1. **Introduction**

The special status of coronals

• Relative to other oral place features (labial, dorsal)

1. Coronals are exceptionally permitted in some contexts where non-coronals are not.

• Exx. Exemption from place assimilation, phonotactic restrictions, OCP restrictions

2. Coronals alone capitulate in some phonological phenomenon.

• Exx. Coronals are targets of place assimilation, neutralization

• Type 1 phenomena suggest that coronals incur a lesser violation of markedness.

• Type 2 phenomena suggest that coronals incur a lesser violation of faithfulness.

Previous constraint-based approach:

• Mirrored markedness and faithfulness constraint sets (de Lacy 2002, 2006).

• Markedness hierarchy for oral place features

[Dorsal] > [Labial] > [Coronal]

<table>
<thead>
<tr>
<th>Markedness constraints</th>
<th>Faithfulness constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>*{Dor}</td>
<td>IDENT-IO{Dor}</td>
</tr>
<tr>
<td>*{Dor, Lab}</td>
<td>IDENT-IO{Dor, Lab}</td>
</tr>
<tr>
<td>*{Dor, Lab, Cor}</td>
<td>IDENT-IO{Dor, Lab, Cor}</td>
</tr>
</tbody>
</table>

Questions

• Why is faithfulness prioritized for more marked features?

• Is it necessary to **duplicate** the Dorsal > Labial > Coronal relationship across sets of M and F constraints?

Proposal

Place features have a gradient degree of activation such that

[Dorsal] > [Labial] > [Coronal]

• Employ Gradient Symbolic Representations (GSRs) (Smolensky & Goldrick 2016).

• Weaker activation of [Coronal] causes it to incur a lesser violation of markedness and faithfulness constraints for Place, relative to other oral place features.

1. Introduction

Questions

• Why is faithfulness prioritized for more marked features?

• Is it necessary to **duplicate** the Dorsal > Labial > Coronal relationship across sets of M and F constraints?

Proposal

Place features have a gradient degree of activation such that

[Dorsal] > [Labial] > [Coronal]

• Employ Gradient Symbolic Representations (GSRs) (Smolensky & Goldrick 2016).

• Weaker activation of [Coronal] causes it to incur a lesser violation of markedness and faithfulness constraints for Place, relative to other oral place features.

Road map

2. Patterns of special coronal behavior

3. Analysis employing gradient activation for Place features

• Two case studies of place assimilation

4. Discussion of issues surrounding a scale of activation for Place Fs

5. Alternatives

6. Conclusion
2. Patterns: Special Coronal Behavior

Type 1 – Markedness-based: Coronals are exceptionally permitted / inactive relative to labials and dorsals.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Ex. language(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>v. Epenthetic Cs are coronal</td>
<td>Axininca Campa</td>
<td>Payne 1981, McCarthy & Prince 1993</td>
</tr>
<tr>
<td>vi. Only coronals may have a secondary place F (coronals do not block harmony)</td>
<td>Najdi dialect of Bedouin Arabic</td>
<td>Abboud 1979, McCarthy 1994, Gafos & Lombardi 1999</td>
</tr>
</tbody>
</table>

Type 1 patterns have been proposed to reflect a lesser degree of markedness for [Coronal] than [Labial] and [Dorsal].

Type 2 – Faithfulness-based: Coronals alone capitulate.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Ex. language(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii. Coronals alone are neutralized</td>
<td>Yamphu</td>
<td>de Lacy 2006</td>
</tr>
</tbody>
</table>

Type 1 patterns have been proposed to reflect a lesser degree of faithfulness for [Coronal] than [Labial] and [Dorsal].

2. Special Coronal Behavior

Illustration type 1 – Markedness: Sri Lankan Portuguese Creole

<table>
<thead>
<tr>
<th>/n/</th>
<th>/sin/</th>
<th>/sin+pa/</th>
<th>/sil+ni/</th>
<th>/sil+ni+ki/</th>
<th>/silono/</th>
<th>/komwan/</th>
</tr>
</thead>
</table>

(De Lacy 2006 compiling data from Smith 1978 and Hume & Tserdanelis 2002)

2. Special Coronal Behavior

Summary

- Two patterns of place assimilation affecting pre-consonantal coda nasals.
- In Sri Lankan Portuguese Creole, coronal /n/ is exceptionally exempted from place assimilation that affects /m/ and /n/.
- Suggests that coronal nasal codas that do not share place with a following onset are less marked than labial and dorsal counterparts.
- In Catalan, coronal /n/ is the sole target of place assimilation; /m/, /n/ and /n/ are not affected.
- Suggests that coronal nasal codas are more susceptible to a violation of faithfulness for place than labial and dorsal counterparts.

