But look! Here come more crowds, pacing straight for the water, and seemingly bound for a dive. Strange! Nothing will content them but the extremist limit of land . . . No. They must get just as nigh the water as they possibly can without falling in. And there they stand — miles of them — leagues! Inlanders all, they come from lanes and alleys, streets and avenues — north, east, south, and west. Yet here they all unite! Tell me, does the magnetic virtue of the needles of the compasses of all these ships attract them thither?

Herman Melville, Moby Dick

This program plan is dedicated to Robert L. Friedheim (1935-2001). As Director of USC Sea Grant from 1980 to 1989, he recognized the important role that Sea Grant could play in addressing the problems of Southern California’s “Urban Ocean.” Dr. Friedheim served as an invaluable advisor to the program after his tenure as Director; his wisdom and his compass will be sorely missed.
EXECUTIVE SUMMARY

As the largest coastal urban center on the west coast, and the second largest in the nation, the city of Los Angeles has been designated a “mega-city” by the United Nations. This designation carries with it the burden of managing large and growing populations in a geographic region adjacent to valuable and fragile coastal and ocean resources. For over 30 years the Sea Grant Program at the University of Southern California has worked with stakeholders, citizens, government and academia to help navigate this ever-changing landscape.

In this, the fourth decade of existence for the National Oceanic and Atmospheric Administration and the National Sea Grant College Program, every aspect of their missions – from protecting and managing coastal and ocean resources, enhancing environmental literacy and marine research, and predicting changes in the earth’s environment – face a new urgency given ever-increasing national concerns related to the economy, the environment and public safety.

Sustaining and conserving the nation’s coastal and marine environments creates an array of challenges that require both technological innovation and active collaboration among scientists, policymakers, resource managers and a variety of coastal constituents. The University of Southern California Sea Grant Program embarked upon this strategic plan in an effort to allow it to chart a course that meets these challenges and anticipates the future. It draws input from broad regional constituents as well as state and federal priorities. Four strategic thematic areas emerged from this process:

- Water quality and coastal ecosystems
- Society and commerce
- Coastal hazards and public safety
- Education

We will continue to review and refine our goals and objectives to assess our progress as we follow the course we have set to serve the people of Southern California.

TABLE OF CONTENTS

INTRODUCTION
Page 3

UNIVERSITY OF SOUTHERN CALIFORNIA SEA GRANT PROGRAM
Page 7

DEVELOPMENT AND ORGANIZATION OF STRATEGIC PLAN
National Perspectives
State and Regional Perspectives
Strategic Thematic Areas
Strategic Planning Process
Page 11

STRATEGIC THEMATIC AREAS
Water Quality and Coastal Ecosystems
Protecting Public Health
Understanding Pollution
Assessing Impacts on Marine Life
Understanding and Protecting Ecosystems
Page 18

Society and Commerce
Ports and Harbors
Marine Related Business/Sustainable Development
Page 23

Coastal Hazards and Public Safety
Beaches
Mitigating Coastal Hazards
Protect Local Communities
Page 29

Education
K-12 Level
Teacher Education and Support
Intergenerational Learning
Undergraduate Education
Graduate Education
Page 33

APPENDICES
Appendix A: USC Sea Grant Research Review Process
Page 40
Appendix B: Huntington Beach: recommendations and lessons learned
Page 41
Page 42
Appendix D: USC Sea Grant Advisory Council
Page 44
Appendix E: USC Sea Grant Academic Coordinating Committee
Page 45
Appendix F: California Resources Agency Sea Grant Advisory Panel
Page 47
Appendix G: Focus Group Meeting Participants
Page 49
Appendix H: Questions presented at Focus Group Meetings
Page 50
In the dawn of the 21st century, coastal cities are facing unprecedented growth. As the Earth moves from 6 billion to 9 billion inhabitants over the next 50-100 years, most of this increase will occur in coastal areas. These urban sites will double or triple in size around the world and, as they grow, they will present an increasing challenge to the marine ecosystems on their seaward boundary. The impacts of cities on human and ecosystem health in the coastal zone have already become national and international issues. The dependence of urban areas on these natural coastal resources is just beginning to be understood.

In geographic terms, the 1,100-mile California coastline is approximately the same length as the U.S. East Coast from Norfolk, Virginia to the northern border of Maine, and the character of coastal terrain varies greatly from north to south. Northern California, with the exception of the San Francisco Bay area, has a more rural character. The region known as the Southern California Bight, which stretches from Point Conception in the north to south of Tijuana, Mexico, is highly developed – an urban coast characterized by nearly uninterrupted commercial and residential development.

The State of California is home to approximately 39 million residents, over 14 million of whom live in three coastal counties and the two adjacent inland counties that comprise the Southern California urban watershed – the region served by the University of Southern California...
The pressure of this intensely urbanized region on fragile marine and coastal space and resources is immense. The problems found in the “Urban Ocean” environment of Southern California are not unique to the region. In addressing the range of issues found here, we hope to provide information and develop models that will serve other urban coastal regions in the U.S. and around the world. We consider Los Angeles the city of the future and treat it as an urban ocean laboratory. To this end, USC Sea Grant is home to the “Urban Coasts and Harbors” thematic area for the national Sea Grant Network.

In the future, the United States — and the world — will see the effects of escalating urbanization on coastal resources and adjacent lands. The public we serve will continue to grow and we expect to expand our capabilities to match that growth. We shall seek to expand the USC Sea Grant program from its current status as an Institutional Program to full Sea Grant College status as we endeavor to serve as a model for the nation’s Urban Ocean.

Our dedication to the Urban Ocean theme is reflected in our calls for proposals, in our planning documents, in our project evaluation process, and in our philosophies of science program management. We remain the only program in the Sea Grant network to offer such a clearly defined identity. The University of Southern California Sea Grant program funds research on the critical issues associated with the influence of massive cities on the sea, promotes connections between scientists and the policy-makers who must craft solutions, and broadly distributes information to the electorate through public education outreach efforts. This work has gained in importance over the past few decades and, as the program has matured, the value of this unique focus has strengthened.
The University of Southern California (USC) Sea Grant Program is part of the National Sea Grant College Program (NSGCP), a national network of 30 Sea Grant programs, which represent a partnership of federal, state, and private entities in every coastal and Great Lakes state. The NSGCP resides within the National Oceanic and Atmospheric Administration (NOAA), which is in the US Department of Commerce. The USC Sea Grant Program is one of only a few Sea Grant programs seated at private universities. The program therefore leverages its federal and state grants with private funds provided in generous share by USC.

