Identification of Heterotrophic Nanoflagellates by Restriction Fragment Length Polymorphism Analysis of Small Subunit Ribosomal DNA

EE LIN LIM, MARK R. DENNETT and DAVID A. CARON

ABSTRACT. Thirty clones derived from twenty isolates of heterotrophic nanoflagellates originating from a variety of marine and freshwater environments were examined by restriction fragment length polymorphism analysis of small subunit ribosomal RNA genes amplified by the polymerase chain reaction (riboprinting). The data were compared with light and electron microscopical identification of the isolates. On morphological criteria, sixteen of the thirty clones belonged to the genus Paraphysomonas De Saedeleer, seven to the genus Spumella Cienkowski, four to the genus Pteridomonas Penard and three to the genus Cafeteria Fenchel and Patterson. Among these taxa, eleven ribotypes were detected by analysis with the restriction enzymes Hinf I, Hae III, Sau3A I, and Msp I. Differentiation of nanoflagellate taxa by the riboprinting method supported taxonomic classification based on morphology at the generic and species level. The utility of the method for discriminating the ‘naked’ flagellates and for confirming the identity of polymorphic forms among species of Paraphysomonas is demonstrated.

Key Words. Chrysophyceae, heterokont flagellates, polymerase chain reaction, ribosomal RNA gene, riboprinting.

HETEROTROPHIC nanoflagellates (2-20 μm in diam.) are ubiquitous in aquatic environments where they constitute a major component of the eukaryotic plankton. They are the primary consumers of bacteria and other picoplankton and serve as important nutrient remineralizers in the water column (Azam et al. 1983; Berninger et al. 1991; Caron 1991; Caron et al. 1991; Fenchel 1982). The size of these organisms and their ability to consume bacteria also place the heterotrophic nanoflagellates in a position as trophic links for the transfer of carbon and nutrients from bacteria to higher consumers in planktonic food webs.

Despite their importance in aquatic ecosystems, the diversity and biogeography of many heterotrophic nanoflagellates in natural systems are still poorly known. This is because the size of many of the species is ≤ 5 μm, and the morphological and behavioral characteristics which distinguish individual taxa are not readily apparent. The obscurity of discriminating taxonomic characters is a particular problem among “naked” heterokont flagellates where few morphological features are obvious using light or electron microscopy. This has resulted in a confused and difficult taxonomy for some groups of “naked” heterotrophic nanoflagellates (e.g. within the genera Oikomonas and Spumella) (Preising et al. 1991).

Flagellates, which are covered by scales and loricas, present easily discernable criteria for species identification. Scale morphology, for example, is an important character in chrysophyte taxonomy (Kristiansen 1986). Within the chrysophyte genus Paraphysomonas, species are distinguished from the ultrastructure of silica scales which cover the cells (Preising and Hibberd 1982a; Preising and Hibberd 1982b; Preising and Hibberd 1983). However, intraspecific variability has been observed in scale size and morphology. The polymorphic scales of P. imperforata can show up to 4-fold differences in size (Preising and Hibberd 1982a; Thomsen 1975; Vørs et al. 1990) while other species may produce imperfect forms. Several species of Paraphysomonas normally possess at least two types of scales but these organisms have also been observed with only one scale type. Whether such deviations in scale size and morphology indicate the existence of different species has sometimes been a subject of debate and this has rendered descriptions of some Paraphysomonas species rather tenuous (Vørs et al. 1990).

Scale morphology can also be affected by environmental conditions. Silica limitation is known to alter the shape or to totally eliminate the production of scales by chrysophytes (Leadbeater and Barker 1995). The influence of temperature, salinity, and prolonged cultivation on scale morphology has not been well-studied for most taxa. However, these factors may also affect scale production and confound the identification of scaled taxa.

