IR 611: Multivariate Analysis

Benjamin Graham
Plan for Today
Plan for Today

• Introductions
 – Your motivations/objectives for this course
 – A bit about POIR methods training
Plan for Today

• Introductions
 – Your motivations/objectives for this course
 – A bit about POIR methods training

• Context and Course objectives
 – Pedagogy
Plan for Today

• Introductions
 – Your motivations/objectives for this course
 – A bit about POIR methods training

• Context and Course objectives
 – Pedagogy

• Business and logistics
Plan for Today

• Introductions
 – Your motivations/objectives for this course
 – A bit about POIR methods training

• Context and Course objectives
 – Pedagogy

• Business and logistics

• Establishing the research design context
Plan for Today

• Introductions
 – Your motivations/objectives for this course
 – A bit about POIR methods training

• Context and Course objectives
 – Pedagogy

• Business and logistics

• Establishing the research design context

• A little probability
Quantitative vs. Qualitative Research
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
• Really we’re looking at a broad spectrum of methods
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
• Really we’re looking at a broad spectrum of methods
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
• Really we’re looking at a broad spectrum of methods

• Your selection of method should always be question driven
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
• Really we’re looking at a broad spectrum of methods

• Your selection of method should always be question driven
 • OK, but I can’t become an expert in every method...
Quantitative vs. Qualitative Research

• This distinction is WAY overhyped
 • The stereotype of quantitative research is that it lacks nuance and context
 • The stereotype of qualitative research is that it lacks rigor
• Really we’re looking at a broad spectrum of methods

• Your selection of method should always be question driven
 • OK, but I can’t become an expert in every method...
 • That’s what co-authors are for
Training for Your Research Agenda
Training for Your Research Agenda

• Step 1: Enough training in all the core methods of the field so that:
 • You can read intelligently
 • You can look at a question and know the right method to use
Training for Your Research Agenda

• Step 1: Enough training in all the core methods of the field so that:
 • You can read intelligently
 • You can look at a question and know the right method to use
• Step 2: Pick your research area
Training for Your Research Agenda

• Step 1: Enough training in all the core methods of the field so that:
 • You can read intelligently
 • You can look at a question and know the right method to use
• Step 2: Pick your research area
• Step 3: Get more specialized training in the most appropriate method
The Efficient Research Portfolio
The Efficient Research Portfolio

• Your book or your core set of articles that use the methods you know to answer questions on your core topic
The Efficient Research Portfolio

• Your book or your core set of articles that use the methods you know to answer questions on your core topic

• Some articles in your core area where a co-author does the heavy lifting on the methods side and you write the theory
The Efficient Research Portfolio

• Your book or your core set of articles that use the methods you know to answer questions on your core topic

• Some articles in your core area where a co-author does the heavy lifting on the methods side and you write the theory

• Some articles outside your core area where you do the heavy lifting on the methods side and your co-author writes the theory
Why quantitative training is so awesome
Why quantitative training is so awesome

• Math is scary. Stats is hard.
Why quantitative training is so awesome

• Math is scary. Stats is hard.
• Fewer people get the training, so your skill set is more valuable
 • Applies both inside and outside academia
Why quantitative training is so awesome

- Math is scary. Stats is hard.
- Fewer people get the training, so your skill set is more valuable
 - Applies both inside and outside academia
- Because its hard, you want to learn from a class (to start).
Why quantitative training is so awesome

• Math is scary. Stats is hard.
• Fewer people get the training, so your skill set is more valuable
 • Applies both inside and outside academia
• Because its hard, you want to learn from a class (to start).
• Stats is new
 • So senior people don’t know it
 • And there are still a lot of questions no one has gotten to yet
Why quantitative training is so awesome

• Math is scary. Stats is hard.
• Fewer people get the training, so your skill set is more valuable
 • Applies both inside and outside academia
• Because its hard, you want to learn from a class (to start).
• Stats is new
 • So senior people don’t know it
 • And there are still a lot of questions no one has gotten to yet
• Data is rapidly becoming cheaper to collect and store
 • The scarce complement is people who can make meaning from that data
POIR Methods Training
POIR Methods Training

