Hitting and return times in ergodic dynamical systems

N. Haydn, Y. Lacroix, & S. Vaienti
Los Angeles, Toulon, & Marseille

Abstract
Given an ergodic dynamical system \((X, T, \mu)\), and \(U \subset X\) measurable with \(\mu(U) > 0\), let \(\mu(U)\tau_U(x)\) denote the normalized hitting time of \(x \in X\) to \(U\). We prove that given a sequence \((U_n)\) with \(\mu(U_n) \to 0\), the distribution function of the normalized hitting time to \(U_n\) converges weakly to some pseudo-distribution \(F\) if and only if the distribution function of the normalized return time converges weakly to some distribution function \(\tilde{F}\), and that in the converging case,

\[F(t) = \int_0^t (1 - \tilde{F}(s)) ds, \quad t \geq 0. \]

This in particular characterizes asymptotics for hitting times, and shows that the asymptotic for return times is exponential if and only if the one for hitting times is too.

1. Introduction
Throughout \((X, \mathcal{B}, \mu)\) is a probability space, \(T: X \to X\) is measurable and preserves \(\mu\), i.e. \(T\mu = \mu\). We also assume the dynamical system \((X, T, \mu)\) to be ergodic.

For \(U \subset X\) with \(\mu(U) > 0\), Poincaré’s recurrence theorem [K, Theorem 1'] states that the variable

\[\tau_U(x) = \inf\{k \geq 1: T^k x \in U\} \]

is \(\mu\)-a.s. well defined. If \(x \in U\), \(\tau_U(x)\) denotes the return time of \(x\) to \(U\), while when dropping the requirement that \(x\) be in \(U\), \(\tau_U(x)\) is the hitting time of \(x\) to \(U\) (also called entrance time). The return time theorem [K, Theorem 2'] reads

\[\mathbb{E}(\mu(U)\tau_U) = \sum_{t \geq 1} t \mu(U \cap \{\tau_u = t\}) = 1, \]

2000 Mathematics Subject Classification 37A05, 37A50, 60F05, 28D05.
Key words and phrases. asymptotic distribution, hitting, return times, Kac.
where the expectation is computed with respect to the induced probability measure on \(U, \mu_U := \frac{\mu}{\mu(U)} \).

Finer statistical properties of the variable \(\mu(U)\tau_U \) have been investigated, in a rather large number of recent papers, where particular attention was given to the study of weak convergence of the variable \(\mu(U_n)\tau_{U_n} \) as \(\mu(U_n) \to 0 \). See [A-G] for a recent survey in the mixing case.

We say a sequence of distribution functions \((F_n) \) converges weakly to a function \(F \) (which might not be a distribution function itself) if \(F \) is increasing and at any point of continuity of \(F \), say \(t_0 \), \(F_n(t_0) \to F(t_0) \). Notice that we assume \(F \) increasing a priori. We will write \(F_n \Rightarrow F \) if \((F_n) \) converges weakly to \(F \).

Given a \(U \subset X \) measurable with \(\mu(U) > 0 \), we define

\[
\tilde{F}_U(t) := \frac{1}{\mu(U)}\mu(U \cap \{\tau_U \mu(U) \leq t\}) \quad \text{and} \quad F_U(t) = \mu(\{\mu(U)\tau_U \leq t\}).
\]

Define

\[
\mathcal{F} = \{F : \mathbb{R} \to [0,1], F \equiv 0 \text{ on }]-\infty,0], F \text{ increasing, continuous, concave on } [0, +\infty[, F(t) \leq t \text{ for } t \geq 0\};
\]

\[
\tilde{\mathcal{F}} = \{\tilde{F} : \mathbb{R} \to [0,1], \tilde{F} \text{ increasing, } \tilde{F} \equiv 0 \text{ on }]-\infty,0], \int_0^\infty (1 - \tilde{F}(s))ds \leq 1\}.
\]

These functional classes appear in the following :

Theorem [L], [K-L].

[L] : given \((X, T, \mu)\) ergodic aperiodic, given any \(\tilde{F} \in \tilde{\mathcal{F}} \), there exists \((U_n)\) in \(X \) such that \(\tilde{F}_{U_n} \Rightarrow \tilde{F} \) and \(\mu(U_n) \to 0 \).

[K-L] : given \((X, T, \mu)\) ergodic aperiodic, given any \(F \in \mathcal{F} \), there exists \((U_n)\) in \(X \) such that \(F_{U_n} \Rightarrow F \) and \(\mu(U_n) \to 0 \).

No connection between one kind of asymptotic and the other is known, except in [HSV, Theorem 2.1] where it is shown that if \(\tilde{F}_{U_n} \to \tilde{F} \) and \(\tilde{F}(t) = 1 - e^{-t} \) for \(t \geq 0 \), then \(F_{U_n} \to F \) and \(F(t) = \tilde{F}(t) \) for \(t \geq 0 \).

In this note we prove obtain the following rather unexpected, and surprisingly unknown :

Main Theorem. Given \((X, T, \mu)\) ergodic, and a sequence of positive measure measurable subsets \((U_n)_{n \geq 1}\) in \(X \), \((\tilde{F}_{U_n})_{n \geq 1}\) converges weakly if and only if \((F_{U_n})_{n \geq 0}\) converges weakly.

Moreover, if the convergence holds, and if \(\tilde{F} \) and \(F \) are the corresponding limiting distributions, then

\[
(\diamond) \quad F(t) = \int_0^t (1 - \tilde{F}(s))ds, \quad t \geq 0.
\]

Obvious consequences are :
Corollary.

