Partial regularity results of solutions to the 3D Incompressible Navier–Stokes equations and other models

Wojciech S. Ożański

SIAM Conference on Analysis of PDEs
La Quinta, 13th December 2019
The Navier–Stokes equations

\[u_t + (u \cdot \nabla)u - \Delta u + \nabla p = 0 \quad \text{in} \quad \mathbb{R}^3 \times (0, \infty), \]
\[\text{div} \ u = 0, \]
\[u(0) = u_0. \]

\[u : \mathbb{R}^3 \times (0, \infty) \to \mathbb{R}^3 \] - velocity field,
\[p : \mathbb{R}^3 \times (0, \infty) \to \mathbb{R} \] - pressure function,
\[\nu > 0 \] - viscosity.
The Navier–Stokes equations
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \]
The Navier–Stokes equations
Existence and uniqueness of solutions

\[\parallel \nabla u_0 \parallel_{L^2} \parallel \nabla u(t) \parallel_{L^2} \]
The Navier–Stokes equations
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \leq \| \nabla u(t) \|_{L^2} \]
The Navier–Stokes equations
Existence and uniqueness of solutions

\[
\left\| \nabla u_0 \right\|_{L^2} \quad \left\| \nabla u(t) \right\|_{L^2}
\]
The Navier–Stokes equations
Existence and uniqueness of solutions

Leray (1934) [O. & Pooley (2017)]
The Navier–Stokes equations
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \quad \| \nabla u(t) \|_{L^2} \]

\[\| u_0 \|_{L^2} \quad \| u(t) \|_{L^2} \]

Leray weak solution

\[t_0 \quad t_1 \quad t_2 \quad T \]
The Navier–Stokes equations
Existence and uniqueness of solutions
The Navier–Stokes equations
Existence and uniqueness of solutions

\[d_H(\mathcal{T}) \leq 1/2, \quad \text{where} \quad \mathcal{T} := \{ t > 0 : \| \nabla u(t) \|_{L^2} = \infty \}. \]
The Navier–Stokes equations

Partial regularity

A pair \((u, p)\) is a suitable weak solution if

(i) (regularity of \(u\) and \(p\)) \(u \in L^\infty_t L^2_x\), \(\nabla u \in L^2\), \(u(t)\) is divergence-free for almost every \(t\), \(p \in L^{3/2}_{loc}\),

(ii) (relation between \(u\) and \(p\)) the equation

\[
-\Delta p = \sum_{i,j=1}^{3} \partial_i \partial_j (u_j u_i)
\]

holds in the sense of distribution,

(iii) (local energy inequality) the Navier-Stokes inequality,

\[
u \cdot (u_t - \Delta u + (u \cdot \nabla)u + \nabla p) \leq 0
\]

holds in the sense of distributions,

(iv) (the equation) the Navier-Stokes equations hold in the sense of distributions.

A pair \((u, p)\) is a weak solution of the Navier–Stokes inequality if conditions (i)-(iii) hold.
Theorem (Caffarelli-Kohn-Nirenberg, 1982)

Let \((u, p)\) be a weak solution of the Navier–Stokes inequality. There exist \(\varepsilon_1, \varepsilon_2\) such that

1. If

\[
\frac{1}{r^2} \int_{Q_r} |u|^3 + |p|^{3/2} \leq \varepsilon_1
\]

for any \(r > 0\), then \(u \in L^\infty(Q_{r/2})\).

2. If

\[
\limsup_{r \to 0^+} \frac{1}{r} \int_{Q_r} |\nabla u|^2 \leq \varepsilon_2
\]

then \(u \in L^\infty(Q_\rho)\) for some \(\rho > 0\).
Let

\[S := \{(x, t): u \text{ is unbounded in any neighbourhood of } (x, t)\}. \]

Corollary of the CKN theorem: \(d_H(S) \leq 1, \ d_B(S) \leq 5/3. \)

He, Wang & Zhou (2017): \(d_B(S) \leq 2400/1903 (\approx 1.261). \)

Scheffer (1985 & 1987): the bound \(d_H(S) \leq 1 \) is sharp for weak solutions of the Navier–Stokes inequality,
The Navier–Stokes equations
Partial regularity

O. (2019): 1) refined constructions of Scheffer,
2) constructions satisfying the
“approximate equality”

\[-\vartheta \leq u \cdot (u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p) \leq 0\]

for any preassigned \(\vartheta > 0\).

