ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATIONS IN THIN DOMAINS

I. MOISE1,2, R. TEMAM1,2, AND M. ZIANE1,3

ABSTRACT. In this article we derive an asymptotic expansion of the strong solution u^ϵ of the Navier-Stokes equations in thin domains $\Omega_\epsilon = \omega \times (0, \epsilon)$ when ϵ is small. In the case of Dirichlet-periodic boundary conditions, the global solution u^ϵ is asymptotically approximated by the solution of the associated stationary Stokes problem. In the case of purely periodic boundary conditions, the global solution u^ϵ is approximated by the sum between the solution of a 2 dimensional–3 components Navier-Stokes problem and the solution of a Stokes-type problem. We also give a slight improvement of the global existence result obtained in [16, 17] and [22] in the case of purely periodic boundary conditions.

Dedicated to O.A. Ladyzhenskaya.

0. INTRODUCTION

We are interested in this article with the Navier-Stokes equations of viscous incompressible fluids in three dimensional thin domains. Let Ω_ϵ be the thin domain $\Omega_\epsilon = \omega \times (0, \epsilon)$, where ω is a suitable domain in \mathbb{R}^2 and $0 < \epsilon < 1$.

Our aim is to derive an asymptotic expansion of the strong solution u^ϵ of the Navier-Stokes equations in the thin domain Ω_ϵ when ϵ is small, which is valid uniformly in time. This study should give a better understanding of the global existence results in thin domains obtained previously; see [15, 16, 17] and [22, 23]. We consider in this work two types of boundary conditions: the Dirichlet-periodic boundary condition and the purely periodic condition. For the first type of boundary condition we derive an asymptotic expansion of the solution u^ϵ in terms of the solution of the associated Stokes problem. More precisely, we prove that the solution can be written, for ϵ small, as:

$$u^\epsilon(t) = u^\epsilon + \bar{u}^\epsilon \exp \left(\frac{-\nu t}{2\epsilon^2} \right), \quad \forall t > 0,$$

Date: December 17, 1997.

1991 Mathematics Subject Classification. 34C35, 35Q30, 76D05.

Key words and phrases. Navier Stokes Equations, Global existence of strong solutions, Asymptotic Analysis.

1 The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, Indiana 47405, USA.
2 Laboratoire d’Analyse Numérique, Université de Paris-Sud, 91405 Orsay, France.
3 Department of Mathematics and Center for Turbulence Research, Stanford University, Stanford, California 94309, USA.
where \(w^\epsilon \) is the solution of the associated Stokes problem and \(\bar{u}^\epsilon \) is a bounded (in time) function depending on the initial data. We also give a new proof and an improvement of the global existence result obtained in [22].

For the purely periodic boundary condition case, the asymptotic expansion involves the solution of the 2D-Navier-Stokes equations and a solution of an auxiliary Stokes problem with exterior force

\[
f^\epsilon = -\frac{1}{\epsilon} \int_0^\epsilon f(x_1, x_2, x_3) dx_3.
\]

More precisely, we prove that the solution can be written, for \(\epsilon \) small, as:

\[
u = \frac{\epsilon^2}{2} \int_0^\epsilon f(x_1, x_2, x_3) dx_3.
\]

where \(w^\epsilon \) is the solution of the auxiliary Stokes problem, \(u_{2D}^\epsilon(t) \) is the solution of the 2D-Navier-Stokes equations with three components and \(\bar{u}^\epsilon \) is a bounded (in time) function depending on the initial data. The nondimensionalized form of the Navier-Stokes equations (NSE) reads

\[
\begin{align*}
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p &= f & \text{in } \Omega \times (0, \infty), \\
\text{div } u &= 0 & \text{in } \Omega \times (0, \infty), \\
u = u^0 &= u_0 & \text{in } \Omega.
\end{align*}
\]

Here \(u = (u_1, u_2, u_3) \) is the velocity vector at point \(x \) and time \(t \), and \(p = p(x, t) \) is the pressure.

Equations (0.1)-(0.3) are supplemented with boundary conditions. We denote the boundary of \(\Omega \) by \(\partial \Omega = \Gamma_t \cup \Gamma_b \cup \Gamma_l \), where

\[
\Gamma_t = \omega \times \{ \epsilon \}, \quad \Gamma_b = \omega \times \{0\}, \quad \text{and} \quad \Gamma_l = \partial \omega \times (0, \epsilon).
\]

The boundary conditions of interest to us are the mixed Dirichlet-periodic condition, i.e. the Dirichlet boundary condition on \(\Gamma_t \cup \Gamma_b \) and the periodic condition on \(\Gamma_l \), and the purely periodic boundary condition on \(\partial \Omega \), in which case \(\omega = (0, l_1) \times (0, l_2) \) and \(u \) and \(p \) are \(\Omega \)-periodic, and, for the data

\[
\int_{\Omega} u_0 dx = \int_{\Omega} f dx = 0.
\]

We denote by \(H^s(\Omega) \), \(s \in \mathbb{R} \), the Sobolev space constructed on \(L^2(\Omega) \) and \(L^2(\Omega) = (L^2(\Omega))^3 \), \(H^s(\Omega) = (H^s(\Omega))^3 \). We also denote by \(H^0_0(\Omega) \) the closure in the space \(H^s(\Omega) \) of \(C_0^\infty(\Omega) \), the space of infinitely differentiable functions with compact support in \(\Omega \).

We need also the following spaces:

\[
\mathbb{H}^m(\Omega) = \left\{ u \in \mathbb{H}^m(\Omega); \int_{\Omega} u dx = 0 \right\}, \quad (0.5)
\]
and the spaces $H_{\text{per}}^m(\Omega_\epsilon)$, which are defined with the help of Fourier series; we write

$$u(x) = \sum_{k \in \mathbb{Z}^3} u_k \exp \left(2i k \cdot \frac{x}{L} \right), \quad (0.6)$$

with $\bar{u}_k = u_{-k}$ (so that u is real valued) and

$$\frac{x}{L} = \left(\frac{x_1}{l_1}, \frac{x_2}{l_2}, \frac{x_3}{\epsilon}\right); \quad \frac{k}{L} = k_1 \frac{x_1}{l_1} + k_2 \frac{x_2}{l_2} + k_3 \frac{x_3}{\epsilon}.$$

Then, u is in $L^2(\Omega_\epsilon)$ if and only if

$$|u|^2_{L^2(\Omega_\epsilon)} = \epsilon l_1 l_2 \sum_{k \in \mathbb{Z}^3} |u_k|^2 < \infty,$$

and u is said to be in $H_{\text{per}}^s(\Omega_\epsilon)$, $s \in \mathbb{R}_+$, if and only if

$$\sum_{k \in \mathbb{Z}^3} (1 + |k|^2)^s |u_k|^2 < \infty.$$

For the mathematical setting of the Navier-Stokes equations, we classically consider a Hilbert space H_ϵ, which is a closed subspace of $L^2(\Omega_\epsilon)$. Depending on the boundary condition, we define the following:

$$H_P = H^p_\epsilon = \left\{ u \in \mathbb{L}^2(\Omega_\epsilon); \; \text{div} \; u = 0; \; \int_{\Omega_\epsilon} u \, dx = 0, \right. \quad \left. u_j \text{ is periodic in the direction } x_j, \; j = 1, 2, 3 \right\}$$

in the case of the purely periodic boundary condition, and

$$H_{DP} = H^{\epsilon}_{DP} = \left\{ u \in \mathbb{L}^2(\Omega_\epsilon); \; \text{div} \; u = 0; \; u_3 = 0 \; \text{on} \; \Gamma_t \cup \Gamma_b, \; \int_{\Omega_\epsilon} u_\alpha \, dx = 0, \quad \right. \quad \left. \text{and } u_\alpha \text{ is periodic in the direction } x_\alpha, \; \alpha = 1, 2 \right\},$$

in the case of the mixed Dirichlet-Periodic boundary condition.

Another useful space is V_ϵ, a closed subspace of $H^1(\Omega_\epsilon)$, which is defined as follows depending on the boundary condition:

$$V_P = V^\epsilon_P = \left\{ u \in \mathbb{H}^1_{\text{per}}(\Omega_\epsilon); \; \text{div} \; u = 0 \right\},$$

$$V_{DP} = V^\epsilon_{DP} = \left\{ u \in \mathbb{H}^1(\Omega_\epsilon) \cap H_{DP}; \; u = 0 \; \text{on} \; \Gamma_t \cup \Gamma_b, \; \right. \quad \left. \text{and } u \text{ is periodic in the directions } x_1 \text{ and } x_2 \right\},$$
The scalar product on H_ϵ is denoted by $(\cdot, \cdot)_\epsilon$, the one on V_ϵ is denoted by $(\cdot, \cdot)_\epsilon$, and the associated norms are denoted by $|\cdot|_\epsilon$ and $||\cdot||_\epsilon$ respectively. We denote by A_ϵ the Stokes operator defined as an isomorphism from V_ϵ onto the dual V_ϵ' of V_ϵ, by
\[
< A_\epsilon u, v >_{V'_\epsilon, V_\epsilon} = ((u, v))_\epsilon, \quad \forall v \in V_\epsilon.
\]
(0.7)
The operator A_ϵ is extended to H_ϵ as a linear unbounded operator. The domain of A_ϵ in H_ϵ is denoted by $D(A_\epsilon)$. The space $D(A_\epsilon)$ can be fully characterized using the regularity theory. We refer for the study of the regularity of the Stokes operator to [2], [10], [12], [18] [6], [19, 20] and [24].

Let b_ϵ be the continuous trilinear form on V_ϵ defined by:
\[
b_\epsilon(u, v, w) = \sum_{i,j=1}^{3} \int_{\Omega_\epsilon} u_i \frac{\partial v}{\partial x_i} w_j dx, \quad u, v, w \in V_\epsilon.
\]
(0.8)
We denote by B_ϵ the bilinear form on V_ϵ defined for $(u, v) \in V_\epsilon \times V_\epsilon$ by
\[
< B_\epsilon(u, v), w >_{V'_\epsilon, V_\epsilon} = b_\epsilon(u, v, w), \quad \forall w \in V_\epsilon,
\]
and we set
\[
B_\epsilon(u) = B_\epsilon(u, u).
\]
We assume in this article that the data ν, u_0 and f satisfy
\[
\nu > 0, \quad u_0 \in H_\epsilon \text{ (or } V_\epsilon), \quad f \in L^\infty(0, +\infty; H_\epsilon).
\]
(0.9)
The system of equations (0.1)–(0.3), with one of the boundary conditions listed above, can be written as a differential equation in V_ϵ':
\[
\begin{cases}
 u' + \nu A_\epsilon u + B_\epsilon(u) = f, \\
 u(0) = u_0,
\end{cases}
\]
(0.10)
where u' denotes the derivative (in the distribution sense) of the function u with respect to time. We recall now the classical result of existence of solutions to problem (0.10). See e.g. [4], [9, 10], [14], [19, 20].

Theorem 0.1. For $u_0 \in H_\epsilon$, there exists a solution (not necessarily unique) $u = u_\epsilon$ to problem (0.10) such that:
\[
uu_\epsilon \in L^2(0, T; V_\epsilon) \cap L^\infty(0, T; H_\epsilon), \quad \forall T > 0.
\]
(0.11)
Moreover, if $u_0 \in V_\epsilon$, then there exists $T_\epsilon = T_\epsilon(\Omega_\epsilon, \nu, u_0, f) > 0$, and a unique solution u_ϵ to problem (0.10) such that:
\[
uu_\epsilon \in L^2(0, T_\epsilon; D(A_\epsilon)) \cap L^\infty(0, T_\epsilon; V_\epsilon).
\]
(0.12)
The solution u_ϵ which satisfies (0.12) is called the strong solution of (0.10)
1. **Functional inequalities in thin domains**

In this section we present some functional inequalities in thin domains. We will only state the inequalities without proofs and we refer the reader to [22] for a detailed discussion. The functional inequalities considered here are Sobolev-type inequalities and the Cattabriga-Solonnikov regularity inequality for the Stokes operator. We should mention that in the classical Sobolev inequalities, the constants are dilation invariant but do, however, depend on the shape of the domain, i.e., in our case the thickness ϵ. The significance of the inequalities given below lies in the exact dependence of the constants on ϵ.