In recent years, rapid identification and classification of microorganisms have been achieved by DNA-based methods. The analysis of small subunit ribosomal RNA (SSU rRNA) gene sequences involving the use of the polymerase chain reaction (PCR), oligonucleotide probes and DNA polymorphism assays, has been especially useful for characterizing microbial populations (Grimont and Grimont 1986; Muyzer et al. 1993; Olsen 1988; Stahl and Amann 1991; Welsh and McClelland 1990; Williams et al. 1990). A method based on the detection of restriction fragment length polymorphisms (RFLP) in SSU rRNA genes amplified by PCR, in particular, has been used successfully to distinguish species and strains of bacteria (Laguerre et al. 1994; Laguerre et al. 1996; Moyer, 1994), fungi (Molina et al. 1992) and diverse groups of protists such as parasitic and non-parasitic amoeboza, myxozoan parasites, Tetrhydyma ciliates, toxic red tide dinoflagellates of the genus Alexandrium, and Symbiodinium-like zooxanthellae (Brown and De Jongheere 1994; Clark 1997; Clark and Diamond 1997; Jerome and Lynn 1996; Rowan and Powers 1991; Scholin and Anderson 1994; Xiao and Desser 2000). This method, also called “riboprinting” (Clark 1997), involves amplification of SSU rRNA gene segments, digestion of the amplified rDNA products with restriction enzymes and separation of the resulting fragments by horizontal gel electrophoresis. This study examines the utility of riboprinting to differentiate clonal cultures of heterotrophic flagellates.

MATERIALS AND METHODS

Flagellate cultures. Thirty clonal cultures (bacterized, but unprotokinet) of heterotrophic flagellates which originated from various freshwater and marine locations along the east coast of the United States, England, and Malaysia were examined (Table 1). All possessed a swimming behavior characteristic of heterokont, chrysomonad-like flagellates. The identity of these species was otherwise unknown at the time that the RFLP analyses were performed, with the exception of P. imperforata clone JE1 which was provided by Dr. Jacqueline Eccleston (Lancaster University, UK). Seven of the clones (CRP1, DB1, LBMS1, LW1, PV10, and YP1) were isolates from freshwater ponds and lakes and the remainder originated from marine localities (Table 1). The clonal cultures designated as WH1, WH1a, WH4, and SS were obtained from Dr. John B. Waterbury (Woods Hole

Corresponding Author: E. Lim—Telephone number: 215-204-1611; FAX number: 215-204-6646; E-mail: eeltn@astro.temple.edu.

247
DNA preparation. Cells from 1.5 ml of culture were pelleted and resuspended in 50 μl of 1× PCR buffer (50 mM KCl, 10 mM Tris-HCl pH 8.3, 2 mM MgCl₂, 0.001% gelatin) supplemented with 0.5% Nonidet P40. The cell suspension was then incubated at 95 °C for 10 min to lyse the cells. The supernatant was directly used as template for PCR amplification.

PCR amplification. Primers derived from conserved regions flanking the SSU rRNA genes of eukaryotes, designated as Primer A and Primer B, were used for PCR amplification (Medlin et al. 1988). Reactions contained 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2 mM MgCl₂, 0.001% gelatin, 0.05% NP40, 200 μM of each dNTP, 1 ng μl⁻¹ of each primer, 0.5 μl of Taq DNA polymerase (Promega, Madison, WI) and 3 μl of cell lysate (template) in a total volume of 100 μl. DNA amplification was performed in a Perkin-Elmer Thermocycler for 30 cycles with the following temperature profile: denaturation at 92 °C for 1.5 min, annealing at 55 °C for 1.5 min and extension at 72 °C for 2 min. Amplified DNA was analyzed by horizontal gel electrophoresis in 1% agarose gels.

RFLP analysis. Restriction digests were performed directly on PCR products with a panel of 4-base-recognizing restriction enzymes (Hae III, Hinf I, Msp I, and Sau 3A I; New England Biolabs, Beverly, MA). For each organism, PCR product from multiple amplification reactions were pooled for the restriction digest. Aliquots of PCR products (8 μl) were digested with 1U of enzyme in 10-μl reaction vol. using the manufacturer’s recommended buffer and temperature. Digested PCR products were electrophoresed in 3% low melting point agarose (Sigma,
St. Louis, MO) for 2.5 h at 90 V and gels were stained with ethidium bromide (5 ng ml⁻¹) for visualization. Fragment sizes were calculated from relative migration distances (compared with DNA size markers; Gibco BRL, Gaithersburg, MD) using the Bio Image Whole Band Analysis program (Millipore, Bedford, MA). The restriction fragment sizes for each enzyme digest were summed to ensure that they amounted to the approximate size of the undigested PCR product.

