreliability of the jump risk premium calibration and misspecification of the SE-M3 model.

Table 6 reports the root mean squared errors (RMSE) between the model-implied and the observed implied volatility across maturities and strikes for the SE-M1 model and SE-M3 model, when parameter learning is taken into account. We find that the SE-M1 model always provides a better fit than the SE-M3 model with a root mean squared error of 3.2% compared to 3.4% for the SE-M3 model. Furthermore, in line with the simulation-based results, the advantage of the SE-M1 model is particularly
Table 6: Option Pricing Errors with Learning

<table>
<thead>
<tr>
<th>Δ</th>
<th>30 days</th>
<th>60 days</th>
<th>91 days</th>
<th>122 days</th>
<th>152 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SE-M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td>3.34</td>
<td>2.83</td>
<td>2.81</td>
<td>2.86</td>
<td>3.05</td>
</tr>
<tr>
<td>-0.7</td>
<td>2.88</td>
<td>2.67</td>
<td>2.72</td>
<td>2.82</td>
<td>3.04</td>
</tr>
<tr>
<td>-0.6</td>
<td>2.94</td>
<td>2.72</td>
<td>2.74</td>
<td>2.82</td>
<td>3.01</td>
</tr>
<tr>
<td>-0.5</td>
<td>3.16</td>
<td>2.88</td>
<td>2.85</td>
<td>2.89</td>
<td>3.02</td>
</tr>
<tr>
<td>-0.4</td>
<td>3.51</td>
<td>3.17</td>
<td>3.09</td>
<td>3.07</td>
<td>3.14</td>
</tr>
<tr>
<td>-0.3</td>
<td>4.02</td>
<td>3.66</td>
<td>3.49</td>
<td>3.41</td>
<td>3.42</td>
</tr>
<tr>
<td>-0.2</td>
<td>4.71</td>
<td>4.33</td>
<td>4.08</td>
<td>3.92</td>
<td>3.84</td>
</tr>
<tr>
<td>B. SE-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td>3.36</td>
<td>2.74</td>
<td>2.79</td>
<td>2.98</td>
<td>3.20</td>
</tr>
<tr>
<td>-0.7</td>
<td>2.94</td>
<td>2.63</td>
<td>2.73</td>
<td>2.95</td>
<td>3.20</td>
</tr>
<tr>
<td>-0.6</td>
<td>3.09</td>
<td>2.75</td>
<td>2.78</td>
<td>2.94</td>
<td>3.17</td>
</tr>
<tr>
<td>-0.5</td>
<td>3.42</td>
<td>2.99</td>
<td>2.93</td>
<td>3.00</td>
<td>3.15</td>
</tr>
<tr>
<td>-0.4</td>
<td>3.88</td>
<td>3.38</td>
<td>3.21</td>
<td>3.17</td>
<td>3.23</td>
</tr>
<tr>
<td>-0.3</td>
<td>4.52</td>
<td>3.97</td>
<td>3.68</td>
<td>3.53</td>
<td>3.48</td>
</tr>
<tr>
<td>-0.2</td>
<td>5.40</td>
<td>4.80</td>
<td>4.39</td>
<td>4.12</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Note: The table presents the root mean squared option pricing errors in percentage of the S&P 500 index put options for different strikes and maturities for the SE-M1 model and the SE-M3 model with parameter learning taken into account. The option data are from the OptionMetrics volatility surface on Wednesdays between January 1996 and December 2012. For each model, the risk premium parameters are the optimal ones from the grid search.

Important in pricing the short term out-of-the-money puts for which the left tail of the predictive return distributions plays a critical role. For instance, for the 30-day options with the Delta equal to -0.2, it has a RMSE of 4.7% compared to 5.4% for the SE-M3 model.

Having taken a closer look at the behavior of the two models across different episodes, we see that the dominance of the SE-M1 model is concentrated in the period since the 2008 financial crisis. Allowing for the self-exciting jump intensity leads to substantially higher option prices and helps reduce the gap between the model-implied and the observed option prices. The increased importance of self-excitation since 2008 is not limited to the short-term OTM puts. The overall RMSE across maturities and strikes since the Lehman bankruptcy (September 15, 2008) is 3.3% for the SE-M1 model versus 3.7% for the SE-M3 model, mirroring a widening gap in overall performance between the two models. This finding reinforces our previous result indicated in Figure
2, which suggests that the self-exciting jump intensity becomes even more important after the 2008 financial crisis as measured by sequential Bayes factors.