The University of Southern California, one of the largest private universities in the United States, has participated in the NSGCP for over 30 years and has a history of marine science research in Southern California dating back more than one hundred years. USC’s facilities, research and curricula make it the principal university in the Los Angeles region for ocean studies, and it has demonstrated excellence in marine research and education from the beginning of the 20th Century. USC’s recognition as a center of environmental studies, as demonstrated both by its selection as the administrator (since 1973) of the $200,000 Tyler Prize for Environmental Achievement (the nation’s premier award in the field) and the establishment of the Wrigley Institute for Environmental Studies (WIES) in 1995 to connect to USC’s environmental science community, makes it an optimum site for a Sea Grant program. WIES operates on the USC campus and at the Wrigley Marine Science Center on Catalina Island and is growing rapidly.

The USC Sea Grant Program continues to be enriched through its ties to developing and established programs that share its concern for rational management of coastal and marine resources. Regionally, this enrichment comes from such programs as the Southern California
Marine Institute (SCMI), a consortium of the seven California State Universities located in Southern California, Occidental College, and USC. A close relationship with researchers at WIES ensures that USC Sea Grant coordinates with ongoing research in the marine sciences, and has an interdisciplinary approach to marine-related research. Several new marine science faculty members at USC have come through WIES, and USC anticipates hiring more new faculty members with expertise in marine environmental science specialties. Numerous USC faculty members have been honored for their work in the marine sciences.

The majority of the significant research grants to USC marine science faculty come from prestigious and highly competitive sources including the National Science Foundation (NSF), Office of Naval Research, National Aeronautics and Space Administration, Environmental Protection Agency and NOAA. USC is among the top dozen institutions receiving funding for marine environmental biology from NSF. Overall, USC ranks in the top 25 of all public and private universities in the nation receiving federal research funds.

USC Sea Grant’s primary responsibility is to contribute to solving the problems of the Urban Ocean, while recognizing the opportunities for coastal commerce, recreation and improving the quality of life in coastal regions such as Southern California. This document has not specifically identified distinctions in the research and outreach programs; this is intentional. Given the size of the program and staff, these functions are integrated to the extent possible. Therefore, professional staff take substantial responsibility for thematic components, and serve as liaison between the science and policy communities, creating outreach programming to serve identified constituencies. Marine Advisory Service (MAS) staff serve as members of pertinent technical and advisory committees, and work with the Sea Grant Advisory Council to develop research priorities. Results of research are disseminated back to the user community, along with programs for public education.

Outreach staff assess the research and informational needs for addressing local, regional and national problems related to the Urban Ocean. Through the MAS and Communications program, we convey research results and information and help to transfer the technology necessary to help managers deal with present and emerging problems. Additionally, we develop programs that help educate the youth and citizenry of Southern California. USC Sea Grant works to build strategic alliances with coastal and marine industries and other interested groups to advance our collective understanding of the opportunities and problems facing our urban coasts.

The USC Sea Grant program continually sharpens and reassesses its goals and priorities in order to stay at the leading edge of problem solving efforts for regional and local issues and sees its growth with critical alliances as its future strength. Using a network of scientists, government agency personnel and advisors, USC Sea Grant is able to anticipate research needs in a relatively short time frame.

Our work on beach closures at Huntington State Beach over the last three years is an excellent example of our
Urbanization in the proximity of dynamic coastal environments imposes a suite of risks on both natural and human systems while at the same time offering valuable access to the coast. We must understand these complex marine systems so that the interactive and cumulative effects of multiple stressors on these environments can be accounted for, and so that we can develop strategies for mitigating harmful impacts. In the complex environment of the Urban Ocean, coastal managers need to be able to establish cause and effect relationships among coastal ecosystem impacts and the wide array of uses. An inability to do so prevents resource managers from reliably predicting the outcome of their actions to prevent ecosystem damage and hazards to public health and safety. Solutions require basic marine science research that is used to inform practical action.

As we update the strategic plan for the USC Sea Grant program, it is apparent that much is still to be learned about the issues and problems of the Urban Ocean. USC Sea Grant will continue to be a leader in the creation of innovative science and solutions in the Urban Ocean arena, with the ability to demand that the science truly help resolve some of the issues of greatest social importance. We will be the catalyst for public understanding of the science so that it motivates better decisions, and will increase its role in bringing decision-makers and scientists together to inform each of the ways that their roles complement and strengthen the other’s. USC Sea Grant will continue to find and implement new and innovative curricular programs that reach our children, so that the next generation of citizens is able to handle a more sophisticated science agenda than any before. Some of this leadership comes from the direct funding of projects. Some of this leadership comes from the larger role of facilitating the connections between the broader array of players that already exist. Some of this leadership emerges as the University of Southern California continues the unprecedented increase in its capabilities in the marine arena.

The USC Sea Grant 2003-2008 Strategic Plan is written to be broad in scope and vision, but with a recognition of the boundaries attendant upon limited resources. We therefore prioritize the elements of this plan in order to focus on the
In its 2000 Statement of California Research Needs, the Resources Agency Sea Grant Advisory Panel, which is the primary contact between the State agencies and Sea Grant programs, has developed priorities for funding research and outreach efforts. There are five major areas of focus: water quality, shoreline processes and seismic activities, education, marine resources and habitats, and fisheries and aquaculture. All these areas, with the exception of aquaculture, coincide with USC Sea Grant's thematic interests.

Among state priorities for research are:
- Analysis of beneficial uses of marine waters, including quantitative analysis of the impacts of storm water runoff and sediment contamination.
- Examination of pathogens and bacterial indicators of water quality.
- Development of tools for efficiently identifying human viruses.

The agenda in shoreline processes focuses on determining the physical, biological, and economic effects of coastal and near-shore erosion and analysis of the roles of natural and artificial shoreline structures, beach nourishment, and impacts from El Niño and severe storms.

The state recognizes the importance of marine education in its call for the development of unique and cost-effective programs to educate people of all ages about the ocean and its needs.

Sea Grant staff members serve on a number of regional panels and committees — the problems and priorities identified by these entities also help us to determine research and outreach priorities beneficial to Southern California. In turn, we provide information about the interests and capabilities of the marine research community. USC Sea Grant's Marine Advisory Services Leader has been a member of the Technical Advisory Committee of the Santa Monica Bay Restoration Project (SMBRP) for over a decade. This committee develops recommendations for research relevant to Santa Monica Bay, and provides technical input.
currently addressed largely through Program Development and Outreach programs rather than through research projects. In the next five years we will work to foster more in-depth research in these areas by developing collaborations and partnerships, and aggressively seeking new sources of funding.

STRATEGIC THEMATIC AREAS

We have identified four major thematic areas of projected effort – water quality and coastal ecosystems, society and commerce, coastal hazards and public safety, and education – to comprise the focus of our work in the next five years. Research, outreach, communications and education functions are integrated, as we develop programs and report results in a timely and useful manner. As with the previous long-range plan (Appendix C), we recognize that our current financial and human resources do not allow implementation of research and outreach priorities in all four areas to proceed at the same rate. We do, however, plan to enhance resources and staff, when feasible, to better serve the needs of a rapidly expanding Urban Ocean population. In a continuing effort to address urgent public needs we work to leverage available resources through collaborations and partnerships and to seek new sources of support to pursue program goals. We endeavor to do so at local, state, and federal levels of government and with private enterprises.