3. Analysis:

Gradient Activation for Place Features

3.1 Basics: Place Assimilation

Nasal Place assimilation

- Assumption: Place assimilation involves spreading of a Place feature from onset C to preceding coda C, driven by a coda condition.

<table>
<thead>
<tr>
<th>Root</th>
<th>[som] 'we are'</th>
<th>[son] 'they are'</th>
<th>[aŋ] 'year'</th>
</tr>
</thead>
<tbody>
<tr>
<td>amic(s) 'friend(s)'</td>
<td>[som amiks]</td>
<td>[son amiks]</td>
<td>[aŋ amik]</td>
</tr>
<tr>
<td>pocis 'few-PF, pehit 'short'</td>
<td>[som pəks]</td>
<td>[son pəks]</td>
<td>[aŋ pət]</td>
</tr>
<tr>
<td>veus 'voices'</td>
<td>[som bəus]</td>
<td>[son bəus]</td>
<td></td>
</tr>
<tr>
<td>tontus/sj 'stupid-(N)'</td>
<td>[son tontus]</td>
<td>[aŋ tontus]</td>
<td></td>
</tr>
<tr>
<td>cosins 'cousins'</td>
<td>[som kuzins]</td>
<td>[son kuzins]</td>
<td></td>
</tr>
<tr>
<td>grant/sj 'big-(N)'</td>
<td>[som grants]</td>
<td>[son grants]</td>
<td>[aŋ gran]</td>
</tr>
</tbody>
</table>

- No assimilation of [ɲ]: [təŋ presə] 'I'm in a hurry'
- /p/ does not undergo assimilation; a dorsal component is assumed (Mascaró 1976).
- Before [f], /m/ becomes [n], but /m/ does not show assimilation for major place.

3.1 Basics: Place Assimilation

Constraints

1. CodACond
 - Assign a violation for every Place feature that is solely associated to a coda consonant (Ito 1986, 1989).

2. Max-IO(Place)
 - Assign a violation for every Place feature in the input that does not have a correspondent in the output (McCarty & Prince 1995).

3. Max-IO-Onset(Place)
 - Let S be a segment in an onset in the output. Assign a violation for every Place feature associated with the input correspondent of S that does not have a correspondent in the output (Beckman 1998, framed after Padgett 1995b).
 - (These constraints follow the analysis of Lombardi 2001 on place restrictions in coda in the essentials.)

 Further details
 - Restriction to nasal codas – see (Padgett 1995b)
 - Exemption of word-final codas – see Goldsmith (1990), Padgett (1995b)
3.1 Basics: Place Assimilation

Schematic illustration of place assimilation

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Cor</td>
<td>Lab</td>
</tr>
</tbody>
</table>

- Violates MAX-IO(Place) (here for [Coronal])
- Obeyes MAX-IO-ONSET(Place) and CODACOND

• Framework: Harmonic Grammar
 (Legendre et al. 1990, Smolensky & Legendre 2006)

• Place assimilation
 \(w(\text{CODACOND}) > w(\text{MAX-IO(Place)}) \)

3.1 Basics: Place Assimilation

Assimilation for all Place Fs
- Attested, e.g. in Spanish (Harris 1984, Padgett 1995b)

Problem: Assimilation may be Place-feature specific

Proposal here:
• Differentiation in Place F behavior results from gradient featural representations.
• Constraints like CODACOND, MAX-IO(Place) refer to the entire class of Place.

3.2 Representations

Gradient Symbolic Representations (GSRs)
- Phonological symbolic representations can be gradiently active (Smolensky & Goldrick 2016).
- Gradient activity may be present in outputs (as well as inputs) (Faust 2017, 2019, Faust & Smolensky 2017a, b, Zimmermann 2018, 2019, Jang 2019).

Proposed representations for Place features

\[\text{[Dor]}_{i_{O}} \text{[Lab]}_{a_{D}} \text{[Cor]}_{a_{a}} \]

• These particular activity values are arbitrary. What matters is that for feature activation \(a \):
 \(\alpha_{\text{Dor}} > \alpha_{\text{Lab}} > \alpha_{\text{Cor}} \)

Implications for constraints
• No stipulation of Place F hierarchy / subsets in constraints. M and F effects follow from gradience in the representation.