First we introduce some notations. For a scalar function $\varphi \in L^2(\Omega_\epsilon)$, we define its average in the thin direction as follows:

$$(M_\epsilon \varphi)(x_1, x_2) = \frac{1}{\epsilon} \int_0^\epsilon \varphi(x_1, x_2, s) ds,$$

and we set

$$N_\epsilon \varphi = \varphi - M_\epsilon \varphi,$$

i.e. $M_\epsilon + N_\epsilon = I_{L^2(\Omega_\epsilon)}$,

where $I_{L^2(\Omega_\epsilon)}$ is the identity operator on $L^2(\Omega_\epsilon)$. For $u = (u_1, u_2, u_3) \in L^2(\Omega_\epsilon)$, we write

$$M_\epsilon u = (M_\epsilon u_1, M_\epsilon u_2, M_\epsilon u_3)$$

and we set

$$N_\epsilon u = u - M_\epsilon u,$$

i.e. $M_\epsilon + N_\epsilon = I_{L^2(\Omega_\epsilon)}$.

- The Poincaré inequalities:

 $$|u|_{L^2(\Omega_\epsilon)} \leq \epsilon \left| \frac{\partial u}{\partial x_3} \right|_{L^2(\Omega_\epsilon)}, \forall u \in V^\epsilon_{DP},$$

 $$|u|_{L^2(\Omega_\epsilon)} \leq \epsilon^2 |A_\epsilon u|, \forall u \in D(A_\epsilon DP),$$

 $$|N_\epsilon u|_{L^2(\Omega_\epsilon)} \leq \epsilon \left| \frac{\partial N_\epsilon u}{\partial x_3} \right|_{L^2(\Omega_\epsilon)}, \forall u \in V^\epsilon_P,$$

 $$|N_\epsilon u|_{L^2(\Omega_\epsilon)} \leq \epsilon^2 |A_\epsilon N_\epsilon u|, \forall u \in D(A_\epsilon P).$$

- Ladyzhenskaya’s inequalities: There exists a positive constant c_0, independent of ϵ, such that

 $$|u|_{L^q(\Omega_\epsilon)}^2 \leq c_0 \|u\|_{L^2(\Omega_\epsilon)}^2, \forall u \in V^\epsilon_{DP},$$

 $$|N_\epsilon u|_{L^q(\Omega_\epsilon)}^2 \leq c_0 \|N_\epsilon u\|_{L^2(\Omega_\epsilon)}^2, \forall u \in V^\epsilon_P.$$

For $2 \leq q \leq 6$, there exists a positive constant $c(q)$, independent of ϵ, such that

$$|u|_{L^q(\Omega_\epsilon)}^2 \leq c(q) \epsilon^{\frac{6-q}{q}} \|u\|_{L^2(\Omega_\epsilon)}^2, \forall u \in V^\epsilon_{DP},$$

$$|N_\epsilon u|_{L^q(\Omega_\epsilon)}^2 \leq c(q) \epsilon^{\frac{6-q}{q}} \|N_\epsilon u\|_{L^2(\Omega_\epsilon)}^2, \forall u \in V^\epsilon_P.$$
• Agmon’s inequality: There exists a positive constant $c_0(\omega)$, independent of ϵ, such that:

$$
|u|_{L^\infty(\Omega_\epsilon)} \leq c_0|u|^{\frac{1}{4}}_{L^2(\Omega_\epsilon)} \left(\sum_{i,j=1}^{3} \left| \frac{\partial^2 u}{\partial x_i \partial x_j} \right|_{L^2(\Omega_\epsilon)} \right)^{\frac{3}{4}}, \quad \forall u \in D(\Lambda_{\epsilon DP}).
$$

(1.10)

$$
|N_\epsilon u|_{L^\infty(\Omega_\epsilon)} \leq c_0|N_\epsilon u|^{\frac{1}{4}}_{L^2(\Omega_\epsilon)} \left(\sum_{i,j=1}^{3} \left| \frac{\partial^2 N_\epsilon u}{\partial x_i \partial x_j} \right|_{L^2(\Omega_\epsilon)} \right)^{\frac{3}{4}}, \quad \forall u \in D(\Lambda_{\epsilon P}).
$$

(1.11)

• Cattabriga-Solonnikov inequality: There exists a positive constant $c_0(\omega)$, independent of ϵ, such that

$$
\sum_{i,j=1}^{3} \left| \frac{\partial^2 u}{\partial x_i \partial x_j} \right|_{L^2(\Omega_\epsilon)}^2 \leq c_0 \left| A_{\epsilon} u \right|_{L^2(\Omega_\epsilon)}^2, \quad \forall u \in D(\Lambda_\epsilon).
$$

2. The Dirichlet-Periodic Boundary Condition

In this section we derive an asymptotic expansion of the solution u_ϵ of the Navier-Stokes equations in the thin domains Ω_ϵ, when ϵ goes to zero. The boundary condition under consideration is the mixed Dirichlet-periodic condition. It is shown in [22] that the H^1-norm of u_ϵ converges to zero when ϵ goes to zero. Hence, one expects, in this case, a slow motion of the fluid. Our purpose in this section is to establish rigorously that the fluid has slow motion and to find the leading term. For this purpose, we first compare the solution of the nonlinear stationary problem to the solution of the Stokes problem (the linear problem). Then, we compare the solution of the evolutionary problem to the solution of the nonlinear stationary problem. This yields an asymptotic expression of the solution u_ϵ when ϵ is small.

2.1. Comparison between the nonlinear stationary problem and the Stokes problem

Consider the steady state Navier-Stokes equations in the thin domain Ω_ϵ:

$$
- \nu \Delta v^\epsilon + (v^\epsilon \cdot \nabla) v^\epsilon + \nabla q^\epsilon = f^\epsilon \quad \text{in } \Omega_\epsilon, \quad (2.1)
$$

$$
\text{div } v^\epsilon = 0 \quad \text{in } \Omega_\epsilon, \quad (2.2)
$$

$$
v^\epsilon = 0 \quad \text{on } \omega \times \{0, \epsilon\}, \quad (2.3)
$$

$$
v^\epsilon \text{ is periodic in the directions } x_1 \text{ and } x_2. \quad (2.4)
$$

First, note using (1.4), that

$$
\nu \left| A_{\epsilon}^{\frac{1}{2}} v^\epsilon \right|_{\epsilon}^2 = (f^\epsilon, v^\epsilon) \leq |f^\epsilon|_\epsilon |v^\epsilon|_\epsilon \leq \epsilon |f^\epsilon|_\epsilon \left| A_{\epsilon}^{\frac{1}{2}} v^\epsilon \right|_{\epsilon}. \quad (2.5)
$$

Hence

$$
\left| A_{\epsilon}^{\frac{1}{2}} v^\epsilon \right|_{\epsilon}^2 \leq \frac{\epsilon^2}{\nu^2} |f^\epsilon|_{\epsilon}^2. \quad (2.6)
$$
Let w^ϵ be the unique solution of the Stokes problem:

\begin{align}
- \nu \Delta w^\epsilon + \nabla q^\epsilon &= f^\epsilon & \text{in } \Omega_\epsilon, \\
\text{div } w^\epsilon &= 0 & \text{in } \Omega_\epsilon, \\
w^\epsilon &= 0 & \text{on } \omega \times \{0, \epsilon\}, \\
w^\epsilon & \text{ is periodic in the directions } x_1 \text{ and } x_2.
\end{align}

(2.7) (2.8) (2.9) (2.10)

We note that

$$\left| A^\frac{1}{\epsilon} w^\epsilon \right|_\epsilon^2 \leq \frac{\epsilon^2}{\nu^2} |f^\epsilon|_\epsilon^2.$$

(2.11)

Now we write the equations satisfied by $V^\epsilon = v^\epsilon - w^\epsilon$ and $Q^\epsilon = q^\epsilon - \bar{q}^\epsilon$. We have

\begin{align}
- \nu \Delta V^\epsilon + (V^\epsilon \cdot \nabla)V^\epsilon + \nabla Q^\epsilon &= -(w^\epsilon \cdot \nabla)V^\epsilon - (V^\epsilon \cdot \nabla)w^\epsilon - (w^\epsilon \cdot \nabla)w^\epsilon & \text{in } \Omega_\epsilon, \\
\text{div } V^\epsilon &= 0 & \text{in } \Omega_\epsilon,
\end{align}

(2.12)

and the boundary condition

\begin{align}
V^\epsilon &= 0 & \text{on } \omega \times \{0, \epsilon\}, \\
V^\epsilon & \text{ is periodic in the directions } x_1 \text{ and } x_2.
\end{align}

(2.13)

We multiply (2.12) with V^ϵ, integrate over Ω_ϵ and obtain

$$\nu |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 = - \int_{\Omega_\epsilon} (V^\epsilon \cdot \nabla)w^\epsilon \cdot V^\epsilon dx - \int_{\Omega_\epsilon} (w^\epsilon \cdot \nabla)w^\epsilon \cdot V^\epsilon dx,$$

(2.14)

and with

$$\left| \int_{\Omega_\epsilon} (V^\epsilon \cdot \nabla)w^\epsilon \cdot V^\epsilon dx \right| \leq |V^\epsilon|_{L^4(\Omega_\epsilon)}^2 |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon \leq c_0 \epsilon^{\frac{1}{2}} |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon$$

(2.15)

and

$$\left| \int_{\Omega_\epsilon} (w^\epsilon \cdot \nabla)w^\epsilon \cdot V^\epsilon dx \right| \leq |w^\epsilon|_{L^2(\Omega_\epsilon)} |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon |V^\epsilon|_{L^2(\Omega_\epsilon)}$$

(2.16)

$$\leq c_0 \epsilon^{\frac{1}{2}} |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon^2 |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon$$

we have

$$\nu |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 \leq c_0 \epsilon^{\frac{1}{2}} |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon + c_0 \epsilon^{\frac{1}{2}} |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon^2 |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon$$

(2.17)

\begin{align}
& \leq c_0 \epsilon^{\frac{1}{2}} |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon + \frac{\nu}{2} |A^\frac{1}{\epsilon} V^\epsilon|_\epsilon^2 + \frac{c_0^2 \epsilon |A^\frac{1}{\epsilon} w^\epsilon|_\epsilon^4}{2\nu}.
\end{align}

Let R_0 be a positive function defined on \mathbb{R}_+ and satisfying

$$\lim_{\epsilon \to 0} \epsilon R_0^2(\epsilon) = 0$$

(2.18)

and choose ϵ_1 such that, for $0 < \epsilon \leq \epsilon_1$

$$c_0 \epsilon^{1/2} R_0(\epsilon) \leq \frac{\nu}{16}$$

(2.19)
Assume also (see (2.26)) that
\[
\frac{\epsilon^2}{\nu} |f'|_\epsilon^2 \leq R_0^2(\epsilon).
\]
We then infer from (2.11) and (2.17) that
\[
|A_\epsilon^\frac{1}{2} v'|_\epsilon^2 \leq \frac{2\epsilon^2}{\nu^2} \epsilon R_0^2(\epsilon) |A_\epsilon^\frac{1}{2} w'|_\epsilon^2.
\]

Thanks to (2.18) and (2.21), \(|A_\epsilon^\frac{1}{2} v'|_\epsilon^2 \) is negligible compared to \(|A_\epsilon^\frac{1}{2} w'|_\epsilon^2 \) for \(\epsilon \) small. We have proved the

Lemma 2.1. Let \(w^\epsilon \) (resp. \(v^\epsilon \)) be the solution of the Stokes problem (resp. the nonlinear stationary Navier-Stokes equations) in the thin domain \(\Omega_\epsilon \). Assume that (2.18)-(2.20) hold. Then we can write \(v^\epsilon = w^\epsilon + V^\epsilon \), with \(V^\epsilon \) small compared to \(w^\epsilon \), i.e.,
\[
\lim_{\epsilon \to 0} \frac{|A_\epsilon^\frac{1}{2} v'|_\epsilon^2}{|A_\epsilon^\frac{1}{2} w'|_\epsilon^2} = 0.
\]

2.2. **Comparison between the evolutionary and the stationary problems**

In this subsection we prove the global existence of the strong solution \(u^\epsilon(t) \) for \(\epsilon \) small and show that up to a time boundary layer near \(t = 0 \), the solution converges exponentially (in time) to a stationary solution of the Navier-Stokes equations. We also show that the convergence, when \(\epsilon \) goes to zero, is exponential as long as the initial data belongs to a ball in \(H^1 \) with radius less than \(\nu/(16c_0^2\epsilon^{1/2}) \) and center \(v^\epsilon \), a solution of the stationary problem.

