Introduction

Iterativity

- In harmony systems, iterativity is often closely tied to locality and trigger-target relations.
 - For example, in a string of multiple vowels that harmonize with a final vowel, the question arises as to what the trigger is for vowels at a distance from the final vowel. Two possibilities:
 - The trigger is always adjacent in the string, so that harmony is passed along in an iterative fashion.
 - The trigger is the same vowel for all segments, even if it is non-adjacent.

Jingulu height harmony

- Height harmony in Jingulu engages these issues:
 - Harmony in root vowels is initiated by a high suffix vowel.
 - However, high root vowels neither initiate nor transmit height harmony (Pensalfini 1997, 2002).
 - This pattern raises questions about trigger-target relations in the system, and whether harmony operates in a local, iterative fashion.
Introduction

Theoretical vantage point

Findings

- The analysis developed here shows that as a positional licensing phenomenon, Jingulu height harmony could be non-iterative.
- However, a requirement for a stable left anchor for the chain of surface-corresponding vowels drives harmony to persist until it reaches either a faithful vowel or an initial vowel.
- Harmony within the surface correspondence chain can be enforced strictly over chain-adjacent pairs.

Road map

- Introduce Jingulu height harmony pattern
- Identify issues it raises involving iterativity and locality
- Develop positional-licensing analysis using ABC
- Stock-taking and discussion of alternatives.

Data

Height harmony in Jingulu

Jingulu: A language of North-Central Australia

- Three vowel phonemes: /i, a, u/
- Vowel height harmony from a high suffix vowel raises /a/ \(\Rightarrow \) [i] in a root.
 - Operates from /i, u/ in certain suffixes, usually unstressed
 - Harmony affects unbounded sequences of /a/ in a root (raised Vs are underlined).

<table>
<thead>
<tr>
<th></th>
<th>[ngg+r]iti-juji-warru-nu</th>
<th>[ngg+r]iti-juji-nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pl-did]</td>
<td>[ngg+r]iti-juji-warru-nu</td>
<td>[ngg+r]iti-juji-nu</td>
</tr>
<tr>
<td>[NEG.IMPV]</td>
<td>[ngg+r]iti-juji-nu</td>
<td></td>
</tr>
</tbody>
</table>

Pensalfini’s orthographic conventions: <ng> velar nasal, <rr> alveolar rhotic, <rd> coronal retroflex stop, <rn> coronal retroflex nasal, <rl> coronal retroflex lateral, <r> coronal retroflex rhotic, <j> palatal stop, <ny> palatal nasal, <ly> palatal lateral, <y> palatal glide.
Height harmony in Jingulu

Further examples: Height harmony is triggered high vowels in by various suffixes
- Gender morphemes and certain tense/agreement/aspect morphemes.
- Triggering suffixes immediately follow the root.
- Pensalfini analyzes triggering suffixes as inflectional syntactic heads.

bardarda	+ /-rn/	→	biradjiri-rnl	'younger sister'
biba	+ /-rn/	→	bibj-rni	'daughter'
kunyarrba	+ /-rn/	→	kunyrrbi-rni	'female cross cousin'
ngaja	+ /-nguru-ju/	→	ngiij-nguru-ju	'we can see'
	+ /-kunyi-ju/	→	ngiij-kunyi-ju	'you two can see'

Height harmony in Jingulu

Low vowels in suffixes:
- The characteristic ending for the masculine gender is /-a/
- Low suffix vowels do not trigger height assimilation, i.e. lowering

| bininj-a bardakurr-a | 'good man M' |
| man-M good-M |

- Nor do they trigger raising, as gender suffixes with a high vowel do

| jabarrk-a | 'liver M' |
| kiyinarr-a | 'vagina, vulva M' |

Height harmony in Jingulu

Underlying high root vowels:
- Do not trigger harmony in either direction (left column)
- Halt height harmony (right column)

mamamblyaka	mamamblykbl-ml	'soft'	'soft vec'
ankila	ankij-rni	'cross cousin'	'female cross cousin'
ngamurja	ngamuri-rni	'big'	'big s.'
warlaku	warlaku-ri	'dog'	'bitch'