O. (2019): given \(T > 0, \varepsilon > 0\) and a nonincreasing function \(e : [0, T] \rightarrow [0, \infty)\) with \(e(T) = 0\) there exist weak solutions to the Navier–Stokes inequality that blow up on a Cantor set at time \(T\), with

\[\|\|u(t)\|\|_{L^2} - e(t)\| \leq \varepsilon \quad \text{for} \ t \in [0, T].\]
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

$$\|u(t)\|_{L^\infty}$$
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

\[\|u(t)\|_{L^\infty} \]

\[0 = t_0 \quad T = t_1 \quad t_2 \]
The “sharpness” of the bound $d_H(S) \leq 1$
Sketch of the construction

$\|u(t)\|_{L^\infty}$

$0 = t_0 \quad T = t_1 \quad t_2$
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

\[\|u(t)\|_{L^\infty} \]

\[0 = t_0, T = t_1, t_2, t_3 \]
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

\[\|u(t)\|_{L^\infty} \]

\[0 = t_0 \quad T = t_1 \quad t_2 \quad t_3 \]
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

$\|u(t)\|_{L^\infty} = t_0, T = t_1, t_2, t_3, T_0 = \lim_{j \to \infty} t_j$
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

$\text{supp } u(0)(\cdot, t)$
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The “sharpness” of the bound $d_H(S) \leq 1$
Sketch of the construction

$\text{supp } u(0)(\cdot, t)$
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction

\[
\text{supp } u^{(0)}(\cdot, t)
\]
The “sharpness” of the bound $d_H(S) \leq 1$

Sketch of the construction
The surface growth model

\[u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0 \quad \text{in } \mathbb{T} \times (0, \infty), \]

\[u(0) = u_0. \]
The surface growth model

\[u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0 \quad \text{in } T \times (0, \infty), \]
\[u(0) = u_0. \]

\[d_H(\mathcal{T}) \leq 1/4, \quad \text{where} \quad \mathcal{T} := \{ t > 0 : \|u_x(t)\|_{L^2} = \infty \}. \]
The surface growth model $u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0$

Partial regularity

Theorem (O. & Robinson, 2019)

Let u be a suitable weak solution of the surface growth model.

There exist $\varepsilon_1, \varepsilon_2$ such that

1. If
\[
\frac{1}{r^2} \int_{Q_r} |u_x|^3 \leq \varepsilon_1
\]

for any $r > 0$, then u is Hölder continuous in $Q_{r/2}$.

2. If
\[
\limsup_{r \to 0^+} \frac{1}{r} \int_{Q_r} |u_{xx}|^2 \leq \varepsilon_2
\]

then u is Hölder continuous in Q_ρ for some $\rho > 0$.

Consequently, $d_H(S) \leq 1$, $d_B(S) \leq 7/6$.
The Navier–Stokes equations with fractional dissipation

Consider the 3D incompressible Navier–Stokes equations with α-Laplacian,

$$u_t + (-\Delta)^\alpha u + (u \cdot \nabla)u + \nabla p = 0 \quad \text{in } \mathbb{R}^3 \times (0, \infty),$$
$$\text{div } u = 0,$$
$$u(0) = u_0.$$

Theorem

The equations are well-posed (for any sufficiently regular u_0) for $\alpha \geq 5/4$.
The Navier–Stokes equations with fractional dissipation

Theorem (Katz & Pavlović, 2002)

Let S' denote the singular set in space at the first blow-up time of a local-in-time strong solution, for $\alpha \in (1, \frac{5}{4})$. Then $d_H(S') \leq 5 - 4\alpha$.