Let \(U^\epsilon(t) = u^\epsilon(t) - v^\epsilon \). The equations satisfied by \(U^\epsilon(t) \) are:
\[
\begin{align*}
\frac{\partial U^\epsilon}{\partial t} - \nu \Delta U^\epsilon + (U^\epsilon \cdot \nabla) U^\epsilon + (U^\epsilon \cdot \nabla) v^\epsilon + (v^\epsilon \cdot \nabla) U^\epsilon + \nabla (p^\epsilon - q^\epsilon) &= 0 \quad \text{in} \ \Omega_\epsilon, \\
\text{div} \ U^\epsilon &= 0 \quad \text{in} \ \Omega_\epsilon, \\
U^\epsilon &= 0 \quad \text{on} \ \omega \times \{0, \epsilon\}, \\
U^\epsilon \quad &\text{is periodic in the directions} \ x_1 \text{ and } x_2,
\end{align*}
\]
and the initial condition reads
\[
U^\epsilon(0) = u_0^\epsilon - v^\epsilon.
\]

Using equations (2.23), we obtain
\[
\frac{1}{2} \frac{d}{dt} |A_\epsilon^\frac{1}{2} U^\epsilon(t)|_\epsilon^2 + \nu |A_\epsilon U^\epsilon(t)|_\epsilon^2 \leq |b(U^\epsilon, U^\epsilon, A_\epsilon U^\epsilon)| + |b(U^\epsilon, v^\epsilon, A_\epsilon U^\epsilon)| + |b(v^\epsilon, U^\epsilon, A_\epsilon U^\epsilon)|,
\]
and with inequalities (1.4), (1.8) and (1.10), we can write
\[
\frac{1}{2} \frac{d}{dt} |A_\epsilon^\frac{1}{2} U^\epsilon(t)|_\epsilon^2 + \frac{\nu}{2} |A_\epsilon U^\epsilon(t)|_\epsilon^2 \leq c_0 \epsilon^\frac{1}{2} |A_\epsilon^\frac{1}{2} U^\epsilon(t)|_\epsilon^2 |A_\epsilon U^\epsilon(t)|_\epsilon^2 + \epsilon c_0 \epsilon^\frac{1}{2} |A_\epsilon^\frac{1}{2} v^\epsilon|_\epsilon^2 |A_\epsilon U^\epsilon(t)|_\epsilon^2. \]
Hence,
\[
\frac{d}{dt}|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 + \left[\nu - 2c_0\varepsilon^\frac{1}{2}|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon - 2c_0\varepsilon^\frac{1}{2}|A_\varepsilon^\frac{1}{2}v^\varepsilon|_\varepsilon \right]|A_\varepsilon U^\varepsilon(t)|_\varepsilon^2 \leq 0.
\]
(2.27)

With \(R_0 \) defined as in (2.18), (2.19), we supplement (2.20) by assuming that
\[
|A_\varepsilon^\frac{1}{2}U^\varepsilon|_\varepsilon^2 + \frac{\varepsilon^2}{\nu^2}|f^\varepsilon|_\varepsilon^2 \leq R_0^2(\varepsilon).
\]
(2.28)

Then there exists \(T(\varepsilon) > 0 \) such that
\[
|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 \leq 4R_0^2(\varepsilon) \quad \text{for } 0 \leq t \leq T(\varepsilon).
\]
(2.29)

Let \([0,T(\varepsilon))\) denote the maximal interval on which (2.29) holds. Note that if \(T(\varepsilon) < \infty \), then
\[
|A_\varepsilon^\frac{1}{2}U^\varepsilon(T(\varepsilon))|_\varepsilon^2 = 4R_0^2(\varepsilon).
\]
(2.30)

We infer from (2.6) and (2.29) that
\[
\frac{d}{dt}|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 + \left[\nu - 16c_0\varepsilon^\frac{1}{2}R_0(\varepsilon) \right]|A_\varepsilon U^\varepsilon(t)|_\varepsilon^2 \leq 0, \quad 0 \leq t \leq T(\varepsilon).
\]
(2.31)

Using (2.19) we see that for \(0 < \varepsilon \leq \varepsilon_1 \) and \(0 \leq t \leq T(\varepsilon) \), we have by the Poincaré inequality
\[
\frac{d}{dt}|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 + \frac{\nu}{2\varepsilon^2}|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 \leq 0,
\]
(2.32)

which implies that \(|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 \) is decreasing as a function of \(t \) and therefore \(T(\varepsilon) = +\infty \), for \(\varepsilon \leq \varepsilon_1 \). Moreover, we have
\[
|A_\varepsilon^\frac{1}{2}U^\varepsilon(t)|_\varepsilon^2 \leq |A_\varepsilon^\frac{1}{2}U_0^\varepsilon|_\varepsilon^2 \exp\left(-\frac{\nu t}{2\varepsilon^2}\right) \leq |A_\varepsilon^\frac{1}{2}u_0^\varepsilon - A_\varepsilon^\frac{1}{2}v^\varepsilon|_\varepsilon^2 \exp\left(-\frac{\nu t}{2\varepsilon^2}\right).
\]
(2.33)

Finally, we write
\[
u^\varepsilon(t) = v^\varepsilon + U^\varepsilon(t) = \omega^\varepsilon + V^\varepsilon + U^\varepsilon(t),
\]
(2.34)

where \(w^\varepsilon \) is the unique solution of the Stokes problem with exterior force \(f^\varepsilon \), and \(V^\varepsilon \) and \(U^\varepsilon(t) \) satisfy
\[
||V^\varepsilon||^2_\varepsilon \leq 2\frac{c_0^2}{\nu^2}||w^\varepsilon||^4_\varepsilon \quad \text{and} \quad ||U^\varepsilon(t)||^2_\varepsilon \leq ||u_0^\varepsilon - w^\varepsilon - V^\varepsilon||^2_\varepsilon \exp\left(-\frac{\nu t}{2\varepsilon^2}\right), \quad t \geq 0
\]
(2.35)

\textbf{Theorem 2.2.} Let \(R_0(\varepsilon) \) be a monotone positive function satisfying \(\lim_{\varepsilon \to 0} \varepsilon R_0^2(\varepsilon) = 0 \). Assume that \(v^\varepsilon \) is a solution of the stationary Navier-Stokes equations with exterior force \(f^\varepsilon \) in the domain \(\Omega_\varepsilon \), and
\[
||u_0^\varepsilon - v^\varepsilon||^2_\varepsilon + \frac{\varepsilon^2}{\nu^2}|f^\varepsilon|_\varepsilon^2 \leq R_0^2(\varepsilon).
\]
(2.36)

Then there exists \(\varepsilon_1 = \varepsilon_1(\nu) \) such that for \(0 < \varepsilon \leq \varepsilon_1 \), the maximal time \(T(\varepsilon) \) of existence of the strong solution \(u_\varepsilon(t) \) of the 3D-Navier-Stokes equations in \(\Omega_\varepsilon \) satisfies
\[
T(\varepsilon) = \infty,
\]
and
\[\| u^\varepsilon(t) - v^\varepsilon \|^2 \leq \| u_0^\varepsilon - v^\varepsilon \|^2 \exp \left(-\frac{\nu t}{2\varepsilon^2} \right), \quad \forall \, t \geq 0. \] (2.37)

Moreover, if \(w^\varepsilon \) is the unique solution of the Stokes problem with exterior force \(f^\varepsilon \), then
\[u^\varepsilon(t) = w^\varepsilon + V^\varepsilon(t) + U^\varepsilon(t), \quad \forall \, t \geq 0, \] (2.38)

with
\[\| V^\varepsilon \|_{\varepsilon}^2 \leq c_0^2 \varepsilon R_0^2(\varepsilon) \| w^\varepsilon \|_{\varepsilon}^2 \] and \[\| U^\varepsilon(t) \|_{\varepsilon}^2 \leq \| u_0^\varepsilon - v^\varepsilon \|_{\varepsilon}^2 \exp \left(-\frac{\nu t}{2\varepsilon^2} \right), \quad \forall \, t \geq 0. \] (2.39)

Remark 2.1. (i) We obtained in Theorem 2.1 an improvement for the global regularity result obtained in [22]. Note that the conditions on the data are given in (2.36); in particular, due to (2.19) \(u_0^\varepsilon \) can belong to a ball in \(H^1(\Omega_{\varepsilon}) \) of center \(v^\varepsilon \) and radius \(\nu/(16c_0\varepsilon^{1/2}) \).

(ii) We also obtained an asymptotic expansion for the solution \(u^\varepsilon(t) \) for \(\varepsilon \) small which is uniformly valid in time. This asymptotic expansion suggests that the attractor of the dynamical system associated with the Navier-Stokes equation with Dirichlet-periodic boundary condition in the thin domain \(\Omega_{\varepsilon} \) reduces to the set of stationary solutions, when \(\varepsilon \) is small enough.

(iii) The solution \(w^\varepsilon \) to the stationary problem (2.7)-(2.10) which approximates \(v^\varepsilon \) and hence \(u^\varepsilon \), can be itself approximated by a simpler expression, possibly an explicit one. For example, in the case of a pressure driven flow,
\[f^\varepsilon = P e_1, \] (2.40)

where \(P \) is constant (the pressure gradient), then
\[w^\varepsilon \approx \varphi^\varepsilon e_1, \]
with
\[\varphi^\varepsilon = \frac{P}{2\nu} x_3(\epsilon - x_3). \] (2.41)

Note that since \(0 < x_3 < \epsilon \), \(\varphi^\varepsilon \) is of order of \(\epsilon^2 \).

3. The Purely Periodic Boundary Condition

This section is devoted to the asymptotic study of the solutions \(u^\varepsilon(t) \) of the 3D-Navier-Stokes equations, with the purely periodic boundary condition in the thin domains \(\Omega_{\varepsilon} \), when the thickness \(\varepsilon \) goes to zero. We have shown in [22] that the average \(M_{\varepsilon} u^\varepsilon(t) \) converges to the strong solution of the 2D-Navier-Stokes equations. Therefore, one cannot expect to see the slow motion obtained in the case of the Dirichlet-Periodic condition (see Section 2).

The idea here is to establish some a priori estimates for \(N_{\varepsilon} u^\varepsilon(t) = u^\varepsilon(t) - M_{\varepsilon} u^\varepsilon(t) \), which are similar to those obtained for \(u^\varepsilon(t) \) in the case of the Dirichlet-periodic condition, and to show that the dynamics of the 3D-Navier-Stokes equations is roughly carried by the orbits of a 2D-Navier-Stokes system up to the translation by a 3D-vector function which is independent of time, namely the solution of the Stokes problem with exterior force \(N_{\varepsilon} f^\varepsilon = f^\varepsilon - M_{\varepsilon} f^\varepsilon \).
We recall from [22] the following result:

We consider the problem (0.1)-(0.3) with periodic boundary conditions, and we assume that for arbitrary fixed constants K_1 and K_2,

$$a_0^2(\epsilon) + \alpha^2(\epsilon) \leq K_1 \epsilon \ln |\ln \epsilon|, \quad b_0^2(\epsilon) + \beta^2(\epsilon) \leq K_2 \ln |\ln \epsilon|,$$

where we have set

$$a_0(\epsilon) = |A_1^{1/2} M \nabla u_0|_{\epsilon}, \quad b_0(\epsilon) = |A_1^{1/2} N \nabla u_0|_{\epsilon}, \quad \alpha(\epsilon) = |M \phi|_{\epsilon}, \quad \beta(\epsilon) = |N \phi|_{\epsilon}.$$

Then there exists $\epsilon_0 = \epsilon_0(\nu, K_1, K_2, \omega) > 0$ such that for $0 < \epsilon < \epsilon_0$, the maximal time of existence $T(\epsilon)$ of the strong solution u^ϵ of the 3D Navier-Stokes equations with periodic boundary conditions satisfies $T(\epsilon) = +\infty$, and

$$u^\epsilon \in C([0, \infty); V_P^0) \cap L^2(0, T; D(A_{\epsilon P})) \quad \forall T > 0.$$

Moreover, considering a suitable constant $K_3(\nu) > K_1 + K_2$ and setting

$$R_0^2(\epsilon) = K_3 \ln |\ln \epsilon|$$

we have

$$|A_1^{1/2} u^\epsilon(t)|_{\epsilon}^2 \leq \sigma R_0^2(\epsilon) \quad \forall t \geq 0,$$

where σ is constant (depending possibly on ν) such that $\sigma > 2$.