3.3 Calculating the penalty for constraint violation

Question
How does gradient feature activity figure into the calculation of the penalty assigned for a constraint pertaining to that feature?

Two possibilities considered here
1. \(w \ast a \): Feature activation \(a \) is multiplied by basic constraint weight \(w \).
 • Problem for differentiating coronal behavior when two conflicting constraints are both multiplied by \(a \).
2. \(w + (s \ast a) \): Feature activation \(a \) is multiplied by a scaling factor \(s \) added to basic constraint weight \(w \).
 • Succeeds in potential to differentiate coronal behavior, even when two conflicting constraints both assign violations to Place Fs.

3.3 Calculating the penalty for constraint violation

Question
How does gradient feature activity figure into the calculation of the penalty assigned for a constraint pertaining to that feature?

Two possibilities considered here
1. \(w \ast a \): Feature activation \(a \) is multiplied by basic constraint weight \(w \).
 • Problem for differentiating coronal behavior when two conflicting constraints are both multiplied by \(a \).
2. \(w + (s \ast a) \): Feature activation \(a \) is multiplied by a scaling factor \(s \) added to basic constraint weight \(w \).
 • Succeeds in potential to differentiate coronal behavior, even when two conflicting constraints both assign violations to Place Fs.

3.3 Calculating the penalty for constraint violation

\[H = w \times a \]

Scenario: Coda Place Assimilation

Problem: When two conflicting constraints are each assigned a penalty that is directly proportional to the degree of Place F activation, the behavior of coronals in that conflict cannot be differentiated from non-coronals by activation.

- Depending on \(w \), the penalty assigned for Max(Place) will overtake COdaCONd for no place Fs or for all of them.
 - e.g. for two \(w \): \(x \) and \(y \)
 - If \(x \times .8 > y \times .8 \)
 - Then \(x \times .9 > y \times .9 \)

Toy example

\[1 + (30 \times \text{activation of } F) \]

1. [Coronal] \(w = .8 \):
 - \(1 + (30 \times .8) = -10 \)
 - \(1 + (30 \times .9) = -11 \)
2. [Labial] \(w = .9 \):
 - \(1 + (30 \times .8) = -10.5 \)
 - \(1 + (30 \times .9) = -12 \)
3. [Dorsal] \(w = 1 \):
 - \(1 + (30 \times 1) = -11 \)
 - \(1 + (30 \times 1) = -13 \)
4. [Labial] \(w = .9 \): [Labial] \(w = .9 \):
 - \(1 - (30 \times .8) = -21 \)
 - \(1 - (30 \times .9) = -24 \)

3.3 Calculating the penalty for constraint violation

Proposal:

Gradient Place feature activation defines the scale for a *scaling factor* in constraints sensitive to Place features.

- For each violation, the penalty for such constraints is \(w + (s \times a) \)
 - \(w \) = the basic constraint weight, assigned for an offending Place F
 - \(s \) = the scaling factor
 - \(a \) = the activation of \(F \) in Place

- \(w \) and \(s \) are both constraint-specific

Calculation of additive contribution of constraint-specific scaling after Hsu & Jesney (2016, 2017a, 2018), Hsu (to appear)

<table>
<thead>
<tr>
<th>Toy example</th>
<th>Con1(Place)</th>
<th>Con2(Place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Coronal] (w = .8)</td>
<td>(w = 6, s = .5)</td>
<td>(w = 3, s = 10)</td>
</tr>
<tr>
<td>[Labial] (w = .9)</td>
<td>(w = 6, s = .9)</td>
<td>(w = 3, s = 10)</td>
</tr>
<tr>
<td>[Dorsal] (w = 1)</td>
<td>(w = 6, s = 1)</td>
<td>(w = 3, s = 10)</td>
</tr>
<tr>
<td>[Labial] (w = .9): [Labial] (w = .9)</td>
<td>(w = 6, s = .9)</td>
<td>(w = 3, s = 10)</td>
</tr>
</tbody>
</table>

3.4 Analysis: Illustration

Differentiating coronals

For two Place F-sensitive constraints, Con1 and Con2

- For activation \(a_{\text{Dor}} = 1.0, a_{\text{Lab}} = .9, a_{\text{Cor}} = .8 \)
 - If \(\text{Con1} \): \(w = 18, s = 10 \)
 - \(\text{Con2} \): \(w = 1, s = 30 \)