• This is the only required quant class
POIR Methods Training

• This is the only required quant class
• Morris Levy- maximum likelihood and related topics
POIR Methods Training

• This is the only required quant class
• Morris Levy- maximum likelihood and related topics
• Interdisciplinary social science methods training.
Course Objectives
Course Objectives

- 1. Enable you to read quantitative research intelligently
Course Objectives

• 1. Enable you to read quantitative research intelligently
• 2. Teach you several basic techniques for quantitative hypothesis testing
 – Focus on linear regression
Course Objectives

• 1. Enable you to read quantitative research intelligently
• 2. Teach you several basic techniques for quantitative hypothesis testing
 – Focus on linear regression
• 3. Enable you to manage and manipulate datasets for large-n research projects
Course Objectives(2)
Course Objectives(2)

• 4. Provide you skills for self-teaching or working with co-authors using more sophisticated techniques in the future
Course Objectives(2)

• 4. Provide you skills for self-teaching or working with co-authors using more sophisticated techniques in the future

• 5. Provide you with a working knowledge of STATA to facilitate items 2-4
Notes on Pedagogy

• Where I can, I will try to flip the classroom

• This means web videos at home

• In class, it means simulations, demos, examples, Q&A, and labs

• Videos for next week are already posted on my website
Business and Logistics
Business and Logistics

- Any problems acquiring Stata?
Business and Logistics

• Any problems acquiring Stata?
• Any problems enrolling?
Business and Logistics

• Any problems acquiring Stata?
• Any problems enrolling?
• I run this course off my USC website
 • Dropbox for homework assignments
 • E-mail me if you need a dropbox invite sent to a non-usc e-mail
Business and Logistics

• Any problems acquiring Stata?
• Any problems enrolling?
• I run this course off my USC website
 • Dropbox for homework assignments
 • E-mail me if you need a dropbox invite sent to a non-usc e-mail
• The syllabus is a work in progress
 – Some readings will change
The Paper
The Paper

• Half your grade is a final paper
The Paper

• Half your grade is a final paper
• Replication paper or original research
 – This isn’t about theory, it’s about testing
The Scientific Method
The Scientific Method

• The scientific method has four steps
 – 1. Observation and description of a phenomenon or group of phenomena.
 – 2. Formulation of a theory to explain the phenomena.
 • Key concept: Induction
 – 3. Derivation of hypotheses that make falsifiable predications about new observations.
 • Key concepts: falsifiability and “out of sample tests”
 – 4. Performance of multiple tests of these hypotheses by multiple research teams.
 • Key Concept: Replicability
The Scientific Method

• The scientific method has four steps
 – 1. Observation and description of a phenomenon or group of phenomena.
 – 2. Formulation of a theory to explain the phenomena.
 • Key concept: Induction
 – 3. Derivation of hypotheses that make falsifiable predications about new observations.
 • Key concepts: falsifiability and “out of sample tests”
 – 4. Performance of multiple tests of these hypotheses by multiple research teams.
 • Key Concept: Replicability
The Scientific Method

• **The scientific method has four steps**
 – 1. Observation and description of a phenomenon or group of phenomena.
 – 2. Formulation of a theory to explain the phenomena.
 • Key concept: Induction
 – 3. Derivation of hypotheses that make falsifiable predications about new observations.
 • Key concepts: falsifiability and “out of sample tests”
 – 4. Performance of multiple tests of these hypotheses by multiple research teams.
 • Key Concept: Replicability

• If the experiments bear out the hypothesis it may come to be regarded as a theory or law of nature
Types of Studies (1)
Types of Studies (1)

• **Descriptive:** To observe and describe the world around us. E.g., *The Origin of Species*
 – World War I killed a whole lot of people
Types of Studies (1)