3.1. An auxiliary pseudo-stationary problem

We consider $\bar{w}^\epsilon = N \bar{w}^\epsilon$ solution of the following problem

$$\nu A_{\epsilon} \bar{w}^\epsilon + N \nabla (N \bar{w}^\epsilon + M u^\epsilon, N \bar{w}^\epsilon + M u^\epsilon) - N \nabla B_{\epsilon}(M u^\epsilon, M u^\epsilon) = N \phi^\epsilon;$$

equivalently $\bar{w}^\epsilon \in N V_P$ satisfies

$$\nu(A_1^{1/2} N \bar{w}^\epsilon, A_1^{1/2} N v) + b_1(N \bar{w}^\epsilon, N \bar{w}^\epsilon, N v) + b_1(M u^\epsilon, N \bar{w}^\epsilon, N v) + b_1(N \bar{w}^\epsilon, M u^\epsilon, N v) = (N \phi^\epsilon, N v), \quad \forall v \in V_P.$$

Since $u^\epsilon = u^\epsilon(t)$, we shall consider the time as a parameter.

The proof of the existence and uniqueness of \bar{w}^ϵ is standard (note that the uniqueness holds if we consider ϵ small enough). We omit the details and will only derive the estimates for \bar{w}^ϵ.

For this purpose and throughout this section, we use extensively the following estimates on the trilinear form b_1:
Lemma 3.1. Let $q \in (0, \frac{1}{2})$. There exists a positive constant $c_1(q)$, independent of ϵ, such that:

$$
|b_\epsilon(M\epsilon u, N\epsilon v, w)| \leq c_1 \epsilon^q |A_\epsilon^{1/2} M\epsilon u|_\epsilon |A_\epsilon N\epsilon v|_\epsilon |w|_\epsilon
$$

$$
|b_\epsilon(N\epsilon v, M\epsilon u, w)| \leq c_1 \epsilon^q |A_\epsilon^{1/2} M\epsilon u|_\epsilon |A_\epsilon N\epsilon v|_\epsilon |w|_\epsilon
$$

for all $u \in D(A_\epsilon^{1/2})$, $v \in D(A_\epsilon)$, $w \in L^2(\Omega_\epsilon)$,

$$
|b_\epsilon(N\epsilon u, N\epsilon v, w)| \leq c_1 |A_\epsilon^{1/2} N\epsilon u|_\epsilon^2 |A_\epsilon N\epsilon v|_\epsilon |w|_\epsilon
$$

$$
\leq c_1 \epsilon^q |A_\epsilon N\epsilon v|_\epsilon |A_\epsilon^{1/2} N\epsilon v|_\epsilon |w|_\epsilon
$$

for all $u \in D(A_\epsilon)$, $v \in D(A_\epsilon^{1/2})$, $w \in L^2(\Omega_\epsilon)$,

$$
|b_\epsilon(N\epsilon u, N\epsilon v, w)| \leq c_1 \epsilon^q |A_\epsilon^{1/2} N\epsilon u|_\epsilon |A_\epsilon N\epsilon v|_\epsilon |w|_\epsilon
$$

for all $u \in D(A_\epsilon^{1/2})$, $v \in D(A_\epsilon)$, $w \in L^2(\Omega_\epsilon)$.

This lemma is a slight generalization of Lemma 2.7 in [22]; we omit the details of the proof, which essentially relies on the functional inequalities (1.5), (1.7), (1.9) and (1.11).

Estimates for w^ϵ

We set $N\epsilon v = N\epsilon \tilde{w}^\epsilon$ in (3.5) and obtain:

$$
\nu |A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon|^2_\epsilon + b_\epsilon(N\epsilon \tilde{w}^\epsilon, M\epsilon u^\epsilon, N\epsilon \tilde{w}^\epsilon) = (N\epsilon f^\epsilon, N\epsilon \tilde{w}^\epsilon)_\epsilon,
$$

which leads to:

$$
\nu |A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon|^2_\epsilon \leq |N\epsilon f^\epsilon|_\epsilon |N\epsilon \tilde{w}^\epsilon|_\epsilon + c |N\epsilon \tilde{w}^\epsilon|_{L^2(\Omega_\epsilon)}^2 |A_\epsilon^{1/2} M\epsilon u^\epsilon|_\epsilon
$$

\begin{equation}
\leq (\text{using (1.9)})
$$
\leq \frac{\nu}{4} |A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon|^2_\epsilon + \frac{2c^2}{\nu} |N\epsilon f^\epsilon|^2_\epsilon + c \epsilon^q |A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon|^2_\epsilon |A_\epsilon^{1/2} M\epsilon u^\epsilon|_\epsilon,
\end{equation}

where c is a constant independent of ϵ.

Now we take into account (3.2) and (3.3) and we obtain the existence of $\epsilon_1 = \epsilon_1(\nu, \omega, K_1, K_2)$ such that for $0 < \epsilon \leq \epsilon_1$,

$$
|A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon|^2_\epsilon \leq \frac{4c^2}{\nu^2} |N\epsilon f^\epsilon|^2_\epsilon
$$

(3.8)

We observe that $|\frac{d}{dt} \epsilon N\epsilon \tilde{w}^\epsilon|_\epsilon$ is small in a sense that we make precise now. Indeed, we differentiate (3.5) with respect to t and we obtain:

$$
\nu \left(\frac{d}{dt} A_\epsilon^{1/2} N\epsilon \tilde{w}^\epsilon, A_\epsilon^{1/2} N\epsilon v \right)_\epsilon + b_\epsilon \left(\frac{d}{dt} N\epsilon \tilde{w}^\epsilon, N\epsilon \tilde{w}^\epsilon, N\epsilon v \right)_\epsilon
$$

$$
+ b_\epsilon \left(N\epsilon \tilde{w}^\epsilon, \frac{d}{dt} N\epsilon \tilde{w}^\epsilon, N\epsilon v \right)_\epsilon + b_\epsilon \left(\frac{d}{dt} M\epsilon u^\epsilon, N\epsilon \tilde{w}^\epsilon, N\epsilon v \right)_\epsilon
$$

$$
+ b_\epsilon \left(M\epsilon u^\epsilon, \frac{d}{dt} N\epsilon \tilde{w}^\epsilon, N\epsilon v \right)_\epsilon + b_\epsilon \left(\frac{d}{dt} N\epsilon \tilde{w}^\epsilon, M\epsilon u^\epsilon, N\epsilon v \right)_\epsilon
$$

$$
+ b_\epsilon \left(N\epsilon \tilde{w}^\epsilon, \frac{d}{dt} M\epsilon u^\epsilon, N\epsilon v \right) = 0.
$$

(3.9)
For $t > 0$ fixed, we set $v = A^{-1} \frac{d}{dt} N_\epsilon \bar{w}^\epsilon$ in (3.9) and we obtain:

\[
\nu \left| \frac{d}{dt} N_\epsilon \bar{w}^\epsilon \right|_\epsilon^2 + b_\epsilon (A_\epsilon N_\epsilon v, N_\epsilon \bar{w}^\epsilon, N_\epsilon v) + b_\epsilon (N_\epsilon \bar{w}^\epsilon, A_\epsilon N_\epsilon v, N_\epsilon v) + b_\epsilon \left(\frac{d}{dt} M_\epsilon u^\epsilon, N_\epsilon \bar{w}^\epsilon, N_\epsilon v \right) + b_\epsilon (M_\epsilon u^\epsilon, A_\epsilon N_\epsilon v, N_\epsilon v) + b_\epsilon \left(N_\epsilon \bar{w}^\epsilon, \frac{d}{dt} M_\epsilon u^\epsilon, N_\epsilon v \right) = 0,
\]

so that, by Lemma 3.1, we obtain

\[
\nu \left| \frac{d}{dt} N_\epsilon \bar{w}^\epsilon \right|_\epsilon^2 \leq 2c_1 \epsilon^3 \left| A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon \right|_\epsilon \left| A_\epsilon N_\epsilon v \right|_\epsilon^2 + 2c_1 \epsilon^{1/2} \left| \frac{d}{dt} M_\epsilon u^\epsilon \right|_\epsilon \left| A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon \right|_\epsilon \left| A_\epsilon N_\epsilon v \right|_\epsilon
\]

\[
+ 2c_1 \epsilon^3 \left| M_\epsilon u^\epsilon \right|_\epsilon \left| A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon \right|_\epsilon \left| A_\epsilon N_\epsilon v \right|_\epsilon^2.
\]

Using (3.8), (3.2) and (3.3), we deduce that there exists $\epsilon_2 = \epsilon_2(\nu, \omega, K_1, K_2)$ such that if $0 < \epsilon \leq \epsilon_2$, then

\[
\left| \frac{d}{dt} N_\epsilon \bar{w}^\epsilon \right|_\epsilon \leq \left(\begin{array}{l}
\frac{c}{\nu} \epsilon^{1/2} \\
\epsilon \left| A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon \right|_\epsilon \\
\left| A_\epsilon N_\epsilon v \right|_\epsilon
\end{array} \right)
\]

\[
\leq c(\nu) \epsilon^{3/2} \left| \frac{d}{dt} M_\epsilon u^\epsilon \right|_\epsilon \left| N_\epsilon f^\epsilon \right|_\epsilon.
\]

Now we need to bound $\left| \frac{d}{dt} M_\epsilon u^\epsilon \right|_\epsilon$ in terms of $R_0^2(\epsilon)$. We have

\[
\frac{1}{2} \frac{d}{dt} \left| A_\epsilon^{1/2} u^\epsilon \right|_\epsilon^2 + \nu \left| A_\epsilon u^\epsilon \right|_\epsilon^2 + b_\epsilon (u^\epsilon, u^\epsilon, A_\epsilon u^\epsilon) = (f^\epsilon, A_\epsilon u^\epsilon)_\epsilon,
\]

and therefore

\[
\frac{d}{dt} \left| A_\epsilon^{1/2} u^\epsilon \right|_\epsilon^2 + \nu \left| A_\epsilon u^\epsilon \right|_\epsilon^2 \leq c(\nu) \left| f^\epsilon \right|_\epsilon^2 + \frac{c}{\nu^2} \left| A_\epsilon^{1/2} u^\epsilon \right|_\epsilon^6,
\]

(c being a numerical constant (independent of ϵ)).

Let $t_0 > 0$ be an arbitrarily small time. We deduce from (3.1), (3.3) and (3.14) that

\[
\nu \int_t^{t+t_0} \left| A_\epsilon u^\epsilon (s) \right|_\epsilon^2 ds \leq c(\nu) \left[R_0^2(\epsilon) + R_0^6(\epsilon) \right] t_0, \quad \forall t \geq 0.
\]

Since $\left| \frac{du^\epsilon}{dt} \right|_\epsilon \leq \nu \left| A_\epsilon u^\epsilon \right|_\epsilon + |B_\epsilon (u^\epsilon, u^\epsilon)|_\epsilon + |f^\epsilon|_\epsilon$, a simple computation yields

\[
\int_t^{t+t_0} \left| \frac{du^\epsilon}{dt} \right|_\epsilon^2 \leq c(\nu) R_0^2(\epsilon)(1 + R_0^6(\epsilon))^2 t_0, \quad \forall t \geq 0.
\]
Now we differentiate (0.10) with respect to t and we obtain:

$$
\frac{d^2 \underline{u}^\epsilon}{dt^2} + \nu \frac{d}{dt} A^\epsilon u^\epsilon + B^\epsilon \left(\frac{du^\epsilon}{dt}, u^\epsilon \right) + B^\epsilon (u^\epsilon, \frac{du^\epsilon}{dt}) = 0,
$$

(3.17)

which leads then to:

$$
\frac{1}{2} \frac{d}{dt} \left| \frac{du^\epsilon}{dt} \right|^2 + \nu \left| A^{\epsilon/2}(\frac{du^\epsilon}{dt}) \right|^2 \leq b^\epsilon \left(\frac{du^\epsilon}{dt}, u^\epsilon, \frac{du^\epsilon}{dt} \right) + B^\epsilon \left(u^\epsilon, \frac{du^\epsilon}{dt} \right),
$$

(3.18)

c being a numerical constant (independent of ϵ). We infer from (3.18) that

$$
\frac{d}{dt} \left| \frac{du^\epsilon}{dt} \right|^2 \leq c \nu^3 |A^{\epsilon/2} u^\epsilon| \left| \frac{du^\epsilon}{dt} \right|^2,
$$

(3.19)

We apply the uniform Gronwall lemma recalled below (see Lemma 3.2) with

$$
y = \left| \frac{du^\epsilon}{dt} \right|^2, \quad g = \frac{c}{\nu^3} |A^{\epsilon/2} u^\epsilon| \left| \frac{du^\epsilon}{dt} \right|^2, \quad h = 0.
$$

From (3.16) and (3.3), we infer the following estimates (say $t_0 \leq 1$):

$$
\int_{t}^{t+t_0} g(s) \, ds \leq c(\nu) R^2_0(\epsilon) t_0 \leq c(\nu) R^4_0(\epsilon),
$$

$$
\int_{t}^{t+t_0} y(s) \, ds \leq c(\nu) R^2_0(\epsilon) [1 + R^2_0(\epsilon)]^2 t_0,
$$

so that

$$
\left| \frac{du^\epsilon}{dt} \right|^2 \leq c(\nu) R^2_0(\epsilon) [1 + R^2_0(\epsilon)]^2 \exp(c(\nu) R^4_0(\epsilon));
$$

(3.20)

(3.20) holds for every $t \geq t_0 > 0$ and since $t_0 > 0$ is arbitrarily small and the right hand side of (3.20) is independent of t_0, (3.20) holds for (almost) every $t > 0$.