- For [Dor], [Lab]: \(\mu(\text{Con1}) > \mu(\text{Con2}) \)
 - i.e. Con2 is enforced at the expense of Con1

- For [Cor]: \(\mu(\text{Con2}) > \mu(\text{Con1}) \)
 - i.e. Con1 is enforced at the expense of Con2

Type 1 – Markedness: Sri Lankan Portuguese Creole

- Coronals exempted as target of place assimilation
 - Max-Io(Place): \(w = 18, s = 10 \)
 - COdaCONd: \(w = 1, s = 30 \)

- For [Cor]: Max-Io(Place) (F constraint) is enforced
 - Max-Io-Onset(Place) is consistently enforced regardless of Place F in onset or coda
 - Assume \(w = 25, s = 50 \); higher than Max-Io(Place)
 - For ease of exposition, Max-Io-Onset(Place) is henceforth not shown in tableaux and only candidates that obey it are considered.
3.4 Analysis: Illustration

Sri Lankan Portuguese Creole

- Nasal place assimilation targets non-coronal /m/ (i) but not /n/ (ii).
- Candidates are schematic for illustration.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>CodaCond</th>
<th>Max-IO[Place]</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. /Vm,pV/</td>
<td>a. (\rightarrow [Vn,kV]) assim. in coda</td>
<td>(w = 18, s = 10)</td>
<td>(w = 18, s = 10)</td>
<td>(-1)</td>
</tr>
<tr>
<td>b. [Vm,kV] faithful</td>
<td>(s = -1(1 + 30 * .8))</td>
<td>(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. [Vn,kV] neutralization to cor</td>
<td>(s = -1(18 + 10 * .8))</td>
<td>(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. /Vn,pV/</td>
<td>a. [Vm,pV] assim. in coda</td>
<td>(w = 1), (s = 30)</td>
<td>(w = 1, s = 30)</td>
<td>(-1)</td>
</tr>
<tr>
<td>b. [Vn,pV] faithful</td>
<td>(s = -1(1 + 30 * .8))</td>
<td>(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Gradient activation of Fs in output allows coronal [n] (iiib), } H = -25)</td>
<td>to incur a lesser violation of markedness ((\text{CodaCond})) than labial [m] (iiib), (H = -28).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Analysis: Illustration

Differentiating coronals in place assimilation

Type 2 – Faithfulness: Catalan

- Coronas alone are target of place assimilation

 \(\text{CodaCond: } w = 18, s = 10 \)

 \(\text{Max-IO[Place]: } w = 1, s = 30 \)

For [Dor], [Lab]: \(\text{Max-IO[Place]} \) (F constraint) is enforced

For [Cor]: \(\text{CodaCond} \) (M constraint) is enforced

The w and s values for these two constraints are reversed from that for Sri Lankan Portuguese Creole

3.4 Analysis: Illustration

Catalan

- Nasal place assimilation does not target non-coronal /n/ (iii).

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>CodaCond</th>
<th>Max-IO[Place]</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii. /Vn,pV/</td>
<td>a. [Vm,pV] assim. in coda</td>
<td>(w = 18, s = 10)</td>
<td>(w = 18, s = 10)</td>
<td>(-1)</td>
</tr>
<tr>
<td>b. [Vn,pV] faithful</td>
<td>(s = -1(18 + 10 * .8))</td>
<td>(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. [Vn,pV] neutralization to cor</td>
<td>(s = -1(1 + 30 * .8))</td>
<td>(-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Gradient activation of Fs in input allows coronal /n/ to incur a lesser violation of markedness in place assimilation ((ii), } H = -25 \) than labial /m/ ((ii), \(H = -28 \)). |

3.5 Analysis: Summary

Key points

- Place features are represented with scaled activity:
 - Dorsal\(_2\) > Labial\(_3\) > Coronal\(_0\)
- Constraints pertaining to Place refer to the entire class of Place features rather than Place-feature specific constraints.
- The potential for special behavior of coronals with markedness and faithfulness derives from
 a) The scale of activity for Place Fs
 b) Lesser violation of markedness and faithfulness
- Scaling factors that operate on the Place F activity scale
 a) Constraint-specific w and s values establish the priority assigned to each Place-referring constraint and the impact of the activity scale
4. Discussion: Scalar Activity

4.1 Scales and scaling factors

Where do scales for scaling factors come from?