Height harmony in Jingulu

Summary
- Height harmony is triggered by high vowels in certain suffixes, affecting unbounded sequences of low vowels in adjacent syllables of a preceding root.
- Underlying high root vowels do not trigger or propagate height harmony.
- The harmony has a phonological component, because only high vowels are triggers.
Iterativity and locality

• Jingulu height harmony is iterative and local in the sense that it can affect unbounded sequences of vowels in contiguous syllables.
• Nevertheless, because high root vowels do not trigger or propagate harmony, the process appears to be long-distance rather than an iterative local process in the sense that a single suffix vowel triggers raising in all preceding vowels.

Local
• Identity enforced over vowels in adjacent syllables
• Long-distance
• Identity enforced with a single vowel

This study pursues an approach in which Jingulu raising harmony is understood in terms of local chained identity relations.

Analysis

Aims for analysis
• Focus on phonological mechanisms that give rise to height harmony in Jingulu.
• Pursue an Agreement by Correspondence (ABC) approach

Positional licensing
• Jingulu height harmony can be understood as a weak trigger pattern (Kalivoda 2012).
 • Weak trigger – Affixal high vowel; Licensor – Root
• In the interests of focus
 • Preservation of height in the weak vowel at the cost of faithfulness in the root will not be treated here. (On approaches to weak trigger control, see Walker 2005, 2011.)
 • The morpho-syntactic issues will not be probed further.
Analysis

Why ABC?

• Surface correspondence provides a means of enforcing agreement and disagreement among segments in an output.
• Surface correspondence has since been applied to a range of phenomena.
 • exx. vowel harmony, dissimilation, tone assimilation, vowel nasalization harmony, reduplication, consonant-tone interactions, restrictions on nasal-consonant sequences, among others (see Shih & Inkelas 2014).
• Jingulu is an interesting test case, because a single suffix vowel appears to trigger harmony in multiple preceding vowels, even at a distance.
• ABC has potential to shed light on locality and iterativity in this system.

Basic elements of ABC

• Surface correspondence driver:
 • CORR-XX[αF] constraints enforce correspondence among segments in an output that are specified [αF] (e.g. [+vocalic] or [-son, -cont]).
• Surface identity driver:
• Faith-IO:
• Agreement by correspondence occurs when constraints that drive surface correspondence and surface identity both dominate Faith-IO:
 • CORR-XX[αF], IDENT-XX[F] >> IDENT-IO[F]

Locality and transitivity in ABC

• Local assessment of drivers of identity for surface correspondents (IDENT-XX[F]):
 • A violation is assigned for every pair of segments that are adjacent in the surface-correspondence chain that are not identical in specification for [F] (Hansson 2006b, 2007; see also Krämer 2003).
 • Hansson argues that local evaluation of IDENT-XX avoids problematic predictions regarding majority rule effects and indeterminacy of triggers. (cf. McMullin 2016, Hansson & McMullin 2019 for further discussion of long-distance dependencies in relation to ABC.)
• Surface correspondence relations are transitive (Bennett 2015b).
 • If X₁RX₂ and X₃RX₄, then X₁RX₄.

Illustration

• Local evaluation of identity in surface correspondence chains

<table>
<thead>
<tr>
<th>/ s ... z ... /</th>
<th>IDENT-XX[ant]</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. / s₁ ... z₁ ... j₁ /</td>
<td>*(z ~ j)</td>
<td>All fricatives correspond with each other</td>
</tr>
<tr>
<td>b. / s₂ ... z₁ ... j₁ /</td>
<td>*(s ~ j)</td>
<td>Only [s] and [j] correspond with each other</td>
</tr>
</tbody>
</table>

• IDENT-XX[ant] assigns violations for chain-adjacent pairs of segments that differ in specification for [anterior]:
 • No violation for [s₁] ~ [j₁] in (a), because they are not chain-adjacent.
 • Note that because [z] corresponds with both flanking fricatives in (a), [s] ~ [j] will nonetheless correspond due to transitivity of surface correspondence.
 • In (b) [s₂] ~ [j₁] are chain adjacent, so they incur a violation.
Analysis

Question

• If identity for surface correspondents is enforced locally, i.e. over chain-adjacent pairs, why do low root vowels in Jingulu show iterative raising?
 • The suffix vowel will be chain-adjacent with only one root vowel.
 • And (underlying) high root vowels do not trigger raising.