We use (3.20) in (3.12) and we obtain:

$$
\left| \frac{d}{dt} N^\epsilon \bar{w}^\epsilon \right| \leq c(\nu) \epsilon^2 R^2_0(\epsilon) [1 + R^2_0(\epsilon)] \exp(c(\nu) R^4_0(\epsilon)), \quad \forall t > 0.
$$

(3.21)

Taking into account the expression of $R^2_0(\epsilon)$ given by (3.2) we conclude that, for any arbitrarily small $\gamma > 0$, there exists $c = c(\nu, q, \gamma)$ such that

$$
\left| \frac{d}{dt} N^\epsilon \bar{w}^\epsilon \right| \leq c(\nu, q, \gamma) \epsilon^2 \gamma, \quad \forall t > 0.
$$

(3.22)

For the convenience of the reader we recall the uniform Gronwall lemma
Lemma 3.2. Let g, h, y be three positive locally integrable functions on (t_0, ∞) such that y' is locally integrable on (t_0, ∞), and which satisfy

\[
\frac{dy}{dt} \leq gy + h \quad \text{for } t \geq t_0,
\]

\[
\int_t^{t+r} g(s) ds \leq a_1, \int_t^{t+r} h(s) ds \leq a_2, \int_t^{t+r} y(s) ds \leq a_3, \quad \text{for } t \geq t_0,
\]

where a_1, a_2, a_3 and r are positive constants. Then

\[
y(t + r) \leq \left(\frac{a_3}{r} + a_2 \right) \exp(a_1), \quad \forall t \geq t_0.
\]

3.2. An auxiliary two dimensional problem

We consider first the following evolutionary Navier-Stokes problem in Ω:

\[
\frac{\partial \bar{u}^\varepsilon}{\partial t} - \nu \Delta \bar{u}^\varepsilon + (\bar{u}^\varepsilon \cdot \nabla) \bar{u}^\varepsilon + \nabla \bar{p}^\varepsilon = M_\varepsilon f^\varepsilon \quad \text{in } \Omega_\varepsilon, \tag{3.23}
\]

\[
\text{div } \bar{u}^\varepsilon = 0 \quad \text{in } \Omega_\varepsilon, \tag{3.24}
\]

\[
u \text{ is periodic in the directions } x_1, x_2 \text{ and } x_3, \tag{3.25}
\]

with the initial condition

\[
\bar{u}^\varepsilon \big|_{t=0} = M_\varepsilon u_0^\varepsilon. \tag{3.26}
\]

Since the forcing term $M_\varepsilon f^\varepsilon$ and the initial data $M_\varepsilon u_0^\varepsilon$ are independent of x_3, we can show that there exists a unique global strong solution $\bar{u}^\varepsilon(t)$ of this three dimensional problem which is independent of x_3, i.e. $\bar{u}^\varepsilon = M_\varepsilon \bar{u}^\varepsilon$. For that purpose we look for $\bar{u}^\varepsilon = \bar{u}^\varepsilon_{2D} + \bar{u}^\varepsilon_3$, where $\bar{u}^\varepsilon_{2D} = (\bar{u}^\varepsilon_1, \bar{u}^\varepsilon_2, 0)$, $\bar{u}^\varepsilon_3 = (0, 0, \bar{u}^\varepsilon_3)$, and \bar{u}^ε_{2D} is first defined by the following two dimensional problem:

\[
\frac{\partial \bar{u}^\varepsilon_{2D}}{\partial t} - \nu \Delta' \bar{u}^\varepsilon_{2D} + (\bar{u}^\varepsilon_{2D} \cdot \nabla') \bar{u}^\varepsilon_{2D} + \nabla' \bar{p}^\varepsilon = M_\varepsilon f^\varepsilon_{2D} \quad \text{in } \omega, \tag{3.27}
\]

\[
\text{div}' \bar{u}^\varepsilon_{2D} = 0 \quad \text{in } \omega \tag{3.28}
\]

\[
\bar{u}^\varepsilon_{2D} \text{ is periodic in the directions } x_1, \text{ and } x_2, \tag{3.29}
\]

with the initial condition

\[
\bar{u}^\varepsilon_{2D} \big|_{t=0} = M_\varepsilon(u_0^\varepsilon_{01}, u_0^\varepsilon_{02}, 0), \tag{3.30}
\]

where Δ', ∇', div' are two-dimensional operators, $f^\varepsilon_{2D} = (f^\varepsilon_1, f^\varepsilon_2, 0)$.

Note that \bar{u}^ε_{2D} depends on ε only because f^ε_{2D} and $M_\varepsilon(u_0^\varepsilon_{01}, u_0^\varepsilon_{02}, 0)$ depend on ε.

We then define \bar{u}^ε_3 as the solution of the two-dimensional problem

\[
\frac{\partial \bar{u}^\varepsilon_3}{\partial t} - \nu \Delta' \bar{u}^\varepsilon_3 + (\bar{u}^\varepsilon_{2D} \cdot \nabla') \bar{u}^\varepsilon_3 = M_\varepsilon f^\varepsilon_3 \bar{e}_3 \quad \text{in } \omega, \tag{3.31}
\]

\[
\bar{u}^\varepsilon_3 \text{ is periodic in the directions } x_1 \text{ and } x_2, \tag{3.32}
\]

\[
\int_\omega \bar{u}^\varepsilon_3 dx' = 0, \tag{3.33}
\]
with the initial condition
\[
\bar{u}_t^{\epsilon}|_{t=0} = M_{\epsilon}u_{03}^{\epsilon}\bar{c}_3.
\] (3.34)

The proof of the existence and uniqueness of \(\bar{u}_2^{\epsilon}\) is classical, \(\bar{u}_2^{\epsilon}\) is the global strong solution of a 2D-Navier-Stokes problem [9, 10]. Then we solve the linear problem for \(\bar{u}_t^{\epsilon}\); it is then easy to verify that \(\bar{u}_t^{\epsilon} = \bar{u}_2^{\epsilon} + \bar{u}_t^{\epsilon}\) is a strong global solution of (3.23)-(3.26).

Estimates for \(\bar{u}_t^{\epsilon}\) in \(L^2(\omega)\)

First we multiply (3.27) by \(\bar{u}_t^{\epsilon}\), integrate over \(\omega\) and obtain:
\[
\frac{1}{2} \frac{d}{dt} |\bar{u}_t^{\epsilon}|^2_{L^2(\omega)} + \nu |\bar{A}^{1/2}\bar{u}_t^{\epsilon}|^2_{L^2(\omega)} = (M_{\epsilon}f^{\epsilon}, \bar{u}_t^{\epsilon})_{L^2(\omega)},
\] (3.35)
where \(\bar{A}\) is the 2D-Stokes operator in \(\omega\). Thus
\[
\frac{d}{dt} |\bar{u}_t^{\epsilon}|^2_{L^2(\omega)} + \nu |\bar{A}^{1/2}\bar{u}_t^{\epsilon}|^2_{L^2(\omega)} \leq \frac{|M_{\epsilon}f^{\epsilon}|^2_{L^2(\omega)}}{\nu \lambda_1},
\] (3.36)
\(\lambda_1\) being the first eigenvalue of \(\bar{A}\).

We deduce that
\[
\int_t^{t+1} |\bar{A}^{1/2}\bar{u}_t^{\epsilon}(s)|^2_{L^2(\omega)} ds \leq |\bar{u}_t^{\epsilon}(0)|^2_{L^2(\omega)} \exp(-\nu \lambda_1 t)
\]
\[
+ \frac{1}{\nu^2 \lambda_1} |M_{\epsilon}f^{\epsilon}|^2_{L^2(\omega)} + \frac{1}{\nu \lambda_1} |M_{\epsilon}f^{\epsilon}|^2_{L^2(\omega)}, \quad \forall t \geq 0,
\] (3.37)
and taking into account (3.1), we obtain:
\[
\int_t^{t+1} |\bar{A}^{1/2}\bar{u}_t^{\epsilon}(s)|^2_{L^2(\omega)} \leq c(\nu) \left[|\bar{A}^{1/2}M_{\epsilon}u_0^{\epsilon}|^2_{L^2(\omega)} + |M_{\epsilon}f^{\epsilon}|^2_{L^2(\omega)} \right]
\]
\[
\leq c(\nu) K_1 \ln |\ln \epsilon|, \quad \forall t \geq 0.
\] (3.38)

Estimates for \(\bar{u}_2^{\epsilon}\) in \(H^1(\omega)\)

We multiply (3.27) by \(\bar{A}\bar{u}_2^{\epsilon}\), integrate over \(\omega\) and we obtain:
\[
\frac{1}{2} \frac{d}{dt} |\bar{A}^{1/2}\bar{u}_2^{\epsilon}|^2_{L^2(\omega)} + \nu |\bar{A}^{1/2}\bar{u}_2^{\epsilon}|^2_{L^2(\omega)} + \tilde{b}(\bar{u}_2^{\epsilon}, \bar{u}_2^{\epsilon}, \bar{A}\bar{u}_2^{\epsilon}) = (M_{\epsilon}f_2^{\epsilon}, \bar{A}\bar{u}_2^{\epsilon})_{L^2(\omega)}
\] (3.39)
Note that \(\tilde{b}(\bar{u}_2^{\epsilon}, \bar{u}_2^{\epsilon}, \bar{A}\bar{u}_2^{\epsilon}) = 0\) (space periodic case). Thus we deduce:
\[
\frac{d}{dt} |\bar{A}^{1/2}\bar{u}_2^{\epsilon}|^2_{L^2(\omega)} + \nu |\bar{A}^{1/2}\bar{u}_2^{\epsilon}|^2_{L^2(\omega)} \leq \frac{1}{\nu} |M_{\epsilon}f_2^{\epsilon}|^2_{L^2(\omega)},
\] (3.40)
and consequently:
\[
|\bar{A}^{1/2}\bar{u}_2^{\epsilon}(t)|^2_{L^2(\omega)} \leq |\bar{A}^{1/2}\bar{u}_2^{\epsilon}(0)|^2_{L^2(\omega)} \exp(-\nu \lambda_1 t) + \frac{1}{\nu^2 \lambda_1} |M_{\epsilon}f_2^{\epsilon}|^2_{L^2(\omega)}, \quad \forall t \geq 0,
\] (3.41)
and also
\[
\nu \int_t^{t+1} |\bar{A}\bar{u}_2^{\epsilon}(s)|^2_{L^2(\omega)} ds \leq |\bar{A}^{1/2}\bar{u}_2^{\epsilon}(0)|^2_{L^2(\omega)} \exp(-\nu \lambda_1 t) + \frac{1}{\nu^2 \lambda_1} |M_{\epsilon}f_2^{\epsilon}|^2_{L^2(\omega)}
\]
\[
+ \frac{1}{\nu} |M_{\epsilon}f_2^{\epsilon}|^2_{L^2(\omega)}, \quad \forall t \geq 0.
\] (3.42)
Taking into account the hypothesis (3.1), we obtain from (3.41) and (3.42):
\[
|\tilde{A}^{1/2}\tilde{u}_2(t)|^2_{L^2(\omega)} \leq c(\nu)\left[|\tilde{A}^{1/2}M_\epsilon u_0|^2_{L^2(\omega)} + |M_\epsilon f^\epsilon|^2_{L^2(\omega)}\right],
\]
and also
\[
\int_t^{t+\epsilon} |\tilde{A}\tilde{u}_2^\epsilon(s)|^2_{L^2(\omega)} \leq c(\nu)K_1 \ln |\ln \epsilon|, \quad \forall t \geq 0.
\]

Estimates for \tilde{u}_v^ϵ in $H^1(\omega)$

Multiply (3.31) by $\tilde{A}\tilde{u}_v^\epsilon$ and integrate over ω to obtain:
\[
\frac{1}{2} \frac{d}{dt} |\tilde{A}^{1/2}\tilde{u}_v^\epsilon|^2_{L^2(\omega)} + \nu |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}
\leq |M_\epsilon f^\epsilon_{3L^2}|_{L^2(\omega)} |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)} + c(\nu)|\tilde{u}_v^\epsilon|^2_{L^2(\omega)}.
\] (3.45)

and therefore with Agmon’s inequality,
\[
\frac{1}{2} \frac{d}{dt} |\tilde{A}^{1/2}\tilde{u}_v^\epsilon|^2_{L^2(\omega)} + \nu |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}
\leq |M_\epsilon f^\epsilon_{3L^2}|_{L^2(\omega)} |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}
+ c(\nu)|\tilde{u}_v^\epsilon|^2_{L^2(\omega)} |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}.
\] (3.46)

We infer from (3.46) that
\[
\frac{d}{dt} |\tilde{A}^{1/2}\tilde{u}_v^\epsilon(t)|^2_{L^2(\omega)} \leq c(\nu)|M_\epsilon f^\epsilon_{3L^2}|_{L^2(\omega)}.
\] (3.47)

We apply the uniform Gronwall lemma with $y = |\tilde{A}^{1/2}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}$, $g = \frac{c}{\nu\lambda_1} |\tilde{A}\tilde{u}_v^\epsilon|^2_{L^2(\omega)}$, $h = \frac{c}{\nu} |M_\epsilon f^\epsilon|^2_{L^2(\omega)}$.