Our agenda in Water Quality and Coastal Ecosystems remains our highest priority, given their importance to the region. This is reflected in the number of research projects funded in this area. Education is our second-highest priority, followed by Society and Commerce, and Coastal Hazards and Public Safety, to which we give equal weight. The goals and objectives of the latter two thematic areas are currently addressed largely through Program Development and Outreach programs rather than through research projects. In the next five years we will work to foster more in-depth research in these areas by developing collaborations and partnerships, and aggressively seeking new sources of funding.

STRATEGIC PLANNING PROCESS

The initial USC Sea Grant Strategic Plan was drafted by USC Sea Grant professional staff, and reviewed by Sea Grant’s Advisory Council. The plan was developed with input from a broad array of sources – including the National Sea Grant and NOAA Strategic Plans, the California Resources Agency Statement of Research Needs (January 2000) and Ocean Management Plan, and the problems identified and recommendations made at the October 2002 conference, “California and the World Ocean.” In addition, the Santa Monica Bay Restoration Project provided an outline of their priorities, and Sea Grant staff garnered additional information from attending regional and local meetings on water quality, public health, coastal hazards, and environmental education. The Sea Grant Advisory Council (Appendix D) and the California Resources Agency Sea Grant Advisory Panel (Appendix F) continue to provide input both formally and informally, on program direction. USC Sea Grant also consulted researchers in the Southern California marine community and around the nation, state and federal agency officials, stakeholders and users of the marine environment.

For each of the four strategic areas: Water Quality and Coastal Ecosystems, Education, Society and Commerce, and Coastal Hazards and Public Safety, we solicited formal input. A planning consultant, with Sea Grant experience and expertise, helped us refine the strategic thematic area visions and objectives. The final stage of the input process began in October 2002. Four day-long external focus group meetings were held at the Faculty Center on the USC Campus, each meeting concentrating on one of the four strategic thematic areas. The focus groups consisted of active participants in USC Sea Grant research and outreach programs, representatives of client groups, representatives from state and federal agencies, and members of the
USC Sea Grant Advisory Board. At least one member of Sea Grant’s management team, along with professional staff, participated in each session. Appendix G provides a list of focus group meeting participants.

USC’s planning consultant presented each focus group background on their specific strategic thematic area and a list of questions to promote discussion (Appendix H). During the first half of the meeting, participants freely discussed the opportunities and obstacles facing their particular thematic area. They were then asked to come up with solid, prioritized goals and objectives for their thematic area. From the information gathered during these sessions, vision and goals/objectives statements were drafted for each thematic area. Finally, meeting participants were asked to review the resulting drafts for each strategic thematic area to assure that they accurately reflected the meeting discussions.

The USC Sea Grant strategic plan fits well with the University of Southern California’s strategic plan, which calls for bringing the wealth of faculty and professional staff expertise to bear on the problems and opportunities presented by the Los Angeles metropolitan urban environment. That environment is, in effect, a “laboratory” for examining the issues pertinent to urban regions worldwide.
A healthier urban ocean environment, reflected in cleaner coastal waters that afford better opportunities for recreation and commerce and the protection of human and ecosystem health.

Intense urban development and the recreational activities of millions of Californians living in the coastal region have seriously altered and impacted the near-shore and off-shore ecosystems of the Southern California coastal zone. Wetlands have been filled in, and rivers and streams turned to concrete, resulting in rapid delivery of massive amounts of urban contaminants to recreational beaches and marine habitats. Channelized rivers and streams serve as direct conduits for runoff into the ocean, even during dry weather. Recurrent cycles of fires and floods cause high sediment and nutrient loads which flow into the coastal ocean. These non-point sources of pollutants are difficult to manage and present a wide range of unknown problems for both ecosystems and public health.

Researchers from California State University Long Beach deploy nets at Seal Beach to capture and tag stingrays.

Potential hazards to public and ecosystem health from these inputs result in frequent water quality warnings or beach postings throughout Southern California. State and federal laws mandate testing waters to determine if the contamination standards have been exceeded. Standard bacterial monitoring tests for the presence of fecal coliforms, total coliform and enterococcus, but does not indicate the actual presence of pathogens potentially harmful to human health. While bacterial indicators are currently considered the best indicators of public health risk, it would be preferable to managers and scientists to find the pathogens most likely to cause illness and to have testing methodologies that provide authorities with the information on those pathogens in sufficient time to warn the public.

The Southern California region has one of the largest sewage effluent systems in the country: more than 1 billion gallons per day reach the ocean from the White’s Point (Los Angeles County), Hyperion (Los Angeles City) and Orange County sewage treatment plants, and Point Loma (San Diego County) sewage treatment plant contributes another 300 million gallons more per day. Pollution problems in this region can be severe. For example, before it was outlawed in the 1960s, over 200 metric tons of DDT was deposited in the sediments of the Palos Verdes Shelf, creating significant impacts on the coastal marine ecosystem, which persist to the present time.

This is important because it is not only the public’s health that is at risk but also the health of marine ecosystems. People can protect themselves by avoiding the water when it has been contaminated, but the organisms that live in the marine environment do not have this choice. The only way to fully protect the fragile marine ecosystem is to prevent the influx of pollution. Achieving such protection continues to challenge scientists working to accurately identify and eliminate the influx of non-point source pollution. Baseline data for present-day Southern California marine ecosystems and working models of the structure and dynamics of these ecosystems are needed to assess both natural and human induced changes. Furthermore, studies must advance beyond single species management and invest in long term ecosystem-level research to better understand the complex interacting factors critical to healthy ecosystems and restoration of degraded habitats.
Objectives

Identify and evaluate the sources and processes controlling behavior, fate and impact of pollutants in aquatic systems.

Investigate groundwater, including septic system, contributions to near-shore pollution.

Understand the role of wetlands in mitigating storm water flow and clarify the importance of wetlands water quality to the wetland ecosystem.

Assess the presence of contaminants in aquatic ecosystems; assess effects and potential mitigation measures.

Develop methods to accurately determine the assimilative capacity of receiving waters.

Help develop architectural design principles for runoff mitigation planning and inform the public about sustainable development design.

Assessing Impacts on Marine Life

Goal

3. Develop new methods and approaches for assessing the conditions (health, changing distributions and abundances) of coastal marine life.

Objectives

Identify and evaluate the sources and processes controlling behavior, fate and impact of pollutants in aquatic systems.

Investigate groundwater, including septic system, contributions to near-shore pollution.

Understand the role of wetlands in mitigating storm water flow and clarify the importance of wetlands water quality to the wetland ecosystem.

Assess the presence of contaminants in aquatic ecosystems; assess effects and potential mitigation measures.