- Hypothesis: They come from GSRs; for example
 - Place features: Dorsal \textsubscript{1} > Labial \textsubscript{1} > Coronal \textsubscript{1}
- Loanword nativization: Periphery \textsubscript{1} > Intermediate \textsubscript{1} > Core \textsubscript{1}
 - Core stratum has potential to show greater range of marked structures (lesser violation of M) or a smaller range of marked structures (lesser violation of F) in comparison to periphery. Modeled with scaling factors (Hsu & Jesney 1997a, b, 2018; foundational work on lexical strata from Ito & Mester 1995, 1999, 2001).
- Prosodic Boundary Strength: Utterance \textsubscript{a} > PPh \textsubscript{a} > Pwd \textsubscript{a} > Syllable \textsubscript{a}
 - Smaller PCats have potential to resist repair (lesser violation of M) or undergo repair (lesser violation of F) in comparison to larger PCats. Modeled with scaling factors (Hsu & Jesney 2016).
 - Scales derived from GSRs could also provide a basis for values.
 - Spacing could potentially be uneven (Pater 2016), e.g. Dorsal \textsubscript{1} > Labial \textsubscript{1} > Coronal \textsubscript{a}
 - Future work could examine whether other scales for scaling factors are amenable to treatment in terms of GSRs.

4.2 Experimental evidence

Weaker activity for coronals

- This account posits that [Coronal] has lower activity than non-coronal Place Fs.
- Experimental evidence points to a less-specific or sparser representation for coronals
 - Mismatch negativities
 - Speech errors

4.2 Experimental evidence

Speech errors

- Speech error studies suggest that coronals lack structure that is present in non-coronal Place Fs.
- Nevertheless, coronals do interact with each other in errors, but to a lesser extent. This could be consistent with an understanding of [Coronal] as active but to a lesser degree than other Place Fs.
 - Source of speech errors: Naturalistic corpus and errors elicited in a laboratory setting.
 - Consonants with greater similarity are expected to show higher participation in errors.
 (Stemberger 1991)

4.3 Possible origins – lesser activation of coronals

Articulation

- Possibly the nature of tongue muscle activation for coronals is such that [Coronal] receives less activation than [Labial] and [Dorsal] in the phonetics-phonology mapping (in the model proposed by Jang 2019).
- Potentially related to the gestures and transition cues for coronals being more rapid than those for non-coronals (Jun 2004).
 - Results in coronals being more confusable and more vulnerable to being obscured by neighboring consonants.
- Transmission noise
 - In learning simulations with transmission noise, more mismatches occurred for coronals than non-coronals, making coronals the least reliable Place F (Seinhorst & Hamann 2017, Seinhorst 2019).
 - Potential for [Coronal] to receive activation overflow from non-coronal Place Fs might contribute to a representation of coronals with a less-specific underlying neural code and less intrinsic activation for [Coronal].

Exploring these possibilities remains for future research

(On sources of scalar activity/strength, see also Inkelas 2015, Faust & Smolensky 2017a, b)
5. Alternatives

5.1 Underspecification

Coronal underspecification
- However, Place Fs show multiple steps on the markedness/faultiness scale.
 - [Coronal] is lower on the scale with respect to [Dorsal] and [Labial] (de Lacy 2006)
 - [Labial] is lower on the scale with respect to [Dorsal] (de Lacy 2006)
- Both scalar divisions are evidenced in Korean place assimilation
- Underspecification does not predict scales beyond a single division; with respect to Place, it predicts special behavior of a single feature. (Yet an enriched hierarchical segmental representation could allow for underspecification of different nodes, such as a terminal Place F versus the Place Class node.)

5.2 Mirrored constraint sets

Place-feature specific markedness and faithfulness constraints
- Mirrored sets of M and F constraints specified for subsets of Place Fs (derived from multi-valued [Place]) have been proposed for special coronal behavior (de Lacy 2002, 2006).