We use (3.44), (3.49) and (3.1) and we deduce
\[
\int_t^{t+\epsilon} g(s) ds \leq c(\nu)K_1 \ln |\ln \epsilon| = a_1, \quad \forall t \geq 0,
\int_t^{t+\epsilon} h(s) ds \leq c(\nu)K_1 \ln |\ln \epsilon| = a_2, \quad \forall t \geq 0,
\int_t^{t+\epsilon} y(s) ds \leq c(\nu)K_1 \ln |\ln \epsilon| = a_3, \quad \forall t \geq 0,
\]
so that
\[
|\tilde{A}^{1/2}\tilde{u}_v^\epsilon(t)|^2_{L^2(\omega)} \leq \left[|\tilde{A}^{1/2}\tilde{u}_v^\epsilon(0)|^2_{L^2(\omega)} + a_2 + a_3\right] \exp(a_1)
\leq c(\nu)K_1 \ln |\ln \epsilon| \exp(c(\nu)K_1 \ln |\ln \epsilon|), \quad \forall t \geq 0.
\] (3.48)

We infer from (3.43) and (3.48) that
\[
|\tilde{A}^{1/2}\tilde{u}^\epsilon(t)|^2_{L^2(\omega)} \leq c(\nu)K_1 \ln |\ln \epsilon| (1 + \exp(c(\nu)K_1 \ln |\ln \epsilon|)), \quad \forall t \geq 0.
\] (3.49)

Note furthermore that
\[
|\tilde{A}^{1/2}\tilde{u}^\epsilon(t)|^2_{\epsilon} \leq \epsilon |\tilde{A}^{1/2}\tilde{u}^\epsilon(t)|^2_{L^2(\omega)} \leq c(\nu, \gamma)\epsilon^{1-\gamma}, \quad \forall t \geq 0.
\] (3.50)
for any arbitrarily small $\gamma > 0$.

3.3. The comparison theorem

Our first result stated at the end of section 3.3 (Theorem 3.3) gives a comparison between u^ϵ and $\bar{u}^\epsilon + w^\epsilon$. We set $U^\epsilon = u^\epsilon - \bar{u}^\epsilon - \bar{w}^\epsilon$ and we aim to estimate the N_ϵ and the M_ϵ components of U^ϵ.

Estimates for $N_\epsilon U^\epsilon = N_\epsilon u^\epsilon - N_\epsilon \bar{w}^\epsilon$

Starting from the weak formulation for the equations defining u^ϵ, \bar{u}^ϵ and \bar{w}^ϵ, we obtain

\[
\frac{d}{dt}(N_\epsilon U^\epsilon, N_\epsilon v) + \nu (A_\epsilon^{1/2} N_\epsilon U^\epsilon , A_\epsilon^{1/2} N_\epsilon v)_\epsilon + b_\epsilon (N_\epsilon U^\epsilon, N_\epsilon U^\epsilon, N_\epsilon v) + b_\epsilon (N_\epsilon U^\epsilon, N_\epsilon \bar{w}^\epsilon, N_\epsilon v) + b_\epsilon (N_\epsilon U^\epsilon, M_\epsilon u^\epsilon, N_\epsilon v) + b_\epsilon (N_\epsilon U^\epsilon, M_\epsilon u^\epsilon, N_\epsilon v) + (\frac{d}{dt} N_\epsilon \bar{w}^\epsilon, N_\epsilon v)_\epsilon = 0, \quad \forall v \in V_\epsilon^b,
\]

with

\[
N_\epsilon U^\epsilon|_{t=0} = N_\epsilon u_0^\epsilon - N_\epsilon \bar{w}^\epsilon(0).
\]

We choose $v = A_\epsilon U^\epsilon(t)$ and we obtain, using Lemma 3.1

\[
\frac{1}{2} \frac{d}{dt} |A_\epsilon^{1/2} N_\epsilon U^\epsilon|^2 + \nu |A_\epsilon N_\epsilon U^\epsilon|^2 \leq c_1 \epsilon^{1/2} |A_\epsilon^{1/2} N_\epsilon U^\epsilon| |A_\epsilon N_\epsilon U^\epsilon|_\epsilon^2 + 2c_1 \epsilon^{1/2} |A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon| |A_\epsilon N_\epsilon U^\epsilon|_\epsilon^2 + c_1 \epsilon^{1/2} |A_\epsilon^{1/2} M_\epsilon u^\epsilon| |A_\epsilon N_\epsilon U^\epsilon|_\epsilon^2 + c_1 \epsilon^{1/2} |A_\epsilon^{1/2} M_\epsilon u^\epsilon| |A_\epsilon N_\epsilon U^\epsilon|_\epsilon^2 + |\frac{d}{dt} N_\epsilon \bar{w}^\epsilon| |A_\epsilon N_\epsilon U^\epsilon|_\epsilon.
\]

since $0 < q < \frac{1}{2}$ and $0 < \epsilon < 1$, we deduce from (3.53)

\[
\frac{d}{dt} |A_\epsilon^{1/2} N_\epsilon U^\epsilon|^2 \leq [\nu - 4c_1 \epsilon^q |A_\epsilon^{1/2} M_\epsilon u^\epsilon|_\epsilon - 2c_1 \epsilon^q |A_\epsilon^{1/2} N_\epsilon u^\epsilon|_\epsilon - 4c_1 \epsilon^{1/2} |A_\epsilon^{1/2} N_\epsilon \bar{w}^\epsilon|_\epsilon] |A_\epsilon N_\epsilon U^\epsilon|_\epsilon^2
\]

(3.54)

Now using (3.3), (3.8) and (3.2), we deduce that there exists $\epsilon_3 = \epsilon_3(\nu, \omega, K_1, K_2)$ such that if $0 < \epsilon \leq \epsilon_3$, then

\[
\frac{d}{dt} |A_\epsilon^{1/2} N_\epsilon U^\epsilon|^2 + \frac{\nu}{2} |A_\epsilon N_\epsilon U^\epsilon|^2 \leq \frac{1}{\nu} |\frac{d}{dt} N_\epsilon \bar{w}^\epsilon|^2 \leq (\text{using (3.22)}) \leq c(\nu, q, \gamma)\epsilon^{3-\gamma}
\]

(3.55)\]

(γ being an arbitrarily small positive number).

By the Cauchy-Schwarz inequality we have

\[
|A_\epsilon^{1/2} N_\epsilon U^\epsilon|_\epsilon \leq \epsilon |A_\epsilon N_\epsilon U^\epsilon|_\epsilon,
\]

\[
\text{(3.56)}
\]
which gives together with (3.55)

$$|A_t^{1/2}N_tU^\varepsilon(t)|^2 \leq |A_t^{1/2}N_tU^\varepsilon(0)|^2 \exp \left(-\frac{\nu t}{2\varepsilon^2}\right) + c(\nu, q, \gamma)\varepsilon^{5-\gamma}, \quad \forall t \geq 0$$ \(3.56\)

(we recall that \(q \in (0, \frac{1}{2})\) is an arbitrary number and \(\gamma > 0\) is an arbitrarily small number).

Estimates for \(M_tU^\varepsilon = M_tu^\varepsilon - M_t\bar{u}\)

The weak formulation for \(M_tU^\varepsilon\) reads:

$$\frac{d}{dt}(M_tU^\varepsilon, M_tv)_\varepsilon + \nu(A_t^{1/2}M_tU^\varepsilon, A_t^{1/2}M_tv) + b_t(M_tU^\varepsilon, M_tU^\varepsilon, M_tv)$$

$$+ b_t(M_t\bar{u}_t, M_t\bar{u}_t, M_tv) + b_t(M_t\bar{u}_t, M_tU^\varepsilon, M_tv)$$

$$+ b_t(N_tu^\varepsilon, N_tu^\varepsilon, M_tv) = 0, \quad \forall v \in V^\varepsilon,$$

with the initial condition

$$M_tU^\varepsilon|_{t=0} = 0. \quad (3.58)$$

Estimates for \(M_tU^\varepsilon_{2D}\) in \(H^1\)

We choose \(v = A_tU^\varepsilon_{2D}\) in (3.57), where \(U^\varepsilon_{2D} = (U^\varepsilon_1, U^\varepsilon_2, 0)\) and we obtain

$$\frac{1}{2} \frac{d}{dt} |A_t^{1/2}M_tU^\varepsilon_{2D}|^2 + \nu|A_tM_tU^\varepsilon_{2D}|^2 + b_t(M_tU^\varepsilon_{2D}, M_tU^\varepsilon_{2D}, A_tM_tU^\varepsilon_{2D})$$

$$+ b_t(M_t\bar{u}_t, M_t\bar{u}_t, A_tM_tU^\varepsilon_{2D}) + b_t(M_t\bar{u}_t, M_tU^\varepsilon_{2D}, A_tM_tU^\varepsilon_{2D})$$

$$+ b_t(N_tu^\varepsilon, N_tu^\varepsilon, A_tM_tU^\varepsilon_{2D}) = 0. \quad (3.59)$$

Note that \(b_t(M_tU^\varepsilon_{2D}, M_t\bar{u}_t, A_tM_tU^\varepsilon_{2D}) = \epsilon \tilde{b}(M_tU^\varepsilon_{2D}, M_t\bar{u}_t, A_tM_tU^\varepsilon_{2D}) = 0\)

Using the \(L^2\)-scalar product and the \(L^2\)-norm on \(\omega\) we rewrite (3.59) as:

$$\frac{1}{2} \frac{d}{dt} |A_t^{1/2}M_tU^\varepsilon_{2D}|^2_{L^2(\omega)} + \nu|\tilde{A}M_tU^\varepsilon_{2D}|^2_{L^2(\omega)}$$

$$= - \tilde{b}(M_tU^\varepsilon_{2D}, M_t\bar{u}_t, \tilde{A}M_tU^\varepsilon_{2D}) - \tilde{b}(M_t\bar{u}_t, M_tU^\varepsilon_{2D}, \tilde{A}M_tU^\varepsilon_{2D})$$

$$- \frac{1}{\epsilon} b_t(N_tu^\varepsilon, N_tu^\varepsilon, A_tM_tU^\varepsilon_{2D}). \quad (3.60)$$