When the full-sample posterior means of the fixed parameters are used in calibrating the risk premium parameters and pricing options (not reported), we again find that the SE-M1 model dominates the SE-M3 model. However, the difference in RMSEs between learning and no-learning is smaller in the real data than in the simulated data. This is not surprising as our observed options data only start in January 1996, by which date parameter uncertainty has substantially decreased as seen from parameter learning in Figure 3.

Johannes, Lochstoer and Mou (2014) propose a test procedure to detect the impact of parameter learning on asset prices. In particular, they regress equity returns on belief updates with parameter learning, while controlling for belief updates in the fixed-parameter case. A significant coefficient is interpreted as evidence for the importance of parameter learning for asset prices. Here we mimic their approach for option prices where the agents’ information set consists of past stock returns. In particular, we are interested in whether updates in model-implied option prices, due to parameter learning have any explanatory power for observed option prices over and above model-implied option prices in the fixed parameter case. To simplify exposition of the results, we collapse the cross-section of options by looking at the cross-sectional average option price for any give maturity date and focus on the SE-M1 model.7

Denote the cross-sectional average model-implied implied volatility at time t for a given maturity τ when learning is taken into account as $IV_{t,\tau}^{M,\text{Learning}}$. The same quantity, when the full sample posterior means are plugged into the option pricing routine, is denoted by $IV_{t,\tau}^{M,\text{Fixed}}$. And the observed counterpart is denoted by $IV_{t,\tau}^{Obs}$. In the first stage, we want to focus on the variability in model-implied IVs due solely to parameter learning. Hence, we run the following time series regression

$$IV_{t,\tau}^{M,\text{Learning}} = \alpha_{1,\tau} + \beta_{1,\tau} IV_{t,\tau}^{M,\text{Fixed}} + \varepsilon_{t,\tau}. \quad (16)$$

7The strike-specific results and results for the SE-M3 model are similar and are available upon request.
Table 7: Implied Volatility and Belief Updating

<table>
<thead>
<tr>
<th></th>
<th>30 days</th>
<th>60 days</th>
<th>91 days</th>
<th>122 days</th>
<th>152 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.03*</td>
<td>-0.04*</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>(IV_{t,\tau}^{M,\text{Fixed}})</td>
<td>1.09***</td>
<td>1.08***</td>
<td>1.10***</td>
<td>1.12***</td>
<td>1.15***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>(\hat{\varepsilon}_{t,\tau})</td>
<td>0.89**</td>
<td>1.17***</td>
<td>1.26***</td>
<td>1.33***</td>
<td>1.13***</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.30)</td>
<td>(0.27)</td>
<td>(0.26)</td>
<td>(0.28)</td>
</tr>
</tbody>
</table>

Note: The table presents the results from the regression of the observed implied volatilities on the innovations in model-implied implied volatilities due to parameter learning. For each maturity, the dependent variable is the observed average implied volatility across strikes on each day. The control variable is the model-implied counterpart from the SE-M1 model when parameter uncertainty is ignored. The variable of interest is the model-implied counterpart with parameter learning. This latter is orthogonalized by using the residual from a regression of the model-implied IVs with learning on a constant and the model-implied IVs with the fixed parameters. The option data are from the OptionMetrics volatility surface on Wednesdays between January 1996 and December 2012. HAC standard errors (Newey-West, 30 lags) are reported in parenthesis, * denotes the significance at the 10% level, ** denotes the significance at the 5% level, *** denotes the significance at the 1% level.