The ONLY WAY TO FULLY PROTECT THE FRAGILE MARINE ECOSYSTEM IS TO PREVENT THE INFUX OF POLLUTION.

Understanding Pollution

Goal

2. Improve understanding of the content, fate, and effect of point and non-point source discharges in urban watersheds.

Create mechanisms, e.g. geographic information systems (GIS) for simplifying the distribution of water quality information for policymakers and the public.

Develop unique tools for informing the public about health risks related to coastal recreation (i.e., swimming and consuming seafood) in areas of poor water quality.

Make better information on water quality and coastal ecosystem health and dynamics more readily available to local governments to improve policies and management decision making.

Develop better rapid water quality indicators and source tracking tools.

Develop methodologies to decrease risk of human illness through consumption of contaminated fish and shellfish.

Identify and determine effects of contaminants and biological agents of concern to human health and the health of marine organisms.

Protecting Public Health

Goal

1. Protect public users from potential health risks associated with swimming in coastal waters, consuming seafood, and other recreational users.

Objectives

Develop better rapid water quality indicators and source tracking tools.

Develop methodologies to decrease risk of human illness through consumption of contaminated fish and shellfish.

Identify and determine effects of contaminants and biological agents of concern to human health and the health of marine organisms.

THE ONLY WAY TO FULLY PROTECT THE FRAGILE MARINE ECOSYSTEM IS TO PREVENT THE INFUX OF POLLUTION.
Society and Commerce

Vision
Balance the robust economic opportunities of the ocean with safeguards to ensure the continued sustainability of marine resources.

Background
The coastline has become host to a wide range of uses: huge seaports, millions of beachgoers on more than 100 miles of sandy beaches, commercial and recreational fishing docks and fish markets, sewage-disposal plants and electric generating stations, residential use, and military facilities, all present coastal planners and managers with an almost insurmountable array of conflicts and issues.

Since World War II the area has become the major West Coast seaport yet it has also supported an increasing population of residents and visitors. Accompanying economic growth of the area has been competition for uses of the coastline for housing, recreation and commerce.

California's ports and harbors are a central component of the coastal economy of the region. Ninety-five percent of international trade arrives by sea into United States ports, and Southern California is home to the two largest commercial ports in the country. In all, California's six major ports (Oakland-San Francisco, Los Angeles-Long Beach, Port Hueneme and San Diego) process about 70% of all ocean freight handled on the West Coast (by tonnage). The Ports of Los Angeles and Long Beach have the third largest volume of imports and exports in the world; moreover, cargo loads are anticipated to triple by the year 2020. The impact of this growth will affect air quality, water quality, the land transportation system and the area's population. Port managers and environmental regulators...
struggle to find methods of limiting the impacts of huge port operations on the environment.

THE IMPACT OF A TRIPLING OF PORT-RELATED COMMERCE WILL AFFECT AIR QUALITY, WATER QUALITY, THE LAND TRANSPORTATION SYSTEM AND THE AREA’S POPULATION.

Approximately 50% of the vast volume of goods passing through Southern California’s seaports has destinations outside of California. As a result, much of the cargo entering the ports also leaves the region either on trucks—for destinations closer than 500 miles—or on trains for more distant locations. The impact of those truck and train trips has a profound effect on the transportation network of the region: creating congestion, aggravating existing air pollution problems, deteriorating roadway surfaces, and causing collisions. University researchers are uniquely qualified to examine and recommend remedies for these modal-interface problems that often fall between the jurisdictions of mode-specific transportation planning agencies.

In addition to the more traditional seaport management issues, all U.S. seaports now experience concerns over heightened security. Responding to the need for additional security, the entire cargo handling and documentation system is currently undergoing redesign on an international basis. University researchers can also assist this vital industry in the redesign of its systems to meet the enhanced security needs of the US and its worldwide trading partners.

Seaport management includes consideration of the multiple uses of port facilities. One of those important uses is the commercial fishing fleet and the commercial fish market.

The commercial fishing industry has long been an important component of California’s coastal economy. In 2001, more than 200 million pounds of commercial seafood was landed in the Los Angeles area, most of it through the commercial fish markets in the Port of Los Angeles.

Equally complex are the ecological and environmental dimensions of sustainable coastal development. This is especially important with respect to recreation and tourism in California, yet have been little studied. The state’s beaches contributed over $27 billion to California’s economy. According to one report, beach related spending (and multiplier effects) represented almost 3% of total California economic activity in 1995 and created over 500,000 jobs. But the true valuation of coastal tourism is not known. In the face of increasingly heavy tourism, maintaining attractive coastal destinations has become problematic. What are the impacts on California’s valuable tourism industry from coastal development? How do we assess the value of coastal recreation and the non-consumable values associated with beach tourism – do the public’s perceptions of environmental quality reflect the actual safety of bathing waters and beaches? What is the relationship between the continual crowding of coastal areas and their value to users? These are important questions for the citizens and public policy makers in California, as well as in the rest of the nation.

Ports and Harbors

Goals

1. Develop an environmental and economic research agenda for environmentally sustainable ports.
2. Contribute to efforts to enhance security at ports.
3. Provide leadership in understanding and addressing ports and harbor issues.

Objectives

Investigate issues of traffic prediction, rail capacity, storage capacity, hinterland transport, and cargo routing.

Support research that leads to a better understanding of air quality impacts of transporting goods via seaborne, rail or...
Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Examine issues of wetland restoration and watersheds related to port growth and mitigation costs.

Provide outreach to support and disseminate information on new methods and protocols for enhancing public safety and the security of cargo at ports and harbors.

Partner with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Marine Related Business / Sustainable Development

Goals

4. Assist Southern California regional authorities in enhancing environmentally and economically sustainable coastal tourism and recreational opportunities.

5. Provide accurate and bias-free, science-based information for reducing conflicts over existing and proposed uses of coastal space and resources.

6. Assist the Southern California commercial fishing industry to adapt to new environmental, regulatory and economic conditions that affect its viability.

Objectives

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 26

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 27

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 28

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 29

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 30

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 31

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.

Page 32

Researchers from California State University Fullerton study the effects of trampling in a marine protected area in Orange County.

Support research that examines ways to reduce recreation-induced damage to coastal ecosystems – tide pools, trampling, etc.

Study methods for determining the utility of “no-take” zones or other methods of reducing human impact.

Determine the importance of the ocean environment to ocean commerce (What are the economic impacts of a degraded ocean environment?).

Partnership with the ports to design and implement a graduate student internship program to support multi-disciplinary studies of port operations.

Educate the public about environmentally responsible tourism.

Support development of information on the economic value of Southern California coastal areas, and contribute to the development of valuation methods nationally.

Educate the public about major coastal environmental issues and assist decision makers to resolve debates on these issues among the public, regulatory agencies, businesses, multiple users and environmental groups.

Using the information that is obtained in ecosystem and coastal hazard research, help to create planning and development scenarios that fit within the limitations of urban coastal regions.