Idea:

1. A cube Q is a j-cube if it has sidelength $2^{-j(1-\varepsilon)}$.
2. Study behaviour in time of $u_Q := \|\phi_Q P_j u\|_{L^2}$, for $j \in \mathbb{Z}$ and j-cubes $Q \subset \mathbb{R}^3$.
3. Deduce that $S' \subset \limsup_{k \to \infty} A_k$, where A_k is a (carefully chosen) family of k-cubes, with cardinality $\leq c 2^k(5 - 4\alpha + \varepsilon)$.
4. It follows that $d_H(S') \leq 5 - 4\alpha + \varepsilon$.
The Navier–Stokes equations with fractional dissipation

Theorem (Tang & Yu, 2013)
Let \((u, p)\) be a suitable weak solution, and \(S\) denote the singular set (in space-time) of \(u\), for \(\alpha \in (3/4, 1)\). Then \(d_H(S) \leq 5 - 4\alpha\).

Theorem (Colombo, De Lellis & Massaccesi, 2017)
The same claim is valid for \(\alpha \in (1, 5/4]\).
Furthermore, \(d_B(S) \leq (-8\alpha^2 - 2\alpha + 15)/3\).
(Note that the last estimate reduces to 5/3 in the case \(\alpha = 1\).)

Theorem (O., 2020)
Let \(\alpha \in (1, 5/4)\) and let \((u, p)\) be any Leray-Hopf weak solution (i.e. not necessarily suitable), and \(S'\) denote the singular set in space of \(u\). Then
(i) \(d_H(S') \leq 5 - 4\alpha\),
(ii) \(d_B(S') \leq (-16\alpha^2 + 16\alpha + 5)/3\).
The Navier–Stokes equations with fractional dissipation

Idea: (inspired by the approach of Katz & Pavlović (2002))

1. A cube Q is a j-cube if it has sidelength $2^{-j(1-\varepsilon)}$.

2. Study behaviour in time of $u_Q := \| \phi_Q P_j u \|_{L^2}$ (for $j \in \mathbb{Z}$ and j-cubes $Q \subset \mathbb{R}^3$), inside every interval of regularity.

3. Use weak L^2 continuity in time of u to obtain an estimate uniform in time \Rightarrow (i).

4. Observe that, for every j, $S' \subset \bigcup_{k=C(\alpha)j}^j A_k$ (rather than $\limsup_{k \to \infty}$), where A_k is a (carefully chosen) family of k-cubes, with cardinality $\leq c2^k(5-4\alpha+\varepsilon)$.

5. Cover every k-cube from A_k with $k < j$ by j-cubes \Rightarrow (ii).
Thank you for your attention.
The surface growth model $u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0$

Nonlinear parabolic Poincaré inequality

Theorem (O. & Robinson, 2017)

Any distributional solution u to SGM,

$$u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0,$$

on a cylinder Q_{2r} satisfies

$$\|u - [u]_{Q_r}\|_{L^3(Q_r)} \leq C \left(r \|u_x\|_{L^3(Q_{2r})} + r^{1/3} \|u_x\|_{L^3(Q_{2r})}^2 \right),$$

where

$$[u]_{Q_r} := \frac{1}{|Q_r|} \int_{Q_r} u.$$
The surface growth model $u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0$

Partial regularity; main iteration

Lemma (The main iteration)

Given $\theta \in (0, 1/4)$ there exist $\varepsilon_0 = \varepsilon_0(\theta)$ and $R = R(\theta)$ such that for weak solution u of the SGM and any cylinder Q_r with $r < R$

$$\frac{1}{r^2} \int_{Q_r} |u_x|^3 < \varepsilon_0$$

implies

$$\frac{1}{(\theta r)^2} \int_{Q_{\theta r}} |u_x|^3 < c_* \theta^3 \varepsilon_0,$$

where c_* is a universal constant.
The surface growth model \(u_t + uu_{xxxx} + \partial_{xx}u_x^2 = 0 \)