We estimate this regression separately for each maturity, \(\tau\), and take the residual from the OLS regression, \(\hat{\varepsilon}_{t,\tau}\), as the option price variability that is entirely due to parameter learning. Then in the second stage, we run an OLS regression of the observed IVs on a constant, the model-implied IVs with the fixed parameters, and the residuals obtained from the first stage regression (16) as follows

\[
IV_{t,\tau}^{\text{Obs}} = \alpha_{2,\tau} + \beta_{2,\tau} IV_{t,\tau}^{M,\text{Fixed}} + \beta_{3,\tau} \hat{\varepsilon}_{t,\tau} + \xi_{t,\tau}.
\]

(17)

The estimation results are reported in Table 7. We can clearly see that the coefficient of \(\hat{\varepsilon}_{t,\tau}, \beta_{3,\tau}\), is highly statistically significant in each maturity. This indicates that updates in beliefs due to parameter learning have a highly significant effect on the observed IVs across all maturities, over and above the variability in model-implied IVs computed using the fixed parameters.
5 Concluding Remarks

We propose a self-exciting asset pricing model that takes into account co-jumps between prices and volatility and self-exciting jump clustering. A Bayesian learning approach is employed to implement a real-time sequential analysis. We find that the evidence of co-jumps between volatility and asset returns through diffusion volatility is robust ever since the 1987 market crash. Interestingly, while the data call for simultaneous jumps between asset returns and jump intensities from the 87’s market crash onwards, the self-exciting jump intensity has become more important since the onset of the 2008 global financial crisis.

The new asset pricing model and the Bayesian learning approach allow us to investigate implications of learning for a variety of asset pricing applications. In this paper, we provide novel results on implications of learning for risk measures, volatility forecasting and option pricing. Such results are quite relevant in practice as market participants need to update her beliefs sequentially over time when new market information arrives.

There are several interesting research directions that our results suggest. First, it would be interesting to examine what we can find if option prices are included in the learning procedure. This could help better identify the jump intensity and speed up the learning process. Second, the sequential nature of our joint parameter and state learning routine promises several practical applications such as derivative pricing or portfolio allocation.

Appendix

A A Hybrid Particle Filter

Our model can be cast into a state-space model framework. After discretizing the return process for a time interval τ using the Euler method, we have the following observation
\[
\ln S_t = \ln S_{t-\tau} + \left(\mu - \frac{1}{2} V_{1,t-\tau} - k(1)V_{2,t-\tau} \right) \tau + \sqrt{\tau V_{1,t-\tau}} w_t + J_{u,t} + J_{d,t}, \tag{A.1}
\]

where \(w_t \) is a standard normal noise, and \(J_{u,t} \) and \(J_{d,t} \) represent the upside and downside jump noises.

We take the diffusion variance \(V_{1,t} \), the jump intensity \(V_{2,t} \), and the upside/downside jumps \(J_{u,t} / J_{d,t} \) as the hidden states. The diffusion variance and the jump intensity follow (6) and (7), and the upside/downside jumps are Gammas. After discretizing, we have the state equations as follows

\[
V_{1,t} = \kappa_1 \theta_1 \tau + (1 - \kappa_1 \tau) V_{1,t-\tau} + \sigma_{11} \sqrt{\tau V_{1,t-\tau}} z_t - \sigma_{12} J_{d,t}, \tag{A.2}
\]
\[
V_{2,t} = \kappa_2 \theta_2 \tau + (1 - \kappa_2 \tau) V_{2,t-\tau} - \sigma_{2} J_{d,t}, \tag{A.3}
\]
\[
J_{u,t} = \Gamma(\tau V_{2,t-\tau}; \mu_u, v_u), \tag{A.4}
\]
\[
J_{d,t} = -\Gamma(\tau V_{2,t-\tau}; \mu_d, v_d), \tag{A.5}
\]

where \(z_t \) is a standard normal noise, which is correlated to \(w_t \) in (A.1) with the correlation parameter \(\rho \). In what follows, we normalize \(\theta_2 \) to 1 in order to alleviate the identification problem, as the time-homogeneous jump component has non-unit variance rate.