**Microscopy.** Live cells were observed with a WILD M10 stereo microscope (Leica) using dark-field optics, and with a Zeiss Standard Compound microscope equipped with phase contrast optics. Cell sizes were not measured from these live observations but from electron micrographs (see below). For transmission electron microscopy (TEM), cultures in late exponential or stationary phases of growth were fixed with glutaraldehyde to a final concentration of 1%. Fixed cells (approximately 1.5 ml) were concentrated to a small vol. by centrifugation, and a drop of concentrate was placed on a formvar-coated copper grid (400-mesh). After allowing the cells to settle for approximately 10 min, excess fluid was removed with a piece of Whatman filter paper and the grid was air-dried. The cells on the grids were then negative-stained with 1% uranyl acetate for 2 min. Grids were subsequently rinsed by quickly immersing them in distilled water, and then air-dried. Microscopy was carried out using a Zeiss 10 transmission electron microscope. The heterotrophic flagellates were identified by flagellar morphology and scale structure (if present), and measurements of their cell size and flagella length were made from electron micrographs. Isolates were identified at the genus and species level where possible.

**RESULTS**

**Identification of flagellate clones.** All the flagellates examined in this study are heterotrophic heterokont species, i.e. they lack chloroplasts and possess a forwardly directed hairless flagellum and a second smooth flagellum which sometimes is shorter or exists only as a basal body (Moestrup and Andersson 1991). Twenty-three of the 30 clones were chrysophytes and of these clones, 16 belonged to the genus *Paraphysomonas* De Saedeleer, and seven to the genus *Spumella* Cienkowski. Four clones were pedinellid flagellates belonging to the genus *Pteridomonas* Penard, and the remaining three were bicosoecid flagellates from the genus *Cafeteria* Fenchel and Patterson. A brief description of each group along with species descriptions (where identification was possible) are provided in the following paragraphs.

**Paraphysomonas** De Saedeleer. *Paraphysomonas* cells possess a long, hairy flagellum and a short, smooth flagellum, characteristic of chrysophytes. Species in this genus are identified by the siliceous scales, which cover the surface of the cell. The group has been studied extensively by Preisig and Hibberd and the original description of *P. imperforata* (1982a, Fig. 5). The clones of clone SR3 did not possess a rim. The clones of this species consist of a baseplate with a slightly thickened rim. A tapering spine with an acute tip arises from the center of the baseplate. The spines are generally longer relative to the base plate than the spines of *P. imperforata* (Fig. 1B). Two clones, PV10 and DB1, which originated from England and Maryland, USA, respectively, were identified as *P. vestita*. Both were freshwater isolates (Table 1).

**P. bandaiensis** Takahashi (Fig. 2C and D). Scales from marine clones WH1, WH1a, WH4, SS, and Hflag have a baseplate with a thickened rim and a central spine arising from the base plate that ends in a rounded tip. The morphology of the scales resembles that of *P. bandaiensis* Takahashi although Preisig (pers. commun.) has suggested that these clones be considered as small-scaled *P. vestita* on the following basis: i) Small-scaled forms of *P. vestita* may be very similar to *P. bandaiensis* and it is often impossible to distinguish the two species; ii) *P. vestita* was previously reported to have scales (base diam. as small as 0.4 μm and a spine length as short as 1.3 μm) which overlap with the typical scale dimensions of *P. bandaiensis* (base diam. of 0.2–0.8 μm and a spine length of 0.2–1.1 μm) (Preisig and Hibberd 1982a); iii) *P. bandaiensis* has previously only been observed in freshwater environments.

The scales of clone WH1, WH1a, WH4, SS, and Hflag have a base diam. that measures ~0.6 μm and a spine length, ~1.0–1.3 μm. The dimensions of the scales are intermediate between *P. vestita* and *P. bandaiensis* and therefore cannot be used to determine the identity of these clones. At least one of the clones, WH1, can be grown in freshwater media with bacteria (data not shown) even though the clone was isolated from a marine environment. This finding may invalidate the use of habitat as a criterion for identifying these clones as small-scaled *P. vestita* and not *P. bandaiensis*. It should also be noted that *P. imperforata* and *P. vestita*, which belong to the same species complex as *P. bandaiensis* (species bearing only spine scales with an imperforate base), are commonly found in both marine and freshwater environments. Clones WH1, WH1a, WH4, SS, and Hflag are thus tentatively identified as *P. bandaiensis*.