Hire an extension fisheries specialist to meet the needs of the commercial fishing industry.

Coordinate fishery issues with campus researchers and develop research to meet the needs of the industry and inform policies to facilitate its long-term viability.

Facilitate the flow of information between cognizant regulatory agencies and the Southern California commercial fishing industry.
coastal processes, and mitigating those impacts to protect life, property and ecosystems.

Background
The world is more connected than ever and hazards that once were local are becoming regional and even global. Also, hazards are not always individual events, but often occur as interrelated events. Many coastal locations are exposed to long-term hazards such as chronic coastal erosion and rising sea-level. Superimposed on these hazards are shorter term flooding from El Niños or seasonal storms, episodic erosion and bluff collapse, and rapid inundation, uplift or subsidence from infrequent tsunami and seismic events. Natural disasters are becoming a regular occurrence. The costs of these events to society are climbing, both nationwide and worldwide, as expanding coastal settlements place more people and property at risk.

As much as 85% of California’s coast is eroding. In many areas, this is an immediate threat to coastal infrastructure and development. Erosion itself can be a coastal hazard; for example, cliff erosion results in property loss from rock and mudslides. And an eroded coast is more vulnerable to flooding, tsunamis and other hazards.

Erosion is exacerbated by the declining sand supply to the coastline. Sand mining from coastal rivers, dunes, and beaches has provided much-needed construction material but has robbed coastal beaches of new sand. Dams and flood control structures block inland sand from reaching the coast. Once sand is at the coast, jetties, breakwaters and harbors change transport and deposition patterns. Additionally, sea-level rise is estimated to be 2.5-3.0 mm/year, and this may increase the damage to low-lying coastal lands during storms. This in turn accelerates erosion and associated habitat loss. Impacts of rising sea level include erosion, flooding, inundation, and saline intrusion into coastal aquifers.

It is important for Sea Grant to assist in the study and examination of ways to decrease the threats to public safety from these coastal hazards and to improve the health of our coastal beaches and waterways. Ways to address these issues are to enhance local communities’ knowledge and skills to deal with coastal hazards, educate people to be good stewards of California’s beaches and conduct research that adds to our basic knowledge of coastal hazards and their impacts.

Beaches
Goals
1. Provide leadership in understanding and addressing issues of safe access,
Mitigating Coastal Hazards

Goal
2. Provide local and regional governments with information and tools to better understand and anticipate natural coastal hazards.

Objectives
Provide and update accurate information on climatic patterns such as El Niño and La Niña, and prepare property owners for severe winter storms.

Publish information on wave transformation coefficients for Southern California as a tool for engineers to more accurately predict coastline wave heights.

Understand the mechanism(s) responsible for bluff failure and assist in the development of Best Management Practices for bluff management.

Inventory and disseminate information on multi-hazard concerns (e.g., sea-level rise, tsunami, earthquake, slides, erosion) and hazard responses.

Identify and disseminate information on tsunami inundation zones in California.

Develop risk indices tied to geographic regions and at-risk groups.

Better inform the public about watershed management and the impacts of water diversions on shoreline nourishment.

Work with academic engineering programs to foster recruitment and training of coastal engineers.

Mitigating Coastal Hazards

Objectives
Increase public education and awareness of impacts of coastal development to promote better land management and usage.

Create and maintain an index of coastal protection measures that can be used to inform the public and local governments about potential coastal hazards.

Educate communities and current owners of high-risk property about their risks, the consequences of natural hazards, and inform them of the various government programs that can provide some protection or hazard mitigation.

Protect Local Communities

Goal
3. Develop programs to assess and improve the effectiveness of current community hazard programs to address individual and cumulative hazards.
E D U C A T I O N

Vision
Improve marine science literacy in California and the nation by making marine science content accessible to diverse audiences.

Background
Many Los Angeles students and their families have little knowledge or familiarity with the ocean, yet live in one of the largest coastal cities in the world. Reaching students early in their learning lives is vital to their long-term success as students and citizens. Through K-12 educational programs USC Sea Grant has the opportunity to guide these constituents to a better understanding of their connections with the coastal environment, to increase their knowledge and interest in science, to teach them stewardship concepts, and to help them become aware of professional opportunities in the fields of marine science, coastal management and ocean policy. In the urban environment, reaching large numbers of underserved students and adults from diverse socioeconomic and ethnic backgrounds is not only the primary challenge but also a premier opportunity.

In partnership with the University of California at Los Angeles and 5 informal science partners, USC Sea Grant has received a $2.5 million National Science Foundation grant to create “COSEE-West” a regional Center for Ocean Science Excellence in Education (COSEE). The Center, one of 7 regional centers nationwide, will facilitate catalytic multidimensional partnerships between ocean science researchers and educators and network marine science education throughout the Southern California region and beyond.

Teachers are a vital component in the learning process. Providing teachers, especially new teachers, with appropriate resources can help overcome shortcomings in science content knowledge in primary and secondary teacher education. The lack of availability of educational programs, teaching methods, and curriculum materials in marine science that can be used in science courses and are clearly related to the current science standards is problematic. Yardsticks for measuring success in science education differ widely across regions, the country, and within the various interrelated disciplines of marine science.
Sea Grant helps expose undergraduates and graduate students to science addressing pressing local, regional and national issues. The Sea Grant Trainee Program offers graduate students opportunities to participate on funded research projects, most often connected with thesis or dissertation research, and to present their own research findings in a variety of venues. Graduate fellowship opportunities in Washington D.C., on Capitol Hill or with NOAA and other agencies, provide real-world exposure to the nexus of science and policy. The Dean John A. Knauss Marine Policy Fellowship, for example, allows students to gain a unique understanding of the policy decision process by providing an unparalleled experience of directly participating in the policy decisions affecting coastal and ocean resources.

Sea Grant education focuses on the next generation — through enhancing K-12 science education, improving teachers’ knowledge and science teaching skills, and supporting opportunities in post-secondary years both through university based programs and free-choice learning.

K-12 Level

Goal

1. Bring marine science education and learning opportunities to underserved students and adults from diverse socioeconomic and ethnic backgrounds with a special focus on inner city and underserved populations.

Objectives

Through COSEE, serve as a center of compilation and dissemination of marine science information and educational opportunities for teachers, students, underrepresented and intergenerational audiences and the general public.

Establish ongoing programs for “young women-in-marine-science.”

Develop and disseminate additional marine science career information and activities, including those that are culturally appropriate, to school counselors (e.g., secondary education counselors) and others.

Develop collaborations with museums and aquariums to create and disseminate age, site, and culturally appropriate science educational materials that allow children of all ages to gain knowledge.

Cooperate with appropriate school districts and county or state offices of education in reaching students and teachers.

Address issues of gender/minority gaps in the science community via innovation and expansion of curriculum projects.