The above model is clearly non-linear and non-Gaussian. Therefore, we use a particle filter to estimate the likelihood and the hidden states. The most commonly used particle filter is the bootstrap filter of Gordon, Salmond, and Smith (1993), which simply takes the state transition density as the proposal density. However, the bootstrap filter is known to perform poorly when the observation is informative on the hidden states. Our model has this feature because when we observe a large move in asset price, the jump can be largely pinned down by this observation. On the other hand, when the return is small, it is almost due to the diffusion component and contains little information on the jump. Hence, to provide an efficient sampler, we use an equally weighted two-
component mixture as the proposal on the jump: the first component is a normal draw, equivalent to sampling from the transition density of the diffusion component, and the second component involves drawing from the transition law of the jump. We need this second component to stabilize the importance weights for small returns. Otherwise, we would compute the ratio of a normal and a gamma density in the importance weights which is unstable around zero. When the return is positive, we use this mixture as the proposal for the positive jump and the transition density for the negative jump, and vice-versa.

The algorithm of the proposed hybrid particle filter consists of the following steps:

Step 1: Initialize at $t = 0$: set initial particles to be $\{V^{(i)}_{1,0} = \theta_1; V^{(i)}_{2,0} = 1; J^{(i)}_{u,0} = 0; J^{(i)}_{d,0} = 0\}_{i=1}^M$ and give each set of particles a weight $1/M$;

Step 2: For $t = 1, 2, \ldots$

- If $R_t = \ln S_t - \ln S_{t-\tau} > 0$,
 - draw $J^{(i)}_{d,t}$ from its transition law (A.5);
 - draw $J^{(i)}_{u,t}$ both from its transition law (A.4) and its conditional posterior distribution $J_{u,t} = \ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2} V_{1,t-\tau} - k(1) V_{2,t-\tau}) \tau - J_{d,t} - \sqrt{\tau} V_{1,t-\tau} w_t$, which is normally distributed. Equal weights are attached to particles obtained from the transition law and the conditional posterior;
 - compute the particle weight by
 $$w^{(i)}_t = \frac{p(\ln S_t|J^{(i)}_{u,t}, J^{(i)}_{d,t}, V^{(i)}_{1,t-\tau}, V^{(i)}_{2,t-\tau})p(J^{(i)}_{u,t}|V^{(i)}_{2,t-\tau})}{0.5p(J^{(i)}_{u,t}|V^{(i)}_{2,t-\tau}) + 0.5\phi(\bar{\mu}, \bar{\sigma})},$$
 where $\phi(\cdot, \cdot)$ represents the normal density with mean $\bar{\mu} = \ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2} V^{(i)}_{1,t-\tau} - k(1) V^{(i)}_{2,t-\tau}) \tau - J^{(i)}_{d,t}$ and standard deviation $\bar{\sigma} = \sqrt{\tau V^{(i)}_{1,t-\tau}}$;

- Otherwise, if $R_t = \ln S_t - \ln S_{t-\tau} < 0$,
 - draw $J^{(i)}_{u,t}$ from its transition law (A.4);
- draw $J_{d,t}^{(i)}$ both from its transition law (A.5) and its conditional posterior distribution $J_{d,t} = \ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2} V_{1,t-\tau} - k(1)V_{2,t-\tau})\tau - J_{a,t} - \sqrt{V_{1,t-\tau}} w_t$, which is normally distributed. Equal weights are attached to particles obtained from the transition law and the conditional posterior;

- compute the particle weight by

$$w_t^{(i)} = \frac{p(\ln S_t | J_{a,t}^{(i)}, J_{d,t}^{(i)}, V_{1,t-\tau}, V_{2,t-\tau}) p(J_{d,t}^{(i)} | V_{2,t-\tau})}{0.5p(J_{d,t}^{(i)} | V_{2,t-\tau}) + 0.5\phi(\bar{\mu}, \bar{\sigma})},$$

where $\phi(\cdot, \cdot)$ represents the normal density with mean $\bar{\mu} = \ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2} V_{1,t-\tau} - k(1)V_{2,t-\tau})\tau - J_{a,t}^{(i)}$ and standard deviation $\bar{\sigma} = \sqrt{V_{1,t-\tau}}$;

- Normalize the weight: $\tilde{w}_t^{(i)} = w_t^{(i)} / \sum_j^M w_t^{(j)}$;

Step 3: Resample (Stratified Resampling)

- Draw the new particle indexes by inverting the CDF of the multinomial characterized by $\tilde{w}_t^{(i)}$ at the stratified uniforms $\frac{i+U_t^{(i)}}{M}$, where $U_t^{(i)}$ are i.i.d uniforms;

- reset the weight to $1/M$;

Step 4: Update the diffusion variance and the jump intensity particles using (A.2) and (A.3), where $z_t = \rho w_t + \sqrt{1 - \rho^2} \tilde{z}_t$ with \tilde{z} being an independent standard normal noise.