Illustration

• The vowels in [biibri] ‘daughter’ will form a correspondence chain: [i - i x - i x - i x] .
 • The first root vowel is chain-adjacent with the second root vowel, but not the suffix vowel.
 • The first root vowel must therefore raise by virtue of identity enforced with the second root vowel.
 • But this is puzzling, because (underlying) high root vowels block harmony.

Analysis

Overview for ABC licensing approach for Jingulu

• Licensing between affix and root
 • Driven by a CORR-XX constraint
 • Can be satisfied by a single (noniterative) surface correspondence relation.

• Further constraints governing correspondence chains
 • Prohibit correspondence chains with a leftmost vowel that is neither initial nor faithful.
 • Prevent a correspondence chain that gaps across a syllable.
 • Produce the effect of iterative surface correspondence with locally enforced identity that terminates in a faithful high root vowel (a) or an initial syllable (b).

Analysis

Elaborating CORR constraints for positional licensing

• Weak trigger effects using CORR-XX(εF)(Licensee, Licensor)
• Introduces potential restrictors on correspondents based in weakness (licensee) and positional strength (licensor).

CORR-XX(+vocalic)(+[high]Af-Infl0, Root)
Short form CORR-VV([+hi]Af, Rt)

Let X1 be [+voc, +high] and belong to an affixal Infl0.

Then assign a violation if there is not a surface correspondence relation between X1 and some X2 such that:
 X2 is [+vocalic] segment and belongs to a root.
 (Infl restriction on X1 after Pensalfini 2002 and licensing proposal by Kalivoda 2012)

• This constraint can be satisfied by non-iterative or iterative height harmony in the root. In fact, harmony persists for reasons to be addressed shortly.

Analysis

Constraints

• CORR-VV([+hi]Af, Rt)
 • Licensing imperative for raising harmony that targets a root vowel.

• IDENT-XX[high]
 • Let X1 and X2 be a pair of segments that are in correspondence with each other in the same output and that are chain-adjacent. If X1 is [εεF] and X2 is [-εε], assign a violation.

• IDENT-IO[high]
 • Let X be a segment in the input and Y be a correspondent of X in the output. If X is [εεF] and Y is [-εε], assign a violation.

• SYLL-ADJ-XX
 • Segments belonging to the same correspondence chain must occupy a contiguous span of syllables (Bennett 2015b).
Analysis

Observation

- Vocalic correspondence chains for height harmony in Jingulu begin with either a faithful vowel or a vowel in the stem-initial syllable.
- Both such positions could be considered stable (salient) contexts to anchor the beginning of a correspondence chain.
- A faithful vowel is privileged because it is consistent with the stored lexical representation.
- Initial syllables are prominent in speech planning, possibly receiving a higher level of activation (see Walker 2011 for a review).
- Vowels in initial syllables undergo domain-initial strengthening in some languages (Barnes 2006).

Analysis

Proposal: Stable anchoring

- There is an imperative for correspondence chains to begin with a stable anchor.

ANCHOR(XX, Stb, L) Henceforth STABLE-ANCHOR-XX-L

Let Stb be a set of stable anchors ([IO-faithful, σ₁])

Assign a violation if the leftmost element in a surface correspondence chain is not an element of Stb, i.e. a stable anchor.

(cf. ANCHOR formalism of McCarthy 2003 and CC-ANCHOR-R proposed by Bennett 2015b.)

- The set of stable anchors might vary to some extent by language, although it is expected to be limited.
- Whether left-edge faithfulness is enforced monolithically or is restricted to faithfulness for a specific feature, remains an open question.