**P. butcheri** Pennick and Clarke (Fig. 3A and B). This species
produces two types of scales. The plate scales are round to elliptical with a meshwork structure, while the crown scales consist of a proximal ring from which a series of five arches arise. These distal arches are connected in the middle by a meshwork structure. The marine isolate DB4 was identified as *P. butcheri* in this study.

*Spumella* Cienkowski (Fig 3C; D, Fig. 4A, B, C and D). Identification of the naked (i.e. scaleless), chrysomonad flagellates is generally difficult because there are few obvious morphological criteria to distinguish these species. The lack of cellular detail explains the absence of informative taxonomic keys. Most of the descriptions of this genus still date back to original light microscopical observations from the last century (Kent 1880a; Kent 1880b). Identification of the clonal cultures in this study represent the best possible identifications based on current literature.

Isolates identified as *Spumella* are naked, and the long, hairy flagellum and short, smooth flagellum are both visible. Two of the clones in this study (EP1 and EP2) were coastal marine isolates from Massachusetts while the other five (YP1, CRP1, LW1, LBMS1, and MR1) originated from freshwater localities. These latter five cultures came from ponds and lakes in Washington DC, New Hampshire, Malaysia, and Massachusetts, respectively. Cells of clones EP1, EP2, YP1, and MR1 were \( \approx 2 \mu m \) in diam. with a flagellum length of 5–8 \( \mu m \) for isolates EP1, EP2, and YP1 (Fig. 3C and D), but the long flagellum of clone MR1 was \( \approx 10 \mu m \) (Fig. 4D). The cell diam. of isolates CRP1, LW1, and LBMS1 were all \( \approx 4 \mu m \) and the length of their long flagellum was 7–10 \( \mu m \). These latter three isolates have cell bodies that are uniformly covered by an amorphous material that cannot be readily identified from negative-stained preparations (Fig. 4A, B and C). This cell covering gives the outline of the cell body an uneven appearance.

*Cafeteria* Fenchel and Patterson (Fig. 5A and B). A description of this genus and its members based on light microscopical observations of live samples can be found in Larsen and Pat-
LIM ET AL.—FLAGELLATE IDENTIFICATION BY RIBOPRINTING

Fig. 2A—D. Paraphysomonas vestita and P. bandaiensis. A: Whole cell of P. vestita, 5,500X. B: Group of P. vestita scales, 20,000X. C: Whole cell of P. bandaiensis, 8,000X. D: Group of P. bandaiensis scales, 32,000X. A & C, bar = 2 μm; B & D, bar = 0.5 μm.

Pteridomonas Penard (Fig. 5C and D). Cells of clone NB1, NB2, SR1, and SR5 (all originating from marine water samples, Rhode Island) each possess a single hairy flagellum. Cells belonging to the NB clones are ~3 μm in diam. with flagella that range from 12–15 μm in length. The SR clones contain cells 2–3 μm in diam. with flagella that are ~13 μm long. Thin tentacles protruding from the anterior lateral side of the cells are visible by phase contrast microscopical examination but not by TEM. In addition, a stalk on the posterior end of the cell is visible when cells are not motile. This also is not visible in electron microscopical preparations. On the basis of these observations and those of Patterson and Fenchel (Patterson and Fenchel 1985) and Larsen and Patterson (Larsen and Patterson 1990), clones NB1, NB2, SR1, and SR5 were identified as belonging to the genus *Pteridomonas*, and are most likely the species *P. danica*.

RFLP analysis of amplified SSU rDNA. Use of the SSU rDNA primers in PCR yielded amplified rDNA for all the 30 isolates tested. A single band corresponding to an amplification product of approximately 1,800 bp was obtained for all the clones with the exception of WB1 to WB5 and DB4, which yielded an additional ~750-bp product; EP1 and EP2, which yielded an additional ~1,000-bp product; and PV10 and DB1, which yielded a SSU rDNA product of ~1,950-bp instead of the 1,800-bp product. With the exception of DB4, the 1,000-bp and 750-bp products were not visible following enzyme cleavage (Fig. 6). These bands were not included in the riboprinting analysis. The sum of restriction fragment sizes for each enzyme digest was within approximately 10% of the undigested SSU rDNA (~1,650 to 2,000 bp).