Partial regularity; main iteration

Suppose that \(\varepsilon_k \to 0, r_k \to 0 \) and cylinders \(Q_{r_k} \) are such that

\[
\frac{1}{r_k^2} \int_{Q_{r_k}} |\partial_x u|^3 = \varepsilon_k, \quad \frac{1}{(\theta r_k)^2} \int_{Q_{\theta r_k}} |\partial_x u|^3 \geq c_\star \theta^3 \varepsilon_k.
\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0 \)

Partial regularity; main iteration

Suppose that \(\varepsilon_k \to 0, r_k \to 0 \) and cylinders \(Q_{r_k} \) are such that

\[
\frac{1}{r_k^2} \int_{Q_{r_k}} |\partial_x u|^3 = \varepsilon_k, \quad \frac{1}{(\theta r_k)^2} \int_{Q_{\theta r_k}} |\partial_x u|^3 \geq c_s \theta^3 \varepsilon_k.
\]

Step 1. Consider the rescalings

\[
u_k(x, t) := \frac{u(x_k + x r_k, t_k + t r_k^4) - [u]_{Q_{r_k}/2}}{\varepsilon_k^{1/3}}.\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0 \)

Partial regularity; main iteration

Suppose that \(\varepsilon_k \to 0, r_k \to 0 \) and cylinders \(Q_{r_k} \) are such that

\[
\frac{1}{r_k^2} \int_{Q_{r_k}} |\partial_x u|^3 = \varepsilon_k, \quad \frac{1}{(\theta r_k)^2} \int_{Q_{\theta r_k}} |\partial_x u|^3 \geq c_\star \theta^3 \varepsilon_k.
\]

Step 1. Consider the rescalings

\[
u_k(x, t) := \frac{u(x_k + x r_k, t_k + t r_k^4) - [u]_{Q_{r_k}/2}}{\varepsilon_k^{1/3}}.
\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0 \)

Partial regularity; main iteration

Then

\[
\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_* \theta^5,
\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0 \)

Partial regularity; main iteration

Then

\[
\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_* \theta^5, \quad \int_{Q_{1/2}} u_k = 0,
\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0 \)

Partial regularity; main iteration

Then
\[
\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_\star \theta^5, \quad \int_{Q_{1/2}} u_k = 0,
\]

\[
\int_{Q_1} u_k \phi_t = \int_{Q_1} u_k \phi_{xxxx} + \varepsilon_k^{1/3} \int_{Q_1} (\partial_x u_k)^2 \phi_{xx}, \quad \phi \in C_0^\infty(Q_1).
\]
The surface growth model $u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0$

Partial regularity; main iteration

Then

$$\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_* \theta^5, \quad \int_{Q_{1/2}} u_k = 0,$$

$$\int_{Q_1} u_k \phi_t = \int_{Q_1} u_k \phi_{xxxx} + \varepsilon_{k}^{1/3} \int_{Q_1} (\partial_x u_k)^2 \phi_{xx}, \quad \phi \in C_0^\infty(Q_1).$$

Step 2. Take a limit in k.

There exists $v \in L^3(Q_{1/2})$ and a subsequence $k_n \to \infty$ such that

$$u_{k_n} \rightharpoonup v, \quad \partial_x u_{k_n} \rightharpoonup \partial_x v \quad \text{in} \quad L^3(Q_{1/2}).$$

By interior regularity of solutions to $v_t + v_{xxxx} = 0$

$$\|v\|_{L^\infty(Q_{1/2})} \leq (c_*/8)^{1/3}. $$
The surface growth model \(u_t + u_{xxxx} + \partial_x u_x^2 = 0 \)

Partial regularity; main iteration

Then
\[
\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_* \theta^5, \quad \int_{Q_{1/2}} u_k = 0,
\]

\[
\int_{Q_1} u_k \phi_t = \int_{Q_1} u_k \phi_{xxxx} + \varepsilon_1^{1/3} \int_{Q_1} (\partial_x u_k)^2 \phi_{xx}, \quad \phi \in C_0^\infty(Q_1).
\]

Step 2. Take a limit in \(k \).