We estimate the nonlinear terms as follows:

$$|b_t(M_tU^\varepsilon_{2D}, M_t\bar{u}_t, \tilde{A}M_tU^\varepsilon_{2D})| + |\tilde{b}(M_t\bar{u}_t, M_tU^\varepsilon_{2D}, \tilde{A}M_tU^\varepsilon_{2D})|$$

$$\leq c\lambda_1^{-1/2} |\tilde{A}M_t\bar{u}_t|_{L^2(\omega)} |A_tU^\varepsilon_{2D}|_{L^2(\omega)} |A_t\bar{u}_t|_{L^2(\omega)}$$

$$\leq \frac{1}{\epsilon} |b_t(N_tu^\varepsilon, N_tu^\varepsilon, A_tM_tU^\varepsilon)|$$

$$\leq c_1 \epsilon^{-1/2} |A_t^{1/2}N_tu^\varepsilon|_{L^2(\omega)} |A_tN_tu^\varepsilon|_{L^2(\omega)} |A_tM_tU^\varepsilon|_{L^2(\omega)}$$

$$= c_1 |A_t^{1/2}N_tu^\varepsilon|_{L^2(\omega)} |A_tM_tU^\varepsilon|_{L^2(\omega)}.$$
We deduce then from (3.60)
\[
\frac{d}{dt} |\tilde{A}^{1/2} M_\epsilon U_{2D}^\epsilon|^2_{L^2(\omega)} + \nu |\tilde{A} M_\epsilon U_{2D}^\epsilon|^2_{L^2(\omega)} \leq \frac{c}{\nu \lambda_1} |\tilde{A} M_\epsilon \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)} |\tilde{A}^{1/2} M_\epsilon U_{2D}^\epsilon|^2_{L^2(\omega)} + \frac{c}{\nu} |A_\epsilon^{1/2} N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)} |A_\epsilon N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)}.
\]
(3.61)

Then we apply the uniform Gronwall lemma with
\[
y = |\tilde{A}^{1/2} M_\epsilon U_{2D}^\epsilon|^2_{L^2(\omega)},
\]
(3.62)
\[
g = \frac{c}{\nu \lambda_1} |\tilde{A} M_\epsilon \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)},
\]
(3.63)
\[
h = \frac{c}{\nu} |A_\epsilon^{1/2} N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)} |A_\epsilon N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)}.
\]
(3.64)

We have the following estimate, using (3.44):
\[
\int_t^{t+1} g(s) \, ds \leq c(\nu) K_1 \ln |\ln \epsilon|, \quad \forall t \geq 0.
\]
(3.65)

We recall from [22] (formula (3.13)) the following relation:
\[
\frac{d}{dt} |A_\epsilon^{1/2} N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)} + \frac{\nu}{2} |A_\epsilon N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)} \leq \frac{|N_\epsilon f^\epsilon|^2_{\mathcal{L}^2(\omega)}}{\nu},
\]
so that
\[
|A_\epsilon^{1/2} N_\epsilon u^\epsilon(t)|_{\mathcal{L}^2(\omega)}^2 \leq |A_\epsilon^{1/2} N_\epsilon u^\epsilon_0|_{\mathcal{L}^2(\omega)}^2 \exp \left(-\frac{\nu t}{2\epsilon^2} \right) + \frac{2\epsilon^2}{\nu^2} |N_\epsilon f^\epsilon|_{\mathcal{L}^2(\omega)}^2, \quad \forall t \geq 0,
\]
and
\[
\frac{\nu}{2} \int_t^{t+1} |A_\epsilon N_\epsilon u^\epsilon(s)|_{\mathcal{L}^2(\omega)}^2 \, ds \leq |A_\epsilon^{1/2} N_\epsilon u^\epsilon_0|_{\mathcal{L}^2(\omega)}^2 \exp \left(-\frac{\nu t}{2\epsilon^2} \right) + \frac{2\epsilon^2}{\nu^2} |N_\epsilon f^\epsilon|_{\mathcal{L}^2(\omega)}^2 + \frac{|N_\epsilon f^\epsilon|^2_{\mathcal{L}^2(\omega)}}{\nu}, \quad \forall t \geq 0,
\]
(3.66)
which yield to
\[
\int_t^{t+1} h(s) \, ds \leq c(\nu) R_0^2(\epsilon), \quad \forall t \geq 0,
\]
(3.67)
and finally
\[
\int_t^{t+1} y(s) \, ds = \int_t^{t+1} |\tilde{A}^{1/2} M_\epsilon U_{2D}^\epsilon|^2_{L^2(\omega)} \, ds \leq 2 \int_t^{t+1} \left[|\tilde{A}^{1/2} M_\epsilon \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)} + |\tilde{A}^{1/2} M_\epsilon \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)} \right] \, ds.
\]

We recall also from [22] (formula (3.27)) the following inequality:
\[
\frac{d}{dt} |M_\epsilon u^\epsilon|^2_{L^2(\omega)} + \nu |\tilde{A}^{1/2} M_\epsilon u^\epsilon|^2_{L^2(\omega)} \leq \frac{1}{\nu \lambda_1} |M_\epsilon f^\epsilon|^2_{L^2(\omega)} + \frac{c}{\nu} |A_\epsilon^{1/2} N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)} |A_\epsilon N_\epsilon u^\epsilon|^2_{\mathcal{L}^2(\omega)},
\]
which gives
\[
\nu \int_t^{t+1} |\tilde{A}^{1/2} M_u u^\epsilon(s)|^{2}_{L^2(\omega)} \, ds \leq |M_u u^\epsilon(t)|^{2}_{L^2(\omega)} + \frac{1}{\nu \lambda_1} |M_u f^\epsilon|^{2}_{L^2(\omega)}
\]
\[
+ \frac{c}{\nu} \int_t^{t+1} |\tilde{A}^{1/2} N_u u^\epsilon|^{2}_{|A_N u^\epsilon|_2^2} \, ds
\]
\[
\leq c(\nu) \left[R^2_0(\epsilon) + R^4_0(\epsilon) \right], \quad \forall t \geq 0.
\]

Taking into account (3.39), we conclude
\[
\int_t^{t+1} y(s) \, ds \leq c(\nu) \left[R^2_0(\epsilon) + R^4_0(\epsilon) \right], \quad \forall t \geq 0. \tag{3.68}
\]

Using the usual and uniform Gronwall lemmas, we infer from (3.62), (3.64) and (3.65) that
\[
|\tilde{A}^{1/2} M_v U_2^\epsilon(t)|^{2}_{L^2(\omega)} \leq c(\nu) \left[R^2_0(\epsilon) + R^4_0(\epsilon) \right] \exp(c(\nu) K_1 \ln |\ln \epsilon|), \quad \forall t \geq 0. \tag{3.69}
\]

Estimates for $M_v U^\epsilon_v$ in H^1

We write $v = A_v U^\epsilon_v$ in (3.57), where $U^\epsilon_v = (0,0,U^\epsilon_3)$, and we find:
\[
\frac{1}{2} \frac{d}{dt} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + \nu |A_v M_v U^\epsilon_v|^{2}_{L^2(\omega)} + b(v, M_v U^\epsilon_v, A_v M_v U^\epsilon_v) + b_v(M_v U^\epsilon_v, M_v U^\epsilon_v, A_v M_v U^\epsilon_v) \tag{3.70}
\]

Using the L^2 scalar product and the L^2 norm on ω we rewrite (3.70) as:
\[
\frac{1}{2} \frac{d}{dt} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + \nu |A^{-1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + b(M_v U^\epsilon_v, M_v U^\epsilon_v, A_v M_v U^\epsilon_v)
\]
\[
+ b_v(M_v U^\epsilon_v, M_v U^\epsilon_v, A_v M_v U^\epsilon_v) = 0,
\]

and then
\[
\frac{d}{dt} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + \nu |A^{-1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)}
\]
\[
\leq c \left(\frac{|M_v U^\epsilon_v|_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + |M_v U^\epsilon_v|^{2}_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)}
\]
\[
+ c \left(\frac{|M_v U^\epsilon_v|_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + |M_v U^\epsilon_v|^{2}_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)}
\]
\[
+ c \frac{|M_v U^\epsilon_v|_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)} + |M_v U^\epsilon_v|^{2}_{L^2(\omega)} |\tilde{A}^{1/2} M_v U^\epsilon_v|^{2}_{L^2(\omega)}
\]
We apply again the uniform Gronwall lemma with
\[
g = \frac{c}{\nu \lambda_1} \left[|\tilde{A} M \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)} + |\tilde{A} M \tilde{u}_{2D}^\epsilon|^2_{L^2(\omega)} \right],
\]
(3.71)
\[
h = \frac{c}{\nu} |A_{\epsilon}^1 N_{\epsilon} u_{\epsilon}^\epsilon|^2_{L^2(\omega)} + \frac{c}{\nu} |M_{\epsilon} U_{2D}^\epsilon|_{L^2(\omega)} |\tilde{A} M_{\epsilon} U_{2D}^\epsilon|_{L^2(\omega)} |\tilde{A}^{1/2} M_{\epsilon} \tilde{u}_{\epsilon}^\epsilon|^2_{L^2(\omega)}.
\]
(3.72)
\[
y = |\tilde{A}^{1/2} M_{\epsilon} U_{\epsilon}^\epsilon|^2_{L^2(\omega)}.
\]
(3.73)

We have the following estimates:
\[
\int_t^{t+1} g(s) \, ds, \quad \int_t^{t+1} y(s) \, ds \leq c(\nu) \left[R_0^2(\epsilon) + R_0^4(\epsilon) \right], \quad \forall t \geq 0,
\]
\[
\int_t^{t+1} h(s) \, ds \leq c(\nu) \left[R_0^2(\epsilon) + R_0^4(\epsilon) \right] \exp(c(\nu)(R_0^2(\epsilon) + R_0^4(\epsilon))), \quad \forall t \geq 0,
\]
so that, taking into account the fact that \(M_{\epsilon} U_{\epsilon}(0) = 0 \),
\[
|\tilde{A}^{1/2} M_{\epsilon} U_{\epsilon}(t)|_{L^2(\omega)}^2 \leq c(\nu) \left[R_0^2(\epsilon) + R_0^4(\epsilon) \right] \exp(c(\nu)(R_0^2(\epsilon) + R_0^4(\epsilon))), \quad \forall t \geq 0.
\]
(3.74)

We infer from (3.66) and (3.68) that
\[
|\tilde{A}^{1/2} M_{\epsilon} U_{\epsilon}(t)|_{L^2(\omega)}^2 \leq c(\nu) \left[R_0^2(\epsilon) + R_0^4(\epsilon) \right] \exp(c(\nu)(R_0^2(\epsilon) + R_0^4(\epsilon))), \quad \forall t \geq 0.
\]

Note that
\[
|A_{\epsilon}^{1/2} M_{\epsilon} U_{\epsilon}(t)|_{L^2(\omega)}^2 = c |\tilde{A}^{1/2} M_{\epsilon} U_{\epsilon}(t)|_{L^2(\omega)}^2 \\
\leq c(\nu) \left[R_0^2(\epsilon) + R_0^4(\epsilon) \right] \exp(c(\nu)(R_0^2(\epsilon) + R_0^4(\epsilon))), \quad \forall t \geq 0.
\]
(3.75)

We summarize the previous result in the following Theorem comparing \(u^\epsilon \) to \(\tilde{u}^\epsilon + \tilde{w}^\epsilon \).

Theorem 3.3. In the fully periodical case, we assume that (3.1) holds so that \(u = u^\epsilon \), the solution to the Navier-Stokes equations (0.1)-(0.3) is defined and regular for all \(t > 0 \), for \(0 < \epsilon \leq \epsilon_1 \), for some \(\epsilon_1 \).

Let \(\tilde{w}^\epsilon \) and \(\tilde{u}^\epsilon \) be the solutions of (3.5) and of the 2D-like Navier-Stokes problem (3.23)-(3.26) (see also (3.27)-(3.34)).

Then for \(0 < \epsilon \leq \epsilon_3 \leq \epsilon_1 \), where \(\epsilon_3 \) depends only on the data, \(U^\epsilon = u^\epsilon - \tilde{u}^\epsilon - \tilde{w}^\epsilon \) is small in the following sense:
\[
\| M_{\epsilon} U^\epsilon(t) \|_{L^2(\omega)}^2 \leq c(\nu, \gamma) \epsilon^{1-\gamma}, \quad \forall t \geq 0,
\]
(3.76)
\[
\| N_{\epsilon} U^\epsilon(t) \|_{L^2(\omega)}^2 \leq \| N_{\epsilon} U^\epsilon(0) \|_{L^2(\omega)}^2 \exp \left(-\frac{\nu t}{2 \epsilon^2} \right) + c(\nu, q, \gamma) \epsilon^{5-\gamma}, \quad \forall t \geq 0.
\]
(3.77)

for some \(q \in (0, 1/2) \) and any \(\gamma > 0 \) small.

Remark 3.1. (i) In section 3.4 we will approximate \(\tilde{w}^\epsilon \) by a function \(\tilde{w}^\epsilon \), solution of a problem simpler than (3.5) which does not involve \(u^\epsilon \). Hence \(\tilde{w}^\epsilon \) will be “explicit”, and this will make the approximation results above more useful.