Riboprinting of the 30 isolates with *Hinf* I, *Hae* III and *Sau* 3A I resulted in eight distinct cleavage patterns while *Msp* I...
produced 10 distinct patterns (Table 1). Representative RFLP patterns generated by the enzymes Hinf I and Msp I are shown in Fig. 6, and are schematically illustrated in Fig. 7 for the enzymes Hae III and Sau 3A I. The cleavage profiles obtained using the four enzymes allowed us to define SSU rDNA ribotypes, designated I to XI (Table 1). The numbering was assigned arbitrarily and it does not imply any interrelationship among the ribotypes.

The combination of the four enzymes enabled discrimination of the Paraphysomonas species, P. imperforata, P. vestita, P. bandaiensis, and P. butcheri. Two riboprint patterns were identified among the P. imperforata clones: the five P. imperforata clones from Waquoit Bay, MA (WB1 to 5), were assigned to one ribotype (I) while three other P. imperforata clones, VS1 (Vineyard Sound, MA), JE1 (England), and SR3 (Sakonnet River, RI) with the spineless scales were assigned to a separate ribotype (II). Variations in the SSU rDNA sequences of the P. imperforata clones were detected with Sau 3A I and Msp I but not Hinf I and Hae III (Table 1). The two ribotypes of P. imperforata were distinguished by apparent differences at two Sau 3A I sites, and one Msp I site (Fig. 6, lanes 1 and 2). The two P. vestita clones corresponded to one ribotype (VII). The P. bandaiensis clones similarly grouped into a single, unique ribotype (VIII). The riboprint pattern of P. vestita differed from that of P. bandaiensis for all four enzymes, indicating that the P. vestita clones were very distinct from those identified as P. bandaiensis. P. butcheri was assigned to a ribotype (IX) distinct from the other three Paraphysomonas species.

The three genera of naked chrysomonads, Spumella, Cafeteria, and Pteridomonas were separated into ribotypes distinct from each other and from the scaled chrysomonads. Within the genus Spumella, the seven clones were differentiated into four ribotypes. Clones EP1 and EP2 were identified as belonging to ribotype III, YP1 as ribotype IV, clones CRP1, LWI, and
Fig. 4A–D. *Spumella* spp. A: Clone CRP1, 8,000×. B: several cells of Clone LW1, 5,000×. C: Clone LBMS1, 5,500×. D: Clone MR1, 8,500×. Bar = 2 μm.

LBMS1 as ribotype V, and MR1 as ribotype VI. The three clones ascribed to the genus *Cafeteria* yielded identical riboprint patterns and were assigned to ribotype X. The four clones identified as *Pteridomonas* yielded a single unique restriction pattern assigned to ribotype XI.

A minimum of two enzymes, *Msp* I together with *Hinf* I, *Hae* III or *Sau* 3A I seems capable of providing the same resolving power as the combination of four enzymes. *Msp* I was only slightly less discriminating than the combination of *Msp* I and one of the other three enzymes since 10 of the 11 ribotypes defined from the current panel of clones could be discerned using *Msp* I alone.

**DISCUSSION**

Taxonomic identification of flagellates found in environmental water samples can be complicated even for cultured specimens because of the time and experience needed to distinguish behavioral and morphological features characteristic of the different taxa. This is especially true for the “naked” protists, which lack cell coverings such as body scales or loricas that are often central to protist classification schemes. The utility of RFLP analysis of amplified SSU rDNA, or riboprinting, for examining the phylogenetic relationships of nondescript parasites and amoebae has been widely demonstrated (Brown and De Jonckheere 1994; Clark 1997; Clark and Diamond 1997; Xiao and Desser 2000). In this study, we compared the ability of riboprinting to discriminate heterotrophic flagellates that had been identified by morphological features using conventional light and electron microscopy. The differentiation of isolates by the riboprinting approach showed good agreement with the traditional taxonomic classification based on morphology. Riboprinting provides additional characters that are clearly useful, in combination with morphological features, for discriminating clones of heterotrophic flagellates.

The SSU rRNA gene sequences of the four common genera of heterokont flagellates examined in this study, *Paraphyso-
monas, Spumella, Cafeteria, and Pteridomonas, were sufficiently different to permit the discrimination of all four genera. The clear separation of these groups by riboprinting supports their taxonomic distinction based on a combination of flagella and scale morphology. Cells in the genus Paraphysomonas and Spumella possess a long, hairy flagellum and a second short, smooth flagellum visible in EM preparations. However, Paraphysomonas species are surrounded by siliceous scales and Spumella species are naked. Cafeteria and Pteridomonas can be discriminated from Paraphysomonas and Spumella, and from each other, on the basis of flagellar structure: the smooth flagellum of Cafeteria species is typically longer and approximately equal in length with the hairy flagellum, while only a single long, hairy flagellum is visible in TEM preparations of Pteridomonas.