Teacher Education and Support

Goals

2. Support increased marine science literacy and accessibility for teachers.

3. Support teachers in using scientific data as an educational tool.

4. Enable teachers to create and implement standards-based lessons through marine science.

At both the regional and national levels ethnic minorities and women are under represented as science majors at the university level and in marine science careers. USC Sea Grant strives to narrow these gaps in minority and gender representation in scientific research and employment. USC Sea Grant is providing mentoring programs, internships, research opportunities and programs to increase awareness of marine career opportunities.

IN THE URBAN ENVIRONMENT, REACHING LARGE NUMBERS OF UNDERSERVED STUDENTS AND ADULTS FROM DIVERSE SOCIOECONOMIC AND ETHNIC BACKGROUNDS IS NOT ONLY THE PRIMARY CHALLENGE BUT ALSO A PREMIER OPPORTUNITY.
Objectives
Create appropriate workshops to help teachers bring marine science into the classroom; design some workshops specifically for new teachers.

Provide online workshops that not only help teachers with science content but also enhance technological skills by targeting access and use of data in the classroom.

Help teachers to understand the environmental impact on the marine environment of the urban area.

Assess the effectiveness of educational programs, teaching methods, and curriculum materials in marine science.

Provide up-to-date, easily accessible (and standard correlated) marine science data, information and recent research to teachers (via online site, email newsletters, CDs etc) and offer support in accessing and using this information.

Assist teachers in meeting required science standards (and other standards where appropriate, e.g., math, literacy, geography) by teaching their required curriculum through the marine science lens.

Collaborate on a national level (via COSEE and other Sea Grant programs and agencies) to develop a set of standards and benchmarks for marine science knowledge.

Intergenerational Learning

Goals
5. Increase understanding of marine and environmental science and the links with policies in students of all ages and improve connections among parents, students and teachers.

6. Enhance parent involvement in their child’s learning experience.

Objectives
Develop sustainable school/community-based programs that foster parent-student cooperative learning.

Continue to involve adult learners, parents especially, in field trip programs.

Incorporate culturally appropriate science and environmental content in order to reach a diverse population.

Undergraduate Education

Goal
7. Provide undergraduate students with opportunities for involvement in marine science and the community.

Objectives
Involve undergraduate students as liaisons to K-12 classrooms.

Provide opportunities for students to gain practical experience in the science and policy arenas through internships with public and private-sector organizations and businesses and informal science centers.

Engage undergraduate women as mentors/counselors for “young women-in-science” summer field programs.

Inform undergraduate science majors of opportunities for careers in marine science, management and policy.

Graduate Education

Goal
8. Enhance graduate students’ opportunities to pursue research and career goals in marine science and policy.

Objectives
Expand Sea Grant Trainee program to offer increasing numbers of research opportunities in marine science and policy.

Foster connections among graduate students and the research community to maximize opportunities for participation in research and management.

Increase participation in the John Knauss Marine Policy Fellowship program, and in other federal and state fellowship and internship opportunities.

Foster graduate student connections to K-12 education and free choice education as marine science mentors and guest speakers in K-12 schools, informal education venues and outreach programs.
SUMMARY

The USC Sea Grant program has a vital role in promoting the understanding, sustainable development and conservation of the coastal environment of Southern California in the face of burgeoning urban growth. The Strategic Plan provides an overall vision for the future and will guide our efforts over the next five years. The Plan is intended to provide a framework on which to build our programming and research agenda as we advance the program’s size and reach.

As a program linking academic institutions with policy makers, stakeholders, and the public, Sea Grant is both a leader and integrator, facilitating forward looking research that both provides and responds to early warnings about environmental challenges. By catalyzing scientists to anticipate future needs, and providing policy makers with the best information available, Sea Grant supports advanced science applied to the wise use and protection of coastal resources, and fosters educational endeavors to ensure the support of a science literate and environmentally aware public.

As integrator, Sea Grant can bring researchers, managers and users together to address important emerging issues. As an honest broker Sea Grant can provide an open forum for the exchange of ideas, the development of new problem solving techniques, and the organization of scientific inquiry to resolve emerging conflicts over scarce and valuable resources.

As we implement this strategic plan, we will continue to work with outside partners to bolster our ability to address the range of problems associated with the Urban Ocean. We will work with institutions that we serve and seek new partners in government and private enterprise to help direct new resources to important areas, and to foster a dynamic and creative approach to advance marine research and create constructive solutions to difficult and divisive resource problems.
Our first review of Huntington Beach contamination studies provides an excellent example of one of the ways we build our research agenda. Beach closures due to high levels of indicator bacteria in the summer of 1999 were the subject of a USC Sea Grant-initiated technical review in February 2000. As part of that review, the expert panel developed recommendations for long- and short-term research to better understand and thus prevent similar occurrences. The panel based their recommendations on questions such as: How can we prevent similar closures in the future? Were the right studies conducted and the data properly interpreted? What future studies should be conducted to forestall large contamination events from recurring? Lessons learned here can inform other urban coastal cities facing similar problems.

Examples of Near-Term Studies
- Nearshore hydrodynamic processes — mechanisms that transport water-borne contamination along shore. Include dye releases, nearshore transport measurements and modeling.
- Marsh dynamics; role of marsh as source of bacteria.
- Plume model for Orange County Sanitation District offshore discharge.

Examples of Longer-Term Studies
- Better source characterization methodologies.
- Develop rapid detection techniques to improve speed and accuracy of monitoring programs.
- Understand the relationship between indicators and pathogens.
- Better nearshore transport models.
- Create better characterization of urban runoff sources.
- Understand the role of marshes in bacterial dynamics.
- Study the adherence of bacteria to particles and surface films.

Lessons Learned for Huntington Beach and beyond
- Contingency planning: identify roles and responsibilities; decision tree/database/organization structures.
- Comprehensive monitoring program including upstream watersheds.
- Routine maintenance of infrastructure – sewage pipelines and equipment, beach based amenities, etc.
- Professional analyses by experts.
SC Sea Grant's previous Long Range Plan (1994-99) covered four thematic areas, in addition to outreach and education. With relative limitations in terms of staff and resources, we adopted an "evolutionary" approach to program development, in which specific thematic issues took priority in funding efforts while secondary attention was paid to other areas. The four basic topical areas, in order of priority, were:

- Environmental Quality
- Public Health and Safety/Crime Hazards
- Public Access and Recreation
- Coastal Commerce and Economic Development

Among these, environmental quality and public health were the most pressing regional problems. Non-point source pollution from urban storm drains and river discharges from urban watersheds were the focus of research efforts. Oceanographers developed new methods for tracking non-point source plumes in a multi-agency funded study that examined the impacts of storm-water on Santa Monica Bay. New technologies for revealing the presence of viruses from human sources have yielded more efficient tools for assessing hazards to public health for swimmers and surfers.