B The Priors and Posteriors

The Bayesian learning procedure is initialized by the priors. In the full SE-M1 model, there are 11 parameters, among which κ_1, θ_1, σ_{11}, σ_{12}, η, ν, κ_2, and σ_2 need to be positive and ρ needs to be in $[-1, 1]$. We assume normal distributions for the priors. However, if a parameter under consideration has a finite support, we take a truncated normal as its prior.

The hyper-parameters are calibrated using a training sample from January, 1975 to December, 1979. As a result, we use quite flat priors for most of parameters except those
controlling dynamics of the jump intensity, κ_2 and σ_2. Table B.1 presents the exact functional form and hyper-parameters for the prior distribution of each parameter.

Figure B.1 presents the prior and full-sample posterior distributions for each parameter. We can see that for most parameters, even though the priors are quite flat, the dispersions of the posterior distributions are very small. However, for the parameters controlling the jump intensity, κ_2 and σ_2, we use quite informative priors. Using the full sample, κ_2 seems to be well pinned down. This is consistent with what we have got from learning that indicates that its credible interval shrinks dramatically after the 2008’s financial crisis. However, σ_2 remains difficult to be identified as the posterior distribution still has quite large dispersion.

C Monte Carlo and Sensitivity Studies

In implementation of our Bayesian learning approach, we need to choose the number of state particles, M, the number of parameter particles, N, and the thresholds for resample and move, N_1 and N_2, respectively. As discussed in Andrieu et al. (2010) and Fulop and Li (2013), M is linearly related to the largest sample size (T) that one wants to tackle. Pitt et al. (2012) provide practical guidelines on how to choose optimal number of state particles (M). However, there are not any guidelines on how to choose N, N_1, and N_2. In this Appendix, we implement Monte Carlo studies to see how well the algorithm works on the self-exciting model and how sensitive it is to N, N_1, and N_2.

Table B.1: The Prior Distributions

<table>
<thead>
<tr>
<th>F. Form</th>
<th>Support</th>
<th>(μ_0, σ_0)</th>
<th>F. Form</th>
<th>Support</th>
<th>(μ_0, σ_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Normal</td>
<td>$(-\infty, \infty)$</td>
<td>(0.07, 0.15)</td>
<td>κ_1</td>
<td>Tr. Normal</td>
</tr>
<tr>
<td>κ_1</td>
<td>Tr. Normal</td>
<td>(0, ∞)</td>
<td>(0.03, 0.06)</td>
<td>ω</td>
<td>Normal</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>Tr. Normal</td>
<td>(0, ∞)</td>
<td>(0.30, 0.60)</td>
<td>η</td>
<td>Tr. Normal</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>Tr. Normal</td>
<td>(0, ∞)</td>
<td>(0.50, 0.60)</td>
<td>ν</td>
<td>Tr. Normal</td>
</tr>
<tr>
<td>ρ</td>
<td>Tr. Normal</td>
<td>[-1, 1]</td>
<td>(-0.50, 0.60)</td>
<td>κ_2</td>
<td>Tr. Normal</td>
</tr>
<tr>
<td>σ_{12}</td>
<td>Tr. Normal</td>
<td>(0, ∞)</td>
<td>(0.50, 1.00)</td>
<td>σ_2</td>
<td>Tr. Normal</td>
</tr>
</tbody>
</table>
Figure B.1: The Prior and Posterior Distributions
We take the SE-M1 model as an example. There are 11 parameters in total, $\Theta = (\mu, \kappa_1, \theta_1, \sigma_{11}, \rho, \sigma_{12}, \omega, \eta, v, \kappa_2, \sigma_2)$. For each simulation in each Monte Carlo study, we generate a sequence of daily observations with sample size $T = 6000$. The true values of parameters are $\Theta^* = (0.10, 5.00, 0.02, 0.30, -0.60, 0.50, -0.05, 0.03, 0.80, 15.0, 50.0)$, which are close to the full-sample estimates in Section 3. The initial values of the stock price, S_0, diffusion variance, $V_{1,0}$, and the jump intensity, $V_{2,0}$ are given as 100, 0.03, and 1.00, respectively, and the priors are the same as in Appendix B (Table B.1). Based on the guidelines of Pitt et al. (2012), we choose $M = 5 \times 1024$. Any increase of this number may result in higher acceptance rates, but it also increases the computational cost. As for the choices of N, N_1, and N_2, we consider the following three Monte Carlo studies:

- **MC1**: $N = 2 \times 1024$, and $N_1 = N_2 = N/2$;
- **MC2**: $N = 2 \times 1024$, and $N_1 = N_2 = N \times 2/3$;
- **MC3**: $N = 4 \times 1024$, and $N_1 = N_2 = N/2$.

The total number of simulated paths is 50 in each Monte Carlo study. We use the same simulated dataset across the three Monte Carlo studies. Graphical processor-based parallel architectures (GPUs) are used to speed up computations. Table C.1

<table>
<thead>
<tr>
<th>Θ</th>
<th>True Value</th>
<th>MC1 Mean</th>
<th>MC1 RMSE</th>
<th>MC2 Mean</th>
<th>MC2 RMSE</th>
<th>MC3 Mean</th>
<th>MC3 RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0.10</td>
<td>0.089</td>
<td>0.029</td>
<td>0.090</td>
<td>0.028</td>
<td>0.090</td>
<td>0.029</td>
</tr>
<tr>
<td>κ_1</td>
<td>5.00</td>
<td>5.204</td>
<td>0.709</td>
<td>5.180</td>
<td>0.721</td>
<td>5.212</td>
<td>0.710</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.02</td>
<td>0.021</td>
<td>0.003</td>
<td>0.021</td>
<td>0.003</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>0.30</td>
<td>0.301</td>
<td>0.022</td>
<td>0.301</td>
<td>0.023</td>
<td>0.301</td>
<td>0.022</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.60</td>
<td>-0.595</td>
<td>0.046</td>
<td>-0.595</td>
<td>0.047</td>
<td>-0.594</td>
<td>0.046</td>
</tr>
<tr>
<td>σ_{12}</td>
<td>0.50</td>
<td>0.560</td>
<td>0.117</td>
<td>0.556</td>
<td>0.113</td>
<td>0.558</td>
<td>0.114</td>
</tr>
<tr>
<td>ω</td>
<td>-0.05</td>
<td>-0.055</td>
<td>0.014</td>
<td>-0.055</td>
<td>0.014</td>
<td>-0.055</td>
<td>0.014</td>
</tr>
<tr>
<td>η</td>
<td>0.03</td>
<td>0.027</td>
<td>0.006</td>
<td>0.027</td>
<td>0.006</td>
<td>0.027</td>
<td>0.006</td>
</tr>
<tr>
<td>v</td>
<td>0.80</td>
<td>1.314</td>
<td>0.668</td>
<td>1.300</td>
<td>0.656</td>
<td>1.331</td>
<td>0.687</td>
</tr>
<tr>
<td>κ_2</td>
<td>15.0</td>
<td>18.24</td>
<td>3.943</td>
<td>18.17</td>
<td>3.794</td>
<td>18.37</td>
<td>3.985</td>
</tr>
<tr>
<td>σ_2</td>
<td>50.0</td>
<td>48.32</td>
<td>5.264</td>
<td>48.65</td>
<td>5.058</td>
<td>48.40</td>
<td>5.023</td>
</tr>
</tbody>
</table>

