The effect of nitrogen enrichment on C_1-cycling microbes and methane flux in salt marsh sediments

Irina C. Irvine, Lucía Vivanco & Jennifer Martiny
Climate Change Workshop 11.17.2011
CH$_4$ over 20 times more potent greenhouse gas than CO$_2$
60% of emissions are anthropogenic

~3% from salt marshes
Global Change

- N limits in most environments
- Salt marshes vulnerable
- Conservation & functioning

Source: Millennium Ecosystem Assessment
- All domains
- Greenhouse gases
- Bioremediation
- Mutualisms
- N shifts interactions
Methanogens

Strictly anaerobic archaea

Make methane (CH$_4$) from:

- Organic acids
- Alcohols
- Methylamines

CO$_2$ + H$_2$
Methanotrophs

Oxidize methane (aerobic & anaerobic)

Methanotroph

obligate & facultative
Methylothrophs

Oxidize methanol, methylamines, other C_1 (aerobic & anaerobic)

CH$_3$OH

Methylothroph

obligate & facultative
Main Questions

1. What nutrients limit C_1-cyclers in salt marshes (C, N)?

2. Are plants indirectly involved through root exudates?

3. How does N perturbation affect CH$_4$ flux?
Experimental System

Salt Marshes

Morro Bay
Carpinteria
Tijuana
Experimental Design

N fertilization gradient (g N/m²/year)

Control (background) +10 +20 +40 +80 +160 +320

3 marshes × 7 treatments × 5 replicates

- Slow-release urea
- 9 buried tubes per plot
- Refill every 10 weeks

105 plots
Ecosystem Measurements

Sediment
- pH
- Gravimetric H₂O content
- Temperature
- NH₄ (resin bag)
- NO₃ (resin bag)
- NH₄ (dry sediment)
- NO₃ (dry sediment)
- C:N
- Net nitrification
- Net ammonification
- Net N mineralization

Plants
- Plant biomass
- Foliar C:N
- Root ingrowth

Gases
- CH₄ flux
- [CH₄] initial
- CO₂ flux
- [CO₂] initial
- C mineralization
Plant Response to N
Linear Biomass & Leaf N Increases
NH$_4^+$ Availability Increase in Sediment

N-NH$_4^+$ availability (µg N-NH$_4^+$ m$^{-2}$)

N addition (g m$^{-2}$ yr$^{-1}$)

$R^2=0.94$

$R^2=0.97$

MBE
CSM
TRE
N Addition Increases CH$_4$ Emissions

1.23 μg CH$_4$/g N/day

linear regression $R^2=0.21$, $P=0.03$
CH$_4$ Flux is Changing with N. Why would it change?

• Methanotrophs inhibited?
• Methanogens stimulated?

![Graph showing the relationship between treatment (g N/m2/yr) and mean CH$_4$ (CH$_4$ ppm/min). The graph includes error bars and a red line indicating linear regression with $R^2=0.643$, $P=0.03$.](image)
Nutrient Addition Microcosms

To tease apart responses to C and N

Methanogen anaerobic
C = acetate
N = NH$_4$Cl

Methanotroph aerobic
C = CH$_4$
N = NH$_4$Cl
Methanotrophs are C-limited but Not N-limited

C addition ≥831% over controls

C = P<0.0001
N = NS
CxN = NS
2-way ANOVA
Methanogens are N & C-limited

C+N 44% over controls

C= P=0.013
N= P=0.021
C×N=NS
2-way ANOVA
Conclusions

1. What nutrients limit C_1-cyclers in salt marshes?
 a. methanogens N and C-limited
 b. methanotrophs C-limited

2. Are plants indirectly involved through root exudates?
 a. appears so - by stimulating methanogens

3. How does N addition affect CH_4 flux?
 a. linear, predictable increase in CH_4 emissions
Thanks!

Financial Support:
- Gordon and Betty Moore Foundation
- NSF
- UC Irvine
- Mildred E. Mathias Graduate Research Grant

To Super Cool Places and Folks:
Carpinteria Salt Marsh Reserve – Andy Brooks
Morro Bay Estuary – Vince Cicero
Tijuana River Estuary Reserve – Jeff Crooks, Brian Collins & Chris Peregrin
SCCWRP – Eric Stein, Karen McLaughlin

Suddenly, Bob realizes that he’s "part of the problem".