The asymptotic for hitting times, if exists, is positive exponential with parameter 1 if and only if the one for return times is, too.

[L, Theorem 1] ⇐⇒ [K-L, Theorem 1].

The proof of the Corollary is left to the reader. We insist how strange it is that the map \(t \geq 0 \mapsto 1 - e^{-t} \) is the only fixed point of (◊).

2. Proof of the Main Theorem

We will need two lemmas:

Lemma 1. Given \(U \subset X \) with \(\mu(U) > 0 \), if \(\tilde{F}_U(t) \) denotes the smallest piecewise linear map, continuous, concave on \([0, +\infty[\), and greater than \(F_U \), then, letting \(\tilde{F}_U^+ \) denote its right-hand side derivative, one has

\[
\tilde{F}_U^+(t) = 1 - \tilde{F}_U(t), \quad t \geq 0.
\]

Notice that

\[
\| F - \tilde{F}_U \|_{\infty} \leq \mu(U).
\]

Proof of Lemma 1. The reader will be immediately convinced once he plots a self made hand made example. See [L] and [K-L] for further details on the construction of \(F_U \) and \(\tilde{F}_U \). □

Lemma 2. If \((f_n)_{n\geq0} \) is a sequence of concave functions defined on a non-empty open interval \([a, b[\), and converges pointwise to \(f \), then off an at most countable subset of \(I \), the sequence of derivatives \((f'_n) \) converges pointwise to the derivative \(f' \) of \(f \).

Proof of Lemma 2. This is a straightforward adaptation of [R, Theorem 25.7].

Indeed, by [R, Theorem 25.3], off an at most countable subset of \(I \), the functions \(f_n \), and \(f \), are differentiable, as concave functions.

Next, using the argument for the proof of [R, Theorem 25.7], but for a fixed \(x \in I \) rather than along a sequence of point \(x_i \) or points \(x_i \) in a closed bounded subset of \(I \), the convergence of the derivatives, when all defined, follows at once. □

⇒ in the theorem: we assume \(\mu(U_n) \to 0 \) and that \(\tilde{F}_{U_n} \to \tilde{F} \) for some \(\tilde{F} \in \tilde{F} \). Since \(\tilde{F} \) is increasing, this implies that \(\tilde{F}_{U_n} \to \tilde{F} \) Lebesgue almost surely on \([0, +\infty[\). Whence, for given \(t \geq 0 \), by the Lebesgue dominated convergence theorem on \([0, t] (\tilde{F} \in [0, 1])\), combining with \((\ast)\) in Lemma 1, one has

\[
\tilde{F}_{U_n}(t) = \int_{0}^{t} (1 - \tilde{F}_{U_n}(s))ds \to \int_{0}^{t} (1 - \tilde{F}(s))ds =: F(t).
\]

We define \(F(t) = 0 \) for \(t < 0 \). Then because \(\tilde{F} \in \tilde{F} \), it is clear that \(F \in F \).

And by \((\ast\ast)\), \(F_{U_n}(t) \to F(t) \) for any \(t \in \mathbb{R} \) (the convergence is in fact uniform on compact subsets of \(\mathbb{R} \) by [R, Theorem 10.8]).
Remark 1. Given $U \subset X$ measurable with $\mu(U) > 0$, \bar{F}_U is concave. Moreover if $F_{U_n} \Rightarrow F$, then $F_{U_n} \to F$ Lebesgue almost surely, whence on a dense subset of $[0, +\infty[$. By ($\star\star$) and [R, Theorem 10.8], it follows that if $F_{U_n} \Rightarrow F$, then $F \in \mathcal{F}$.

\textless; in the Theorem : we assume $F_{U_n} \Rightarrow F$. Then either we assume $F \in \mathcal{F}$ by [K-L], or not and use Remark 1 above to deduce it.

Whence by (\star) and ($\star\star$), we have, for $t \geq 0$,

$$
\bar{F}_{U_n}(t) = \int_0^t \bar{F}_{U_n}'(s)ds = \int_0^t (1 - \bar{F}_{U_n}(s))ds \to F(t) = \int_0^t F'(s)ds.
$$

By Lemma 2, we deduce that off an at most countable subset Ω of $]0, +\infty[$, $1 - \bar{F}_{U_n}(s) \to F'(s)$. We put $\bar{F}(s) := 1 - F'(s)$ for $s \in \mathbb{R}$.

It remains to show that if F' is continuous at s, then $\bar{F}_{U_n}(s) \to \bar{F}(s)$. Clearly if $s \notin \Omega$ or $s < 0$ there is nothing to do. Else, for any $s_1 < s < s_2$ not in Ω, we have

$$
\bar{F}(s_1) \leq \liminf_n \bar{F}_{U_n}(s) \leq \limsup_n \bar{F}_{U_n}(s) \leq \bar{F}(s_2),
$$

and since Ω is dense in $[0, +\infty[$, this ends the proof. □

References

Nicolai Haydn
University of Southern California
Department of Mathematics
Denney Research Building
DRB 155
Los Angeles
California 90089-1113
USA

nhaydn@usc.edu

Yves Lacroix
Université de Toulon et du Var
ISITV
Avenue Georges Pompidou
BP 56
83162 La Valette Cedex
France

ylacroix@univ-tln.fr

Sandro Vaienti
Centre de Physique Théorique
Campus of Luminy
Case 907
13288 Marseille Cedex 9
France

vaienti@cpt.univ-mrs.fr