Within the genus Paraphysomonas, species identification based on scale morphology for P. imperforata, P. vestita, P. bandaiensis, and P. butcheri was congruent with riboprinting separation. This result supports the validity of scale morphology in Paraphysomonas taxonomy. More taxa within the genus as well as representatives from other groups of chrysophytes will have to be examined to further verify riboprinting as a reliable complement to scale morphology in the taxonomy of scaled chrysophytes. The ability of riboprinting to discriminate species in the “naked” genera, Spumella, Cafeteria, and Pteridomonas, could not be confirmed because it was not possible to specifically identify the isolates by TEM. However, isolates with similar cell dimensions and flagellar structure within each of these genera were found to cluster into unique ribotypes. These observations provide some evidence to support the hypothesis that riboprinting was able to discriminate species in these genera. The ability of riboprinting to distinguish the “naked”, heterotrophic flagellates is significant because their identification has remained a challenge due to the limited morphological characters on which to base species identification.

Intraspecific sequence heterogeneity was only observed in the
SSU rDNA of *P. imperforata* clones. Clones that were morphologically identical but which exhibited differences in their restriction pattern were defined as possessing intraspecific sequence heterogeneity. Two ribotypes were detected among the seven morphologically identical clones of *P. imperforata*. Full-length sequences of the SSU rDNA of *P. imperforata* clones also indicated the presence of intraspecific sequence variation in this species, as well as in *P. bandaiensis* and *P. vestita* (Caron et al. 1999). However, riboprinting did not detect the sequence variation in *P. bandaiensis* and *P. vestita*. Analysis of more variable regions such as the intergenic spacer region (between the small and large subunit rDNAs) are more appropriate for assessing intraspecific variation and could be analyzed in the future for strain identification.

The riboprinting approach was able to confirm the identity of *Paraphysomonas* clones with atypical scale morphology. Identification of clones WH1, WH1a, WH4, and Hflag as marine specimens of *P. imperforata* was supported by RFLP analysis; clones belonging to the *P. vestita* ribotype were distinct from those identified as *P. bandaiensis*, based on the ribotype patterns generated by all four enzymes (Table 1). The discrimination of these two groups could also be correlated to the larger size of the SSU rDNA amplified from *P. vestita* (≈ 1,950 bp) compared to that amplified from *P. bandaiensis* (1,800 bp). The SSU rRNA gene of both *P. vestita* clones has been sequenced in our laboratory and this shows that insertions of “TA-rich” segments (20–100 bp in length) contribute to the larger size of the SSU rDNA in these organisms (data not shown). The distinct SSU rDNA signatures of typical *P. vestita* clones and the marine *P. bandaiensis* clones, based on RFLP analysis and nucleotide sequence data, lend greater confidence to our identification of clones WH1, WH1a, WH4, and Hflag as *P. bandaiensis* and not small-scaled *P. vestita* (Caron et al. 1999). Direct comparison of these clones with a freshwater *P. bandaiensis* type specimen should ultimately resolve this issue.

In the case of *P. imperforata*, the aberrant form with spineless scales (clone SR3) was found to share the same ribotype as *P. imperforata* clones with typical scales. The SSU rRNA genes of clone SR3 and *P. imperforata* clone VSI have been sequenced in our laboratory (Caron et al. 1999) and the similar sequence data are consistent with the result of the RFLP analysis showing that clone SR3 and clone VSI are the same species. This finding verifies our identification of clone SR3 [and possibly that of Thomsen’s (1975) specimens which had a similar scale type] as *P. imperforata*, and it exemplifies the utility of DNA sequence information for resolving issues of identification raised by scale polymorphy exhibited by *Paraphysomonas* species.

This study has shown that riboprinting is extremely valuable as a parataxononomic tool for discriminating “naked” flagellates from the genus *Spumella*, *Cafeteria*, and *Pteridomonas*, as well as polymorphic forms among species of *Paraphysomonas*. In addition, our analysis demonstrates the importance of using riboprinting in combination with other characters such as scale morphology, cell physiology or complete SSU rDNA sequences to support the interpretation of ribotypes as separate taxa.