• **Descriptive:** To observe and describe the world around us. E.g., *The Origin of Species*
 – World War I killed a whole lot of people

• **Relational:** Designed to examine the relationship between two or more variables.
 – e.g. the democratic peace
Types of Studies (1)

- **Descriptive:** To observe and describe the world around us. E.g., *The Origin of Species*
 - World War I killed a whole lot of people

- **Relational:** Designed to examine the relationship between two or more variables.
 - e.g. the democratic peace
Types of Studies (1)

- **Descriptive**: To observe and describe the world around us. E.g., *The Origin of Species*
 - World War I killed a whole lot of people

- **Relational**: Designed to examine the relationship between two or more variables.
 - e.g. the democratic peace

- **Causal**: Designed to determine whether one or more variables causes or affects one or more outcomes.
Induction and Deduction

- Induction

 Observation ➔ Pattern ➔ Theory

 Descriptive Study ➔ Relational Study
Induction and Deduction

- Induction

Descriptive Study

Observation

Pattern

Relational Study

This is your puzzle!

Theory
Induction and Deduction

• Deduction

Theory → Hypothesis → Observation → Confirmation or Refutation
Social science theories are usually causal
Social science theories are usually causal

• The pattern we observe can usually be described as a relationship between two things
 • Democracy and interstate war
Social science theories are usually causal

- The pattern we observe can usually be described as a relationship between two things
 - Democracy and interstate war
- The dependent variable is the outcome we are trying to explain
Social science theories are usually causal

- The pattern we observe can usually be described as a relationship between two things
 - Democracy and interstate war
- The dependent variable is the outcome we are trying to explain
- The independent variable is another item that we think causes the outcome in question
Why are we fixated on causation?
Why are we fixated on causation?

- Because we want to change the world
Why are we fixated on causation?

- Because we want to change the world
- A causal theory tells you what lever to pull
Why are we fixated on causation?

• Because we want to change the world
• A causal theory tells you what lever to pull

• We want to improve normatively bad outcomes
 • Save the world
Why are we fixated on causation?

- Because we want to change the world
- A causal theory tells you what lever to pull

- We want to improve normatively bad outcomes
 - Save the world
- We want to alter the behavior of others or ourselves
 - Make someone vote for me
 - Stop someone from harming me
The big picture

Theory \rightarrow Research \rightarrow Action

Observation \leftrightarrow Induction

Implementation \leftrightarrow Deduction
Deductive theory testing is a Growth Industry
Deductive theory testing is a Growth Industry

- Program evaluation
 - Public Sector
 - Private sector
 - for profit
 - not for profit
Deductive theory testing is a Growth Industry

- Program evaluation
 - Public Sector
 - Private sector
 - for profit
 - not for profit
- Ideally, the evaluation is built into the implementation in the first place.
Purely Academic Research

Theory

Induction

Research

Deduction
Purely Academic Research

• Academics may go back and forth without moving to implementation:
 • Induction creates theory
 • Deduction tests it. Then we revise the theory and test it again. And we do it again.
Research Design
Research Design

• When quantitative research is done badly, research design is often at fault
 – A parameter is estimated well, but the parameter doesn’t mean what the research thinks it means
Research Design

• When quantitative research is done badly, research design is often at fault
 – A parameter is estimated well, but the parameter doesn’t mean what the research thinks it means

• But this class is focused on what comes after the research design is in place
 – Focused on correctly estimating parameters of interest
Is a project/topic feasible?
Is a project/topic feasible?

• Does your dependent variable vary?
Is a project/topic feasible?

• Does your dependent variable vary?
• Can we define and measure everything that needs to be defined and measured?
Is a project/topic feasible?