Other studies on the impacts of storm water were directed at an examination of heavy metals and other toxins in colonies of endangered least terns in Orange County's Bolsa Chica wetlands, and at groundwater inputs into the coastal ocean. USC Sea Grant work on storm-water and urban runoff continues with studies of contamination at Huntington Beach and in Santa Monica Bay.

A study of DDT off the Palos Verdes shelf revealed the continuing re-suspension of DDT's and PCB's in the water column, one of the studies that led to the designation of the region offshore of Palos Verdes as an Environmental Protection Agency "SUPERFUND" site. Further studies have examined the presence of these contaminants in San Diego Bay.

In the area of coastal hazards, studies of sea level rise in California and Maine analyzed the potential hazards to low-lying coastal communities using possible inundation maps coupled with demographic information. Researchers conducted focus studies with stakeholder groups and developed protocols to assist planners, developers and other municipal authorities in predicting the level of possible inundation due to storms and tides in a variety of sea level rise scenarios. A handbook for planning is currently underway.

During the severe El Niño period in 1997-98 Sea Grant provided information for coastal landowners and coastal businesses on the potential impacts of storms on coastal properties. In cooperation with the California Coastal Commission, web pages offered specific guidelines for preparing for winter storms. Sea Grant also conducted an online workshop for educators on El Niño, in order to provide accurate, science-based information during a time when a great deal of media attention was focused on the potential impacts from El Niño storms.

A suite of studies on the human impacts of beach visitation in marine refuges yielded important results about the lack of effectiveness of the refuge and marine reserve system in California. These have been widely cited and were used in the development of new state and federal legislation for designating and managing marine protected areas. Studies of trampling by visitors led to the development of an educational video aimed at school groups planning tidepool visits and other recreational visitors.

A study on the cultural attitudes toward marine wildlife was conducted, as a means to help museums and aquariums, as well as naturalist programs at state and county parks, to develop educational materials for diverse audiences. Other work on marine recreation and tourism through our outreach programs included a course in "panic prevention" for operators of marinas, and advisories on our web-based "Guides to Beaches" on swimming and beach safety.
APPENDIX D: USC Sea Grant Advisory Council

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary Bane</td>
<td>Nauticos Ocellus Productions Division</td>
<td>Santa Barbara, CA</td>
</tr>
<tr>
<td>Melinda Bartlett</td>
<td>Environmental Affairs Department City of Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>Norman Bartoo</td>
<td>National Marine Fisheries Service</td>
<td></td>
</tr>
<tr>
<td>John Dorsey</td>
<td>Loyola Marymount University, Los Angeles, CA (formerly Storm Water Management Division)</td>
<td></td>
</tr>
<tr>
<td>Dennis Eschen</td>
<td>Department of Parks, Recreation & Marine</td>
<td>City of Long Beach, CA</td>
</tr>
<tr>
<td>Leslie Ewing</td>
<td>California Coastal Commission</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td>Mark Gold</td>
<td>Heal the Bay</td>
<td>Santa Monica, CA</td>
</tr>
<tr>
<td>James Hastings</td>
<td>Consultant, Marine Education</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Robert Kleist</td>
<td>Evergreen International (USA) Corp. San Pedro, CA</td>
<td></td>
</tr>
<tr>
<td>Geraldine Knatz</td>
<td>Port of Long Beach, Long Beach, CA</td>
<td></td>
</tr>
<tr>
<td>Charles D. Kopczak</td>
<td>California Science Center</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Michael Lyons</td>
<td>Regional Water Quality Control Board</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Alan Mears</td>
<td>NOAA HAZMAT Response Division</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>William McComas</td>
<td>Rosier School of Education, University of Southern California Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>Craig A. Moyer</td>
<td>Manatt, Phelps & Phillips, LLP</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Karl F. Nordstrom</td>
<td>Institute for Marine & Coastal Studies, Rutgers University</td>
<td>New Brunswick, NJ</td>
</tr>
<tr>
<td>Victor Omelchenko</td>
<td>Public Relations, United States Department of the Treasury, Internal Revenue Service</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Fred Piltz</td>
<td>Minerals Management Service, Pacific OCS Region</td>
<td>Camarillo, CA</td>
</tr>
<tr>
<td>Dorothy Soule</td>
<td>Hancock Institute for Marine Studies, University of Southern California Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>Guang-yu-Wang</td>
<td>Santa Monica Bay Restoration Project</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Stephen Weisberg</td>
<td>Southern California Coastal Water Research Project</td>
<td>Westminster, CA</td>
</tr>
</tbody>
</table>

APPENDIX E: USC Sea Grant Academic Coordinating Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony F. Michaels</td>
<td>Director, Wrigley Institute for Environmental Studies, University of Southern California</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Bernard Bauer</td>
<td>Chair, Department of Geography, University of Southern California Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>Suzanne Edmands</td>
<td>Assistant Professor, Department of Biological Sciences, University of Southern California</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Kenneth Nealson</td>
<td>Wrigley Professor of Geobiology, Department of Earth Sciences, University of Southern California</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Joseph Devlin</td>
<td>Former Dean of Academic Affairs and Professor Civil/Environmental Engineering, University of Southern California</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Judith Kildow</td>
<td>Senior Research Professor Wrigley Institute for Environmental Studies, University of Southern California and Research Faculty, Gund Institute for Ecological Economics, University of Vermont, Vermont</td>
<td></td>
</tr>
<tr>
<td>Rick Pieper</td>
<td>Director, Southern California Marine Institute Terminal Island, CA</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F: California Resources Agency Sea Grant Advisory Panel

Panel Members:

- **Brian Baird**
 Resources Agency of California
 Sacramento, CA
- **Hon. Howard Wayne**
 California State Assembly
 Sacramento, CA
- **Hon. Bruce McPherson**
 California State Senate
 Sacramento, CA
- **Gary Bane**
 Nauticos Ocellus Productions Division
 Santa Barbara, CA
- **Reinhard Flick**
 California Department of Boating & Waterways
 Scripps Institute of Oceanography, UCSD
 La Jolla, CA
- **Peter Douglas**
 California Coastal Commission
 San Francisco, CA
- **Eric H. Knaggs**
 Department of Fish & Game
 Marine Resources Division
 Sacramento, CA
- **Timothy J. Mulligan**
 Department of Fisheries
 Humboldt State University
 Arcata, CA
- **Dwight Sanders**
 State Lands Commission
 Sacramento, CA
- **Francis Palmer**
 State Water Resources Control Board
 Sacramento, CA
- **Darryl Young**
 California Department of Conservation, DMG
 Sacramento, CA
- **Justin Malan**
 California Aquaculture Association
 Carmichael, CA
- **Harland Henderson**
 Office of Oil Spill Prevention & Response
 Sacramento, CA
- **Margy Gassell**
 Office of Environmental Health Hazard Assessment, Pesticides & Environmental Toxicology Section
 Oakland, CA
- **Bob Bass**
 California Fisheries & Seafood Institute
 Sacramento, CA
- **Anthony F. Michaels**
 Wrigley Institute for Environmental Studies
 University of Southern California
 Los Angeles, CA
- **Susan Williams**
 Bodega Bay Marine Laboratory
 University of California
 Davis, CA