Table C.1: Monte Carlo Studies
Table C.2: **Sensitivity Study**

<table>
<thead>
<tr>
<th>Θ</th>
<th>$M = 8 \times 1024$</th>
<th>$M = 16 \times 1024$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>μ</td>
<td>0.045</td>
<td>0.004</td>
</tr>
<tr>
<td>κ_1</td>
<td>5.983</td>
<td>0.393</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.017</td>
<td>0.000</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>0.310</td>
<td>0.005</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.606</td>
<td>0.006</td>
</tr>
<tr>
<td>σ_{12}</td>
<td>0.498</td>
<td>0.024</td>
</tr>
<tr>
<td>ω</td>
<td>-0.058</td>
<td>0.003</td>
</tr>
<tr>
<td>η</td>
<td>0.023</td>
<td>0.001</td>
</tr>
<tr>
<td>ν</td>
<td>0.701</td>
<td>0.048</td>
</tr>
<tr>
<td>κ_2</td>
<td>10.76</td>
<td>1.154</td>
</tr>
<tr>
<td>σ_2</td>
<td>79.45</td>
<td>2.489</td>
</tr>
<tr>
<td>LMLH</td>
<td>2.719e4</td>
<td>1.094</td>
</tr>
<tr>
<td>Time</td>
<td>\approx 1.6 days</td>
<td>\approx 3.0 days</td>
</tr>
</tbody>
</table>

presents the Monte Carlo simulation results. The following findings are in order. First, our parameter learning algorithm is quite robust and not sensitive to the choices of N, N_1, and N_2 as the three Monte Carlo studies deliver quite similar results. Second, the diffusion parameters, Θ_D, and the jump parameters, ω and η, can be well identified by our learning algorithm as their means are quite close to the true values and their RMSEs are very small in all three Monte Carlo studies. Third, however, the jump parameters, ν, κ_2, and σ_2, which control the jump structure and intensity dynamics, are not easy to estimate. This is because the relatively large value of ν generates a small number of sizable jumps, making extreme events arrive at a very low frequency.

Based on the above results, in empirical applications, we choose $N = 4 \times 1024$, and $N_1 = N_2 = N/2$. However, the choice of the number of state particles (M) is more sensitive in real data applications than in simulations. In order to investigate this issue, we implement a sensitivity study. Using the real data in Subsection 3.1, we implement 15 independent runs of the algorithm for the SE-M1 model by setting $M_1 = 8 \times 1024$ and $M_2 = 16 \times 1024$, respectively. Table C.2 presents means and standard deviations of the posterior means of the model parameters and the log marginal likelihoods across these runs. We clearly see that the log marginal likelihood (LMLH) under M_1 is nearly
the same as that under M_2, even though its standard deviation under M_2 is a little bit reduced. Similar result can also be found for the parameter estimates. These results indicate that in the real data applications, model inference is not so sensitive to the choice of the number of state particles between M_1 and M_2, though we decide to choose $M = 16 * 1024$ in our empirical analysis.

We program in MATLAB the main algorithm and offload the computational bottleneck of the algorithm, the particle filter, to the GPU, coded in CUDA. Relying on a Telsa K20 GPU, our Bayesian learning algorithm is quite fast. As we can see from Table C.2, if we set the number of state particles equal to M_1, each run on the real data takes about 1.6 days. If we set it equal to M_2, each run takes about 3 days.

D ESS and Acceptance Rates

Figure D.1 presents the efficient sample sizes and the acceptance rates at the move steps for the four models. In general, we can see from the left panel that the algorithm takes more move steps in the early stage of learning when the market information is minimal. We also find that the SE-M1 and the SE-M3 models take less move steps than the SE-M2 and the SE-M4 models, in particular, during the financial crises. From the right panel, we see that the acceptance rate remains high in the SE-M1 model over time, larger than 35%. However, in the SE-M3 model, it drops a little and in the SE-M2 and the SE-M4 models it decreases to a low level during the 2008’s financial crisis. Less move steps and higher acceptance rates in the SE-M1 model indicate that it can better adapt to the outliers.