Analysis

Illustration: Various surface correspondence structures for /mamambiyaka-mi/ ‘soft veg’

<table>
<thead>
<tr>
<th>/mamambiyaka-mi/</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. /a₁ a₂ l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁ l₁₂</td>
<td>Optimal output. Satisfies root-licensing constraint. Also satisfies STABLE-ANCHOR because leftmost V in chain ‘1’ is faithful for [high].</td>
</tr>
<tr>
<td>b. /a₁ a₂ a₃ l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁</td>
<td>Satisfies root-licensing constraint with one less IDENT-IO(high) violation than (a) but violates STABLE-ANCHOR.</td>
</tr>
<tr>
<td>c. /a₁ a₂ l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁</td>
<td>Same markedness violations as (b) but with one more IDENT-IO(high) violation.</td>
</tr>
<tr>
<td>d. /l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁</td>
<td>Ties with (a) in satisfying root-licensing constraint and STABLE-ANCHOR (here, leftmost V in chain ‘1’ is initial) but with two more IDENT-IO(high) violations.</td>
</tr>
<tr>
<td>e. /a₁ a₂ a₃ a₄ l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁</td>
<td>Ties with (a) in satisfying root-licensing constraint and STABLE-ANCHOR. Earns two less IDENT-IO(high) violations but violates SYLLADI-XX.</td>
</tr>
<tr>
<td>f. /a₁ a₂ l₁ a₃ a₄ l₁ l₂ l₃ l₄ l₅ l₆ l₇ l₈ l₉ l₁₀ l₁₁</td>
<td>Violates root-licensing constraint because affix vowel has no surface correspondent in the root.</td>
</tr>
</tbody>
</table>

Ranking preview

CORR-VV([+hi]A₁, RT)
IDENT-XX[high]
SYLLADI-XX
STABLE-ANCHOR-XX-L
IDENT-IO[high]

Height harmony progresses locally to an underlying high root V or σ₁

- Root licensing activates STABLE-ANCHOR-XX-L
 - When root licensing causes a root-final vowel to be unfaithful, STABLE-ANCHOR drives extension of the correspondence chain to a stable anchor.
 - High root vowels are icy targets (Jurgec 2011a, b)
 - An icy target participates in harmony but “freezes” propagation beyond it.
 - Emerges here as the effect of the left anchoring constraint.

NCHOR
Analysis: Height harmony in a root with an underlying high vowel (iterative to icy target)

<table>
<thead>
<tr>
<th>Comments</th>
<th>/mamambiyaka-mi/</th>
<th>CORR-VV ([+h][a], Rtl)</th>
<th>IDENT-XX [high]</th>
<th>SYLLADV-XX</th>
<th>STABLE-ANCHOR-XX-L</th>
<th>IDENT-IO [high]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony up to and including root /a/</td>
<td>a. (a_1 , a_2 , l_1 , l_2 - l_1) (mamambiyakimi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Harmony to root-final /a/</td>
<td>b. (a_1 , a_2 , l_1 , l_2 - l_1) (mamambiyakimi)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>* L</td>
</tr>
<tr>
<td>Harmony up to vowel before root /a/</td>
<td>c. (a_1 , a_2 , l_1 , l_2 - l_2) (mamambiyakimi)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>**</td>
</tr>
<tr>
<td>Harmony to initial /a/, through root /a/</td>
<td>d. (l_1 , l_1 , l_1 , l_2 - l_2) (mimimbiyakimi)</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
<td>* W</td>
</tr>
<tr>
<td>Harmony with root /a/ only</td>
<td>e. (a_1 , a_2 , l_1 , a_3 - l_1) (mamambiyakami)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>L</td>
</tr>
<tr>
<td>No harmony</td>
<td>f. (a_1 , a_2 , l_1 , a_3 - l_1) (mamambiyakami)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>L</td>
</tr>
<tr>
<td>Height identity not enforced in corresponding Vs</td>
<td>g. (a_1 , a_2 , l_1 , a_3 - l_1) (mamambiyakami)</td>
<td></td>
<td></td>
<td></td>
<td>! W ((\sim a, a^\prime))</td>
<td>L</td>
</tr>
</tbody>
</table>

