Protocol for Net Tow Relative Abundance Determination

Materials

- Net Tow sample
- Pipette
- Microscope
- Petri dishes
- Microscope slides
- Cover slips
- Vaseline
- Tape
- Razor blade

Using a Dissecting Microscope

- Invert the cod end containing the net tow sample several times in order to mix sample
 - Using a pipette, collect 3-5mL of sample water from below the surface of the cod end
 - Place 3-5mL in three different petri dishes
 - The desired volume of sample should completely cover the bottom of the dish but not much higher
- View all three petri dishes under the dissecting microscope
 - Identify as many organisms as possible
 - For organisms difficult to identify
 - Can you place them into a category – diatom, dinoflagellate, zooplankton, etc.?
 - Take notes on color, approximate size (i.e. – ½ Lingulodinium cell), pattern of movement or lack of movement, shape
 - Can you take a picture of the organism?
 - These notes will help to identify the organism at a later date
 - Email a picture and/or description to HABWATCHHELP@USC.EDU for assistance in identification
- After identifying as many items as possible, it is time to assign relative abundances
 - Start with organisms considered RARE (<1% of the organisms in the sample)
 - These are organisms only seen once or twice
 - Continue assigning a relative abundance code (R, P, C, A or D) to all the organisms identified
 - In the comment section, you can take notes on the approximate percentage you are assigning to each organism
 - Make sure these numbers do not add up to over 100% when you are finished
 - Things to remember:
 - Move the petri dishes around and try to view as much of the sample as possible
• Focus up and down through the sample to see all the different planes of view
 o Non-moving cells (such as diatoms) have a tendency to sink to the bottom
 o Moving cells (any flagellates) can be present anywhere from the surface of the sample dish down to the bottom as they swim around
• While there may be ~10 chains of the diatom *Chaetoceros* in your sample, each chain contains several cells – sometimes as many as 10 cells per chain
• Do not ignore cells that you cannot identify
 o Try to place them into a broad category (i.e. – Unknown dinoflagellate)

Using a Compound Microscope
• Preparation of microscope slides
• Invert the cod end containing the net tow sample several times in order to mix sample
 o Using a pipette, collect a small volume of sample water from below the surface of the cod end
 o Place 1-3 drops of sample onto three different microscope slides
 ▪ If you do not have a depression slide, slides can be made using the following techniques:
 • Vaseline
 o Place a small amount of Vaseline on the palm of your hand
 o Drag each edge of a microscope cover slip on the Vaseline in order to have each edge covered with a small amount of Vaseline
 o The cover slip can then be placed over the drops of sample on the slide
 • Tape
 o Place several small strips of tape on a microscope slide
 o Using a razor blade, cut a small square out of the center of the strips of tape
 o The now tape-free center can hold a few drops of water from the sample with a cover slip placed on top
• View all three slides under the compound microscope
 o Identify as many organisms as possible
 o For organisms difficult to identify
 ▪ Can you place them into a category – diatom, dinoflagellate, zooplankton, etc.?
 ▪ Take notes on color, approximate size (i.e. – ½ *Lingulodinium* cell), pattern of movement or lack of movement, shape
- Can you take a picture of the organism?
- These notes will help to identify the organism at a later date
 - Email a picture and/or description to SCCOOSHABHELP@USC.EDU for assistance in identification
- After identifying as many items as possible, it is time to assign relative abundances
 - Start with organisms considered RARE (<1% of the organisms in the sample)
 - These are organisms only seen once or twice
 - Continue assigning a relative abundance code (R, P, C, A or D) to all the organisms identified
 - In the comment section, you can take notes on the approximate percentage you are assigning to each organism
 - Make sure these numbers do not add up to over 100% when you are finished
- Things to remember:
 - Move the slides around and try to view as much of the sample as possible
 - Focus up and down through the sample to see all the different planes of view
 - Non-moving cells (such as diatoms) have a tendency to sink to the bottom
 - Moving cells (any flagellates) can be present anywhere from the surface, down to the bottom of the slide as they swim around
 - While there may be ~10 chains of the diatom Chaetoceros in your sample, each chain contains several cells – sometimes as many as 10 cells per chain
 - Do not ignore cells that you cannot identify
 - Try to place them into a broad category (i.e. – Unknown dinoflagellate)