<table>
<thead>
<tr>
<th>Markedness constraints</th>
<th>Faithfulness constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(Dor)</td>
<td>IDENT-IO(Dor)</td>
</tr>
<tr>
<td>*(Dor, Lab)</td>
<td>IDENT-IO(Dor, Lab)</td>
</tr>
<tr>
<td>*(Dor, Lab, Cor)</td>
<td>IDENT-IO(Dor, Lab, Cor)</td>
</tr>
</tbody>
</table>

- Anti-heterorganic constraints drive place assimilation (de Lacy 2006: 183)
 *XY: Assign a violation for every pair of adjacent segments such that
 (i) the first segment has a feature f_1 from set X and
 (ii) the second segment has a feature f_2 from set Y and
 (iii) $f_1 \neq f_2$

Exx. *{Dor, Lab} {Dor, Lab, Cor} *(Dor, Lab, Cor)

5.2 Mirrored constraint sets

Sri Lankan Portuguese Creole
- Nasal place assimilation targets non-coronal /m/ (i) but not /n/ (ii).
- Driven by Place-feature specific markedness:
 - M constraint that penalizes only clusters where the first C is non-coronal

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>*(Dor, Lab)</th>
<th>*(Dor, Lab, Cor)</th>
<th>IDENT-IO(Dor, Lab, Cor)</th>
<th>*(Dor, Lab, Cor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. /Vm/p/</td>
<td>a. (VgkV)</td>
<td>*(Dor, Lab)</td>
<td>*(Dor, Lab, Cor)</td>
<td>IDENT-IO(Dor, Lab, Cor)</td>
<td>*(Dor, Lab, Cor)</td>
</tr>
<tr>
<td></td>
<td>(VgkV) faithful</td>
<td>(\text{assim. in coda})</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. (VgkV) faithful</td>
<td>(\text{assim. in coda})</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. /Vmp/p/</td>
<td>a. (VnpV)</td>
<td>*(Dor, Lab)</td>
<td>*(Dor, Lab, Cor)</td>
<td>IDENT-IO(Dor, Lab, Cor)</td>
<td>*(Dor, Lab, Cor)</td>
</tr>
<tr>
<td></td>
<td>(VnpV) faithful</td>
<td>(\text{assim. in coda})</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Mirrored constraint sets

Catalan
- Nasal place assimilation targets /n/ (i) but not non-coronal /m/ (ii).
- Driven by **Place-feature specific faithfulness**:
 - F constraint that enforces identity for non-coronal Cs only.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>I\textsubscript{ON,I-IO} (Dor, Lab)</th>
<th>*{Dor, Lab, Cor} (Dor, Lab, Cor)</th>
<th>I\textsubscript{ON,I-IO} (Dor, Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. /\textipa{Vnp}/</td>
<td>a. \textipa{[VmpV]} assim. in coda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. \textipa{[VnpV]} faithful</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. /\textipa{Vm}/</td>
<td>a. \textipa{[VmpV]} assimilation</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>b. \textipa{[VmV]} faithful</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

5.2 Mirrored constraint sets

GSRs
- Gradient activation situates the scalar relationship between Place Fs as activity in the representation.
 - Predicts that greater markedness and preservation go hand in hand typologically.
 (see Faust 2017, 2019, Zimmermann 2018, 2019 for related discussion)
 - Eliminates replication of the scale in the M and F constraint sets.
 - In this approach, the simplified constraint set requires constraint-specific scaling factors.

6. Conclusion

Take-aways
- GSRs implemented as a scale of activity over Place features sheds new light on a typological duality:
 - Place Fs that exhibit lesser markedness also exhibit lesser faithfulness
- Provides a promising avenue for phonological analysis of scalar phenomena involving place of articulation.
- Lends support to the idea that gradient activity is possible in both input and output.
- Offsets the need for place-feature specific M and F constraints.
- Interaction among Place-sensitive constraints supports using gradient activity to define the scale for constraint scaling factors
- Suggests a possible more general basis for how gradient activity figures into calculation of constraint violation.

6. Conclusion: Future Research

Many open issues remain (more than can be listed here)
- Deeper examination of typological predictions, such as
 - Implications for inventories
 - Treatment of conflation involving Place of Articulation (de Lacy 2006)
 - OCP for Place that is enforced for any co-occurring non-coronals but for coronals only when additional features are shared (e.g. Arabic: McCarthy 1988, Yip 1989, Padgett 1995c, Suzuki 1998; Javanese: Mester 1986, Yip 1989)
- Are all scaling factors calculated in the same fashion?
- How does this approach interact with learning and predictions about the frequency of different grammatical patterns? (e.g. O’Hara 2019, in prep.)