1) (15 points) Find \(\int \sqrt{1 - x^2} \, dx \)

2) (15 points) Find \(\int \frac{\arcsin(\sqrt{x})}{\sqrt{x}} \, dx \)

3) (20 points) Argue that \(\int_{2}^{\infty} \frac{x^2 - 4x - 1}{(x^2 - 1)(x^2 + 1)} \, dx \) diverges, or find its value.

4) (15 points) Argue that \(\int_{0}^{\pi} e^{-x^2} \, dx \) diverges, or find its value.

5) (20 points) This problem has three parts.
 A) Let \(R \) be the bounded region of the plane enclosed by the \(x \)-axis and graph of \(y = 3x - x^2 - 2 \). For each part below find an integral that gives the required answer: DO NOT EVALUATE THE INTEGRALS.
 i) The volume of the solid obtained by rotating \(R \) about the \(x \)-axis.
 ii) The volume of the solid obtained by rotating \(R \) about the line \(x = -3 \).
 B) A plate in the shape of a symmetric trapezoid three meters wide at the bottom, five meters wide at the top and two meters high (a rectangle with congruent triangles on each side: is submerged vertically with its top at the surface of a liquid of density \(\rho \). Find an integral that gives the hydrostatic force on one side of the plate: DO NOT EVALUATE THE INTEGRAL. Use \(g \) for the acceleration due to gravity.

6) (20 points) In each case below, the \(n \)-th term of a sequence is given. Give reasons why the sequence diverges, or why it converges and then find its limit.
 i) \(a_n = \left(\frac{4n - 3}{n} - \frac{3n}{n+1} \right) \)
 ii) \(b_n = (3 + \sin(n))^{1/n} \)
 iii) \(c_n = (-1)^n(1 - (1/n)) \)

7) (20 points) In each case give reasons why the series converges or why it diverges. Each series begins at \(n = 1 \).
 i) \(\sum \left(\frac{3}{5} \right)^{n+1} \left(\frac{7}{5} \right)^n \)
 ii) \(\sum \frac{\sin(1/n)}{\tan(1/n)} \)
 iii) \(\sum \frac{e^{1/n} - 1}{n} \) (compare to \(1/n^2 \))
8) (20 points) Find the radius of convergence and the interval of convergence of
\[\sum_{n=1}^{\infty} \frac{(-1)^n (x + 1)^n}{n5^n}. \] Give reasons for your answers.

9) (15 points) Find \(T_3(x) \), the third Taylor polynomial of \(g(x) = x^{4/3} \) about 8.
Use \(T_3(x) \) to approximate \(7^{4/3} \) as a sum of fractions.
Using the Taylor remainder \(R_3 \), what substitution in it gives the best estimate for the error in the approximation above.

10) (15 points) Find the Taylor series about 0 (the Maclaurin series) for \(g(x) = xe^{-x^2} \), then find \(g^{[17]}(0) \) and \(g^{[20]}(0) \).

11) (25 points)
 i) (10 points) What integral gives the length of the graph of \(r = 1/\theta \) from \(\theta = \pi \) to \(\theta = 2\pi \).
 ii) (15 points) Integrate the function that appears in this definite integral, OR (not both)

 (10 points) Find \(\int \frac{x^5}{\sqrt{1 + x^2}} \, dx \)