There exists \(v \in L^3(Q_{1/2}) \) and a subsequence \(k_n \to \infty \) such that

\[
u_{k_n} \rightharpoonup v, \quad \partial_x u_{k_n} \rightharpoonup \partial_x v \quad \text{in} \ L^3(Q_{1/2}).
\]

By interior regularity of solutions to \(v_t + v_{xxxx} = 0 \)

\[
\| v \|_{L^\infty(Q_{1/2})} \leq (c_*/8)^{1/3}.
\]

Step 3. Use the A-L lemma to get \(\partial_x u_{k_n} \to \partial_x v \) in \(L^3(Q_{1/4}) \).
The surface growth model \(u_t + u_{xxxx} + \partial_{xx}u_x^2 = 0 \)

Partial regularity; main iteration

Then

\[
\int_{Q_1} |\partial_x u_k|^3 = 1, \quad \int_{Q_\theta} |\partial_x u_k|^3 \geq c_* \theta^5, \quad \int_{Q_{1/2}} u_k = 0,
\]

\[
\int_{Q_1} u_k \phi_t = \int_{Q_1} u_k \phi_{xxxx} + \varepsilon_k^{1/3} \int_{Q_1} (\partial_x u_k)^2 \phi_{xx}, \quad \phi \in C_0^\infty(Q_1).
\]

Step 2. Take a limit in \(k \).

There exists \(v \in L^3(Q_{1/2}) \) and a subsequence \(k_n \to \infty \) such that

\[
u_{k_n} \rightharpoonup v, \quad \partial_x u_{k_n} \rightharpoonup \partial_x v \quad \text{in} \ L^3(Q_{1/2}).
\]

By interior regularity of solutions to \(v_t + v_{xxxx} = 0 \)

\[
\|v\|_{L^\infty(Q_{1/2})} \leq (c_*/8)^{1/3}.
\]

Step 3. Use the A-L lemma to get \(\partial_x u_{k_n} \rightharpoonup \partial_x v \) in \(L^3(Q_{1/4}) \).

Step 4. Obtain a contradiction:

\[
1 \leq \frac{1}{c_* \theta^5} \int_{Q_\theta} |v_x|^3 \leq \frac{1}{8 \theta^5 |Q_\theta|} = \frac{1}{2}. \quad \square
\]
The surface growth model \(u_t + u_{xxxx} + \partial_{xx} u^2_x = 0 \)

The local Serrin condition

Theorem (O., 2018)

If \(u \) is a weak solution of the SGM in a cylinder \(Q = I \times B \) and \(u_x \in L^{q'}(I; L^q(B)) \), where the exponents \(q', q \geq 2 \) are such that \(\frac{4}{q'} + \frac{1}{q} = 1 \) and \(q' < \infty \), then \(u \in C^\infty(Q) \).
The surface growth model \(u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0 \)

The local Serrin condition

Theorem (O., 2018)

If \(u \) is a weak solution of the SGM in a cylinder \(Q = I \times B \) and \(u_x \in L^{q'}(I; L^q(B)) \), where the exponents \(q', q \geq 2 \) are such that

\[
\frac{4}{q'} + \frac{1}{q} = 1 \quad \text{and} \quad q' < \infty,
\]

then \(u \in C^\infty(Q) \).

Q. How about \(q' = \infty \)?
The surface growth model \(u_t + u_{xxxx} + \partial_{xx} u_x^2 = 0 \)

The local Serrin condition

Theorem (O., 2018)

*If \(u \) is a weak solution of the SGM in a cylinder \(Q = I \times B \) and

\[
 u_x \in L^{q'}(I; L^q(B)),
\]

where the exponents \(q', q \geq 2 \) are such that

\[
 \frac{4}{q'} + \frac{1}{q} = 1 \quad \text{and} \quad q' < \infty,
\]

then \(u \in C^\infty(Q) \).*

Q. How about \(q' = \infty \)?

→ \(L_{3,\infty} \) condition in the NSE (Escauriaza, Seregin & Šverák, 2003)