E Change of Measure

The no-arbitrage condition indicates that there exists at least one almost surely positive process, K_t, with $K_0 = 1$, such that the discounted gains process associated with any admissible trading strategy is a martingale (Harrison and Kreps, 1979). K_t, which is
Figure D.1: ESS and Acceptance Rates
assumed to be a semimartingale, is called the stochastic discount factor or the pricing kernel. We propose a class of models for the stochastic discount factor, K_t, such that the change-of-measure does not alter the model structure. Specifically,

$$K_t = \exp \left(- \int_0^t r_s ds \right) \mathcal{E} \left(- \int_0^t \gamma_W(s) dW_s \right) \mathcal{E} \left(- \int_0^t \gamma_V(s) dZ_s \right) \mathcal{E} \left(\int_0^t \int_{\mathbb{R}} (\gamma_J(s, x) - 1) \tilde{\pi}(dx, ds) \right),$$

(E.1)

where r_t is the risk-free rate of interest, $\mathcal{E}(\cdot)$ denotes the stochastic (Doleans-Dade) exponential operator, $\tilde{\pi}$ is a compensated random measure, and $\gamma_W(t), \gamma_V(t)$ and $\gamma_J(t, x) - 1$ define market prices for the risk factors in the market.

The price for the diffusive volatility risk, Z_t, is assumed to have a form of $\gamma_V(t) = \gamma_V \sqrt{V_{1,t}}$, where γ_V is a constant. For the jump component, the above change of measure indicates that its risk-neutral Lévy density, $\nu^Q(dx)$, is related to its objective one, $\nu(dx)$, by $\nu^Q(dx) = \gamma_J(t, x) \nu(dx)$. We assume $\gamma_J(t, x)$ has an exponential form, $e^{-\gamma_J x}$, where γ_J is a constant, such that the risk-neutral Lévy density of the jump component is simply an exponential tilting of the objective one. In contrast, we leave $\gamma_W(t)$ unspecified.

The Variance Gamma process has a Lévy density under the objective measure, P, as follows,

$$\nu(dx) = \frac{1}{\nu} \left(\frac{\exp \left(- \frac{\mu x}{\nu} \right)}{x} 1_{x>0} + \frac{\exp \left(- \frac{\mu^2 |x|}{\nu} \right)}{|x|} 1_{x<0} \right) dx. \quad (E.2)$$

The above change of measure indicates that the risk-neutral Lévy density should have a form of

$$\nu^Q(dx) = \frac{1}{\nu} \left(\frac{\exp \left(- \frac{(\mu + \gamma_J)x}{\nu} \right)}{x} 1_{x>0} + \frac{\exp \left(- \frac{(\mu^2 - \gamma_J)|x|}{\nu} \right)}{|x|} 1_{x<0} \right) dx. \quad (E.3)$$
We therefore have the following risk-neutral model under the Q measure:

$$\ln \frac{S_t}{S_0} = \int_0^t r_s ds + \left(W^Q_{T_{1,t}} - k^Q_{1}(1)T_{1,t} \right) + \left(J^Q_{T_{2,t}} - k^Q_{2}(1)T_{2,t} \right),$$ \tag{E.4}

$$dV_{1,t} = \kappa^Q_1 \left(\theta^Q_1 - V_{1,t} \right) dt + \sigma^Q_1 \sqrt{V_{1,t}} dZ^Q_t - \sigma^Q_2 d(J^Q_{T_{2,t}}),$$ \tag{E.5}

$$dV_{2,t} = \kappa^Q_2 \left(\theta_2 - V_{2,t} \right) dt - \sigma^Q_2 d(J^Q_{T_{2,t}}),$$ \tag{E.6}

where $\kappa^Q_1 = \kappa_1 + \sigma_{11} \gamma_V$, $\theta^Q_1 = \kappa_1 \theta_1 / \kappa^Q_1$, W^Q_t and Z^Q_t are two independent standard Brownian motions. The time-homogenous jump component is still the Variance Gamma process with the risk-neutral Lévy density, $\nu^Q(dx)$, given by (E.3). The risk-neutral jump parameters are now given as follows: $\omega^Q = (\omega - \gamma_J \eta^2) / A$, $\eta^Q = \eta / \sqrt{A}$, and $\nu^Q = v$, where $A = 1 + \gamma_J \omega v - \gamma^2_J v^2 / 2$.

REFERENCES