Fig. 6. Restriction patterns of PCR-amplified SSU rRNA observed after incubation with *Hinf* I or *Msp* I. The figure for each enzyme represents a composite image derived from three gels. Migration distances were normalized against the molecular weight markers on each side of the composite gels. The lane assignments (lanes 1–8 for *Hinf* I; 1–10 for *Msp* I) correspond to the restriction patterns for each of the enzymes presented in Table 1. Lane M contained Gibco BRL “lkb” DNA ladder.

SSU rDNA of *P. imperforata* clones. Clones that were morphologically identical but which exhibited differences in their restriction pattern were defined as possessing intraspecific sequence heterogeneity. Two ribotypes were detected among the seven morphologically identical clones of *P. imperforata*. Full-length sequences of the SSU rDNA of *P. imperforata* clones also indicated the presence of intraspecific sequence variation in this species, as well as in *P. bandaiensis* and *P. vestita* (Caron et al. 1999). However, riboprinting did not detect the sequence variation in *P. bandaiensis* and *P. vestita*. Analysis of more variable regions such as the intergenic spacer region (between the small and large subunit rDNAs) are more appropriate for assessing intraspecific variation and could be analyzed in the future for strain identification.

The riboprinting approach was able to confirm the identity of *Paraphysomonas* clones with atypical scale morphology. Identification of clones WH1, WH1a, WH4, and Hflag as marine specimens of *P. imperforata* was supported by RFLP analysis; clones belonging to the *P. vestita* ribotype were distinct from those identified as *P. bandaiensis*, based on the ribotype patterns generated by all four enzymes (Table 1). The discrimination of these two groups could also be correlated to the larger size of the SSU rDNA amplified from *P. vestita* (≈ 1,950 bp) compared to that amplified from *P. bandaiensis* (1,800 bp). The SSU rRNA gene of both *P. vestita* clones has been sequenced in our laboratory and this shows that insertions of “TA-rich” segments (20–100 bp in length) contribute to the larger size of the SSU rDNA in these organisms (data not shown). The distinct SSU rDNA signatures of typical *P. vestita* clones and the marine *P. bandaiensis* clones, based on RFLP analysis and nucleotide sequence data, lend greater confidence to our identification of clones WH1, WH1a, WH4, and Hflag as *P. bandaiensis* and not small-scaled *P. vestita* (Caron et al. 1999). Direct comparison of these clones with a freshwater *P. bandaiensis* type specimen should ultimately resolve this issue.

In the case of *P. imperforata*, the aberrant form with spineless scales (clone SR3) was found to share the same ribotype as *P. imperforata* clones with typical scales. The SSU rRNA genes of clone SR3 and *P. imperforata* clone VSI have been sequenced in our laboratory (Caron et al. 1999) and the similar sequence data are consistent with the result of the RFLP analysis showing that clone SR3 and clone VSI are the same species. This finding verifies our identification of clone SR3 [and possibly that of Thomsen’s (1975) specimens which had a similar scale type] as *P. imperforata*, and it exemplifies the utility of DNA sequence information for resolving issues of identification raised by scale polymorphy exhibited by *Paraphysomonas* species.

This study has shown that riboprinting is extremely valuable as a parataxononomic tool for discriminating “naked” flagellates from the genus *Spumella*, *Cafeteria*, and *Pteridomonas*, as well as polymorphic forms among species of *Paraphysomonas*. In addition, our analysis demonstrates the importance of using riboprinting in combination with other characters such as scale morphology, cell physiology or complete SSU rDNA sequences to support the interpretation of ribotypes as separate taxa.
ACKNOWLEDGMENTS

We thank Drs. John Waterbury, Jacqueline Eccleston, Robert Sanders and Delma Bratvold for cultures. We are especially thankful to Drs. Ed DeLong for technical advice, and John Waterbury for the electron micrograph in Fig. 2C, Dawn Moran for assistance with the preparation of samples for electron microscopy, and Drs. H. R. Preisig and D. J. Patterson for assistance with the identification of Paraphysomonas and Cafeteria.

LITERATURE CITED


Received 10/15/99; accepted 01/02/01