Accompanying Members:

- **Elin Miller**
 Department of Conservation
 Sacramento, CA
- **Susan Hansch**
 California Coastal Commission
 San Francisco, CA
- **Robert Brandberg**
 Office of Environmental Health Hazard Assessment
 Sacramento, CA
- **Steve Saiz**
 State Water Resources Control Board
 Sacramento, CA
- **Jacqueline E. Schafer**
 California Department of Fish & Game
 Sacramento, CA
- **Kim Sterrett**
 California Department of Boating and Waterways
 Sacramento, CA
- **Theodore Smith**
 California Department of Conservation, Mines and Geology
 Sacramento, CA
APPENDIX G: Focus Group Meeting Participants

WATER QUALITY AND COASTAL ECOSYSTEMS

Ralph Appy
Director of Environmental Management
The Port of Los Angeles
Los Angeles, CA

Brian Brennan
Deputy Mayor, City of San Buenaventura, CA
National Advisory Council for Environmental Policy and Technology (NACEPT)
Ventura, CA

Mas Dojiri
Division Manager, Department of Public Works
Bureau of Sanitation, City of Los Angeles
Los Angeles, CA

John Dursey
Assistant Professor, Biological Sciences
Loyola Marymount University
Los Angeles, CA

Mark Gold
Executive Director, Heal the Bay
Santa Monica, CA

Michael Lyons
Environmental Specialist, California Environmental Protection Agency, Regional Water Quality Control Board
Los Angeles, CA

Steve Murray
Professor of Biology, California State University-Fullerton
Fullerton, CA

Dorothy Soule
Research Faculty, Hancock Institute for Marine Studies, University of Southern California
Los Angeles, CA

Guang-yu Wang
Environmental Specialist, Santa Monica Bay Restoration Commission
Los Angeles, CA

Stephen Weisberg
Director, Southern California Coastal Water Research Project
Westminster, CA

EDUCATION

Linda Chilton
Education Specialist, Cabrillo Marine Aquarium
San Pedro, CA

Dean Gilbert
Consultant, Science Education, Division of Curriculum and Instructional Services
Los Angeles County Office of Education
Downey, CA

James Hastings
Consultant, Marine Education
Los Angeles, CA

Annette Kesler
Principal, Weemes Elementary School
Los Angeles, CA

Charles Kopczak
Ecology Curator, California Science Center
Los Angeles, CA

William McComas
Professor, Rosier School of Education
University of Southern California
Los Angeles, CA

Leah Meiller
Science Education Specialist, Natural History Museum of Los Angeles County
Los Angeles, CA

Jerry Schueler
President & CEO, Aquarium of the Pacific
Long Beach, CA

Sid Silkoff
Science Coordinator, COSEE and UCLA SSWIMS
Los Angeles, CA

Jennifer Trochez
Teacher (5th Grade), Foshay Learning Center
Los Angeles, CA

COASTAL HAZARDS AND PUBLIC SAFETY

Steve Aceti
Executive Director, California Coastal Coalition
Encinitas, CA

James Ballard
Technical Advisor, Beach Erosion Authority for Clean Oceans and Nourishment
Santa Barbara, CA

Joseph Chesler
Chief, Planning Division, Department of Beaches and Harbors, County of Los Angeles
Los Angeles, CA

Lesley Ewing
Senior Coastal Engineer
California Coastal Commission
San Francisco, CA

Reinhart Flick
Professor, Scripps Institute of Oceanography
University of California, San Diego
California Department of Boating and Waterways
San Diego, CA

Orville Magno
President, Coastal Zone Foundation
Los Angeles, CA

Chad Nelson
Director of Environmental Programs
Surfrider Foundation
San Clemente, CA

Anthony Risko
Chief, Coastal Studies Group, US Army Corps of Engineers, Los Angeles District
Los Angeles, CA

Kim Sterrett
Senior Engineer, Geologist
Department of Boating and Waterways Manager, Beach Restoration Program
State of California
Sacramento, CA

COMMERCE AND SOCIETY

Judith Kildow
Senior Research Professor, Wrigley Institute for Environmental Studies, University of Southern California
Los Angeles, CA

Robert Kleist
Evergreen International (USA) Corp.
San Pedro, CA

Geraldine Krantz
Managing Director, Port of Long Beach
Long Beach, CA

CAPT Richard McKenna (USN, Ret.)
Deputy Executive Director, Marine Exchange of Long Beach Harbor, Inc.
Los Angeles, CA

Craig Moyer
Manatt, Phelps & Phillips, LLP
Los Angeles, CA

Al Padilla
Coastal Program Analyst, South Coast District Office, and Port Planning Manager
California Coastal Commission
Los Angeles, CA
Questions to Ask When Critically Evaluating Potential for USC Sea Grant Focus Area

Below is a list of questions that were developed to assist in advancing the discussion regarding the scope of the focus area for use in the USC Strategic Planning process. The questions are divided into three general categories of assessment: the focus area; opportunities and partnerships; and goals and objectives. The purpose of the discussion was to frame the focus area, identify the opportunities presented by the focus area and possible partners, determine appropriate goals, to evaluate and prioritize those goals, and state achievable objectives.

Assessment of the Focus Area

Does the pursuit of this focus area add to the knowledge on the issue? Does it address areas of critical concern to the “Urban Ocean”?

Is the focus area important to the region and to USC Sea Grant’s clientele?

Will Sea Grant support meaningfully contribute toward addressing the focus area? Will the focus area be unaddressed without Sea Grant involvement?

Is there a reasonable probability that meaningful progress can be made toward addressing the focus area within the typical funding limitations of Sea Grant?

Assessment of Opportunities and Partnerships

What is the potential size of the impact, in terms of the number of people and geographic reach?

Relative to the scale of the focus area, how much is already being invested by other entities?

Are the talent, expertise, and interest available in LA County and/or in the California region to address the focus area (both in academic institutions and agencies)?

Can opportunities for matching funds and/or partnerships be identified?

Is there an opportunity to diversity funding, increase the scope of work or communication of results on this focus area through strategic partnerships? If yes, what are they?

Might Sea Grant support for work in this focus area directly or indirectly enhance the talent base in marine and coastal issues in the state or the region?

Assessment of Goals and Objectives

Are the stated goals and objectives appropriate for making a meaningful contribution to this focus area?

Do the stated goals and objectives lead toward development of new concepts and tools to deal with the problems faced in this focus area?

Are there societal benefits or other products/results that flow from stated focus area goals and objectives?

Are the beneficial outcomes measurable in the three to five-year timeframe? If yes, how?

How should the stated goals and objectives in this focus area be prioritized?