Analysis: Height harmony in a root with no underlying high vowel (iterative)

<table>
<thead>
<tr>
<th>Comments</th>
<th>/bardara-mi/</th>
<th>CORR-VV ([+h][a], Rtl)</th>
<th>IDENT-XX [high]</th>
<th>SYLLADV-XX</th>
<th>STABLE-ANCHOR-XX-L</th>
<th>IDENT-IO [high]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony fully throughout root</td>
<td>a. (l_1 , l_1 , l_2 - l_1) (birdirdimi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Harmony to root-final /a/ only</td>
<td>b. (a_2 , a_3 , l_1 - l_1) (bardardarni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>* L</td>
</tr>
<tr>
<td>Harmony up to root-medial /a/</td>
<td>c. (a_2 , l_1 , l_1 - l_1) (bardardarni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>** L</td>
</tr>
<tr>
<td>Harmony with root-initial /a/ only</td>
<td>d. (l_1 , a_2 , a_3 - l_1) (bardardarni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>L</td>
</tr>
<tr>
<td>No harmony</td>
<td>e. (a_2 , a_3 , a_3 - l_1) (bardardarni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td>L</td>
</tr>
<tr>
<td>Height identity not enforced in corresponding Vs</td>
<td>f. (a_2 , a_3 , a_3 - l_1) (bardardarni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W ((a - 1))</td>
<td>L</td>
</tr>
</tbody>
</table>

Analysis: Height harmony in a root with a final underlying high vowel (non-iterative)

<table>
<thead>
<tr>
<th>Comments</th>
<th>/warlakun-mi/</th>
<th>CORR-VV ([+h][a], Rtl)</th>
<th>IDENT-XX [high]</th>
<th>SYLLADV-XX</th>
<th>STABLE-ANCHOR-XX-L</th>
<th>IDENT-IO [high]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony to root-final /a/</td>
<td>a. (a_2 , a_3 , u_3 - l_1) (warlakuni)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No harmony</td>
<td>b. (a_2 , a_3 , u_3 - l_1) (warlakuni)</td>
<td></td>
<td></td>
<td></td>
<td>*! W</td>
<td></td>
</tr>
<tr>
<td>Harmony through /a/ to initial /a/</td>
<td>c. (l_2 , l_2 , u_3 - l_1) (warlakuni)</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
<td>* W</td>
</tr>
</tbody>
</table>

Analysis

Summary

- On this account, Jingulu height harmony is understood as driven by a positional licensing imperative such that
 - Agreement by Correspondence is strictly enforced between a [+high] suffix vowel and a root vowel.
 - Raising of a root-final vowel activates a stable anchoring constraint governing a correspondence chain, requiring a faithful or initial leftmost element.
- Result:
 - Harmony operates to an underlying high vowel.
 - If an underlying high root vowel is not reached, harmony operates to the initial syllable.
- In the correspondence chain, there are no gaps across syllables and identity for [high] is assessed locally over chain-adjacent vowels.
Alternatives

Alternative: Relational correspondence

t

Relational correspondence

- Preservation of plateau or contour relations between input values for segmental features and tones via contour correspondence constraints (Steriade 2012).
- Example of a contour correspondence constraint:

\[\text{CONTOURCORR-IO}(\text{height, plateau}) \]

If two vowels in contiguous syllables have identical values for height in the input, those vowels have height values that are identical to each other in the output.

- Prediction

 - Plateau preservation predicts across-the-board shifts in height for a sequence of vowels with the same height in the input.

Applied to Jingulu height harmony

- To preserve a plateau, CONTOURCORR-IO(height, plateau) would drive raising of the maximal contiguous sequence of underlying low vowels that contains the raised vowel (cf. Kalivoda 2012 on FAITH-SHARE).