- Does your dependent variable vary?
- Can we define and measure everything that needs to be defined and measured?
- If the study involves some condition, can we define it? Can we be sure we'll recognize it when we see it?
 - What is improved human welfare?
 - What is political competition? How do we observe it?
 - What is crop yield--what gets harvested or what makes it to market, or both? What are sales--what gets manufactured or what gets into the hands of the consumer?
 - What's the difference between civil war and other wars?
 - How do you measure norms, beliefs, values?
Measurement
Measurement

• Are we measuring what we think we're measuring?
Measurement

- Are we measuring what we think we're measuring?
- How should we choose among different measurement techniques?
Measurement

• Are we measuring what we think we're measuring?
• How should we choose among different measurement techniques?
• Can measurements be made consistently?
Measurement

- Are we measuring what we think we're measuring?
- How should we choose among different measurement techniques?
- Can measurements be made consistently?
- How accurate are the measurements?
Measurement

- Are we measuring what we think we're measuring?
- How should we choose among different measurement techniques?
- Can measurements be made consistently?
- How accurate are the measurements?
- If there are errors in the data, are they random?
Measurement

- Are we measuring what we think we're measuring?
- How should we choose among different measurement techniques?
- Can measurements be made consistently?
- How accurate are the measurements?
- If there are errors in the data, are they random?
- Do we have missing data? If so, are those missing completely at random?
Collecting Your Own Data
Collecting Your Own Data

• All of the relevant data must be collected. If a critical piece of data cannot be obtained, perhaps the study should not be undertaken.
Collecting Your Own Data

• All of the relevant data must be collected. If a critical piece of data cannot be obtained, perhaps the study should not be undertaken.

• It is equally important to guard against collecting data unrelated to the research question.
Using Other People’s Data
Using Other People’s Data

• User beware
 – Read the codebook.
 – Talk to the authors of the data if you have questions.
 – Take this as seriously as if you were writing the codebook yourself
 – Spend some time getting to know the data, one variable at a time
Causal Variables/Treatments
Causal Variables/Treatments

• What is a causal variable/treatment?
Causal Variables/Treatments

• What is a causal variable/treatment?
• Treatments must be clearly identified
Causal Variables/Treatments

• What is a causal variable/treatment?
• Treatments must be clearly identified
• It is possible that multiple things cause the observed effects
 – What makes someone vote for Obama?
 – How would we know that age increases probability of voting for Obama?
Types of Studies (2)
Types of Studies (2)

• The typical study can be classified into one of two types:
 – observational studies (non-experimental)
 – Intervention studies (experimental)
Types of Studies (2)

• The typical study can be classified into one of two types:
 – observational studies (non-experimental)
 – Intervention studies (experimental)

• The distinction is based on whether an intervention is involved, that is, whether the investigator changes some aspect of subjects' behavior.
Experiments = Easy Analysis
Experiments = Easy Analysis

• If we have randomization, the stats are simple
 – Difference in means test
Experiments = Easy Analysis

• If we have randomization, the stats are simple
 – Difference in means test
• The farther we are from an experiment, the more complicated the statistics
The Order of Things
The Order of Things

• We’re going to start with describing a single population
The Order of Things

• We’re going to start with describing a single population
• Then we’ll move to comparing two (or more) populations on a single dimension
The Order of Things

• We’re going to start with describing a single population
• Then we’ll move to comparing two (or more) populations on a single dimension
• Then we’ll move to comparing multiple populations on multiple dimensions
Ways to Be A Good Student
Ways to Be A Good Student

• Watch the videos with intention
 – Write down your questions and bring them in
Ways to Be A Good Student

• Watch the videos with intention
 – Write down your questions and bring them in

• In class, two useful statements are always
 – I don’t get it
 – I don’t get how I would use this
Ways to Be A Good Student

• Watch the videos with intention
 – Write down your questions and bring them in

• In class, two useful statements are always
 – I don’t get it
 – I don’t get how I would use this

• Do the homework yourself
Ways to Be A Good Student

• Watch the videos with intention
 – Write down your questions and bring them in
• In class, two useful statements are always
 – I don’t get it
 – I don’t get how I would use this
• Do the homework yourself
• Pick a paper that is actually useful to you