Comparison with ABC

- Relational correspondence (RC) employs a more powerful evaluation of identity than ABC.
 - ABC evaluates identity between segmental pairs in IO and XX correspondence.
 - RC additionally examines sequences in the input, and it compares the identity of relations across input and output sequences.

<table>
<thead>
<tr>
<th></th>
<th>ABC identity evaluations</th>
<th>RC identity evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input (a) (a)</td>
<td>Input (a \leftrightarrow a)</td>
</tr>
<tr>
<td></td>
<td>(i) (i)</td>
<td>(i) (i)</td>
</tr>
<tr>
<td>Output</td>
<td>(i \leftrightarrow i)</td>
<td>Output (i \leftrightarrow i)</td>
</tr>
<tr>
<td>IDENT-IO</td>
<td>(a \sim i, a \sim i)</td>
<td>IDENT-IO (a \sim i, a \sim i)</td>
</tr>
<tr>
<td>IDENT-XX</td>
<td>(i \sim i)</td>
<td>RC-identity ((a \sim a), (i \sim i))</td>
</tr>
</tbody>
</table>

Alternative: Relational correspondence
Alternative: Needy root vowels

- Root vowels that potentially raise are lexically marked as requiring harmony for [+high]; non-alternating root vowels are lexically [+high].
- A morphological condition restricts the harmony source to a non-root.
- If a needy V fails to find a source, it is assigned default [−high] (Nevins 2004, 2010).

<table>
<thead>
<tr>
<th>ABC Licensing approach</th>
<th>Needy root vowels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependency operates from suffix vowel to root</td>
<td>Dependency operates from root vowels to suffix</td>
</tr>
<tr>
<td>Harmony is enforced via over chain-adjacent vowels over a contiguous span of syllables</td>
<td>Harmony is enforced iteratively from the leftmost (furthest) harmonizing root vowel to the suffix vowel</td>
</tr>
<tr>
<td>High vowels are icy targets – they terminate harmony because of their status as faithful</td>
<td>High vowels block harmony through defective intervention – they do not meet the morphological condition on a harmony source</td>
</tr>
<tr>
<td>Single input-output derivational step</td>
<td>Serial derivation</td>
</tr>
</tbody>
</table>

Conclusion

Jingulu height harmony

- A harmony pattern intersecting with several interesting issues, including locality, iterativity, triggering, and the nature of participation by blockers.

Some take-aways from the proposed account

- A weak trigger analysis implemented within an ABC approach.
- An imperative for [+high] vowels in certain affixes to be licensed by correspondence with the root drives minimal (non-iterative) harmony to the root-final vowel.
- Root-licensing can disrupt a stable left-anchor for a correspondence chain, which drives height harmony to persist until it reaches a faithful high vowel or an initial vowel.
- Even though the weak trigger is not adjacent to all harmonizing vowels, identity is assessed strictly over chain-adjacent vowel pairs.

Further research

Positional licensing in an ABC approach

- The suitability of an ABC approach to positional licensing remains to be explored further.
- Positional licensing phenomena depart from patterns that are classically analyzed using ABC because they are not usually characterized as similarity sensitive.
- In an ABC treatment of positional licensing, it is the licensee/licensor pairing that gives rise to surface correspondence.

Anchoring

- In another vein, further work is need to pursue the implications of edge-anchoring constraints on surface correspondence chains.

Conclusion

Jingulu height harmony

- A harmony pattern intersecting with several interesting issues, including locality, iterativity, triggering, and the nature of participation by blockers.

Some take-aways from the proposed account

- A weak trigger analysis implemented within an ABC approach.
- An imperative for [+high] vowels in certain affixes to be licensed by correspondence with the root drives minimal (non-iterative) harmony to the root-final vowel.
- Root-licensing can disrupt a stable left-anchor for a correspondence chain, which drives height harmony to persist until it reaches a faithful high vowel or an initial vowel.
- Even though the weak trigger is not adjacent to all harmonizing vowels, identity is assessed strictly over chain-adjacent vowel pairs.
References