(ii) We could also approximate \(\tilde{u}^\epsilon \) by a function \(\tilde{u} \) independent of \(\epsilon \), solution of a problem similar to (3.23)-(3.26), where \(M_{\epsilon} f^\epsilon \) and \(M_{\epsilon} u_0^\epsilon \) are replaced by their limit as \(\epsilon \to 0 \). The
estimates on the rest of the expansion depend then of the differences between $M_\epsilon f^\epsilon$ and $M_\epsilon u_0^\epsilon$ and their limit; the details are left to the reader.

3.4. **Comparison between $N_\epsilon \bar{w}^\epsilon$ and w^ϵ**

Let w^ϵ be the unique solution of the Stokes problem:

\[
\begin{cases}
-\nu \Delta w^\epsilon + \nabla q = N_\epsilon f^\epsilon & \text{in } \Omega_\epsilon, \\
\text{div } w^\epsilon = 0 & \text{in } \Omega_\epsilon, \\
\end{cases}
\]

(3.78)

\[w^\epsilon \text{ is periodic in the directions } x_1, x_2 \text{ and } x_3.\]

We note that $w^\epsilon = N_\epsilon w^\epsilon$. Using (1.5) we easily find the following estimates for w^ϵ:

\[|A_{\epsilon}^{1/2}w^\epsilon|_\epsilon \leq \epsilon^{1/3}|N_\epsilon f^\epsilon|_\epsilon, \tag{3.79}\]

\[|A_{\epsilon}w^\epsilon|_\epsilon \leq \frac{1}{\nu}|N_\epsilon f^\epsilon|_\epsilon. \tag{3.80}\]

Remark also that if $f^\epsilon \in H_p$, then $\nabla q^\epsilon = N_\epsilon f^\epsilon + \nu \Delta w^\epsilon \in H_p^2$, which implies $\nabla q^\epsilon = 0$.

Consider now the difference

\[N_\epsilon W^\epsilon = N_\epsilon \bar{w}^\epsilon - N_\epsilon w^\epsilon.\]

Using the weak formulation (3.52) for $N_\epsilon \bar{w}^\epsilon$, we find for $N_\epsilon W^\epsilon$

\[\nu |A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon^2 + b_{\epsilon}(N_\epsilon \bar{w}^\epsilon, N_\epsilon \bar{w}^\epsilon, N_\epsilon W^\epsilon) + b_{\epsilon}(N_\epsilon u^\epsilon, N_\epsilon u^\epsilon, N_\epsilon W^\epsilon) = 0, \tag{3.81}\]

and thus

\[\nu |A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon^2 \leq c_1 \epsilon^{q/2} |A_{\epsilon}^{1/2}N_\epsilon \bar{w}^\epsilon|_\epsilon^2 |A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon \]

\[+ 2c_1 \epsilon^q |A_{\epsilon}^{1/2}N_\epsilon u^\epsilon|_\epsilon |A_{\epsilon}^{1/2}N_\epsilon \bar{w}^\epsilon|_\epsilon |A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon, \tag{3.82}\]

which implies, using (3.3) and (3.8),

\[\nu |A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon \leq c(\nu)\epsilon^{q/2} |N_\epsilon f^\epsilon|_\epsilon^2 + c(\nu)\epsilon^{1+q} R_0(\epsilon) |N_\epsilon f^\epsilon|_\epsilon \leq c(\nu)\epsilon^{1+q} R_0^2(\epsilon). \tag{3.83}\]

Taking into account (3.2), this then leads to

\[|A_{\epsilon}^{1/2}N_\epsilon W^\epsilon|_\epsilon \leq c(\nu, q, \gamma)\epsilon^{1+q}, \tag{3.84}\]

for any arbitrarily small $\gamma > 0$. Combining (3.84) with Theorem 3.1 we see that (3.70) and (3.71) still hold for $U^\epsilon = w^\epsilon - \bar{w}^\epsilon - w^\epsilon$.

Corollary 3.4. Under the hypothesis of Theorem 3.3, w^ϵ being the solution of the Stokes problem (3.78), then for $0 < \epsilon \leq \epsilon_3$, $U^\epsilon = w^\epsilon - \bar{w}^\epsilon - w^\epsilon$ is small in the sense of (3.70) and (3.71).

Remark 3.2. It is easy to see that w^ϵ can be itself approximated by \tilde{w}^ϵ:

\[\tilde{w}^\epsilon = \sum_{k \in \mathbb{Z}^3, k \neq 0} \tilde{w}_k e^{i kx}, \tag{3.85}\]
\[
\hat{w}_k = \frac{1}{\nu(k_1^2 + k_2^2)} \hat{g}_k \quad \text{if} \quad k_3 = 0, \quad \hat{w}_k = \frac{\epsilon^2}{\nu k_3^2} \hat{g}_k \quad \text{if} \quad k_3 \neq 0,
\]

where \(\hat{g}_k \) are the Fourier coefficients of \(N_\epsilon f \).

4. Complements in the space periodic case

In this section we give some complements concerning the purely periodic case. We show how the results of [15, 16] and [22] can be improved, namely that one can obtain, for thin domains, the existence for all time of a smooth solution for a larger set of initial data \(u_0 \) and volume forces \(f \). These results can also be used to improve those of Section 3, but this will not be developed here.

We consider the problem (0.1)-(0.3) with periodic boundary conditions. Let \(R_0(\epsilon) \) be a positive function satisfying for some \(q \in (0,1) \)

\[
\lim_{\epsilon \to 0} \epsilon^q R_0^2(\epsilon) = 0.
\]

We set

\[
\begin{cases}
R_n^2(\epsilon) = g_n^2(\epsilon)R_0^2(\epsilon), \\
R_m^2(\epsilon) = g_m^2(\epsilon)R_0^2(\epsilon),
\end{cases}
\]

where

\[
\begin{cases}
g_n^2(\epsilon) = \frac{\epsilon^{\frac{q-1}{2}}}{|\ln \epsilon|}, \\
g_m^2(\epsilon) = \frac{\epsilon^{\frac{2(q+1)}{3}}}{|\ln \epsilon|}.
\end{cases}
\]

We assume that the data \(u_0^\epsilon \in V_\epsilon^p \) and \(f^\epsilon \in H_\epsilon^p \) satisfy:

\[
\begin{cases}
|A_\epsilon^{1/2} M_\epsilon u_0^\epsilon|_\epsilon^2 + |M_\epsilon f^\epsilon|_\epsilon^2 \leq R_m^2(\epsilon), \\
|A_\epsilon^{1/2} N_\epsilon u_0^\epsilon|_\epsilon^2 + |N_\epsilon f^\epsilon|_\epsilon^2 \leq R_n^2(\epsilon)
\end{cases}
\]

and let \(T^\sigma(\epsilon) \) be the maximal time such that

\[
|A_\epsilon^{1/2} u^\epsilon(t)|_\epsilon^2 \leq \sigma R_0^2(\epsilon), \quad 0 \leq t < T^\sigma(\epsilon).
\]

Here \(\sigma > 2 \) is a fixed number which will be chosen later on (see (4.46)). Note that if \(T^\sigma(\epsilon) < \infty \), then

\[
|A_\epsilon^{1/2} u^\epsilon(T^\sigma(\epsilon))|_\epsilon^2 = \sigma R_0^2(\epsilon).
\]

Since \(\lim_{\epsilon \to 0} \epsilon^q R_0^2(\epsilon) = 0 \), there exists \(\epsilon_1 = \epsilon_1(\nu, q) \) (depending also on the function \(R_0 \)) such that

\[
\epsilon^q R_0^2(\epsilon) \leq \frac{\nu^2}{4} \quad \text{for} \quad 0 < \epsilon \leq \epsilon_1.
\]

In what follows we restrict ourselves to \(\epsilon \leq \epsilon_1 \), and we aim first to derive a number of a priori estimates.
A priori estimates

Estimates for $N_\epsilon u^\epsilon$

We multiply (0.1) with $A_\epsilon N_\epsilon u^\epsilon$ and we integrate over Ω_ϵ. We estimate the nonlinear terms using Lemma 3.1, then we take into account (4.5) and (4.7) to obtain:

$$\frac{d}{dt}|A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 + \frac{\nu}{2}|A_\epsilon N_\epsilon u^\epsilon|^2 \leq \frac{|N_\epsilon f^\epsilon|^2}{\nu},$$

for $0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon), \quad (4.8)$

and since by the Cauchy-Schwarz inequality

$$|A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 \leq \epsilon^2 |A_\epsilon N_\epsilon u^\epsilon|^2,$$

we deduce from (4.8) that

$$\frac{d}{dt}|A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 + \frac{\nu}{2\epsilon^2}|A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 \leq \frac{|N_\epsilon f^\epsilon|^2}{\nu},$$

for $0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon). \quad (4.9)$

Thus by the Gronwall lemma

$$|A^{1/2}_\epsilon N_\epsilon u^\epsilon(t)|^2 \leq |A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 \exp\left(-\frac{\nu t}{2\epsilon^2}\right) + \frac{2\epsilon^2}{\nu^2}|N_\epsilon f^\epsilon|^2, \quad \text{for } 0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon). \quad (4.10)$$

Taking into account (4.4), we deduce

$$|A^{1/2}_\epsilon N_\epsilon u^\epsilon(t)|^2 \leq \frac{\nu}{2} \int_0^t |A_\epsilon N_\epsilon u^\epsilon(s)|^2 ds \leq |A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 + \frac{|N_\epsilon f^\epsilon|^2}{\nu} t,$$

so that

$$\int_0^t |A_\epsilon N_\epsilon u^\epsilon(s)|^2 ds \leq c(\nu)R_n^2(\epsilon) (1 + t), \quad \text{for } 0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon). \quad (4.12)$$

Estimates for $M_\epsilon u^\epsilon$

We first multiply (0.1) with $M_\epsilon u^\epsilon$ and we integrate over Ω_ϵ. A simple computation taking into account (4.5) and (4.7) yields:

$$\frac{d}{dt}|M_\epsilon u^\epsilon|^2 + \nu|A^{1/2}_\epsilon M_\epsilon u^\epsilon|^2 \leq \frac{|M_\epsilon f^\epsilon|^2}{\nu \lambda_1} + \frac{c \epsilon}{\nu} |A^{1/2}_\epsilon N_\epsilon u^\epsilon|^4,$$

for $0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon), \quad (4.13)$

where λ_1 is the first eigenvalue of the two-dimensional Stokes operator defined on ω. Then (4.13) implies

$$\nu \int_0^t |A^{1/2}_\epsilon M_\epsilon u^\epsilon(s)|^2 ds \leq \frac{|M_\epsilon f^\epsilon|^2}{\nu \lambda_1} t + \frac{c \epsilon}{\nu} \int_0^t |A^{1/2}_\epsilon N_\epsilon u^\epsilon(s)|^4 ds,$$

for $0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon). \quad (4.14)$
Using (4.11), we estimate
\[
\frac{c \epsilon}{\nu} \int_0^t |A_{\epsilon}^{1/2} N_{\epsilon} u^{\epsilon}(s)|^4 ds \\
\leq \frac{c \epsilon}{\nu} \left[\sup_{0 \leq s \leq t} |A_{\epsilon}^{1/2} N_{\epsilon} u^{\epsilon}(s)|^2 \right] \left(\int_0^t |A_{\epsilon}^{1/2} N_{\epsilon} u^{\epsilon}(s)|^2 ds \right) \\
\leq c(\nu) \epsilon R_{0}^{A}(\epsilon) \left[\exp(-\frac{\nu t}{2\epsilon^2}) + \frac{2\epsilon^2}{\nu^2} \left[\frac{2\epsilon^2}{\nu} + \frac{2\epsilon^2}{\nu^2} t \right] \right] \\
\leq c(\nu) \epsilon^3 R_{0}^{A}(\epsilon)(1 + t) = (\text{using (4.2) }) \\
= c(\nu) \epsilon^3 g_{m}^{A}(\epsilon) R_{0}^{A}(\epsilon)(1 + t) \leq (\text{using (4.7) }) \\
\leq c(\nu) \epsilon^3 g_{m}^{A}(\epsilon) R_{0}^{2}(\epsilon)(1 + t),
\]
so that we deduce from (4.14)
\[
\int_0^t |A_{\epsilon}^{1/2} M_{\epsilon} u^{\epsilon}(s)|^2 ds \leq c(\nu, \lambda_{1}) R_{m}^{A}(\epsilon)(1 + t) + c(\nu) \epsilon^3 g_{m}^{A}(\epsilon) R_{0}^{2}(\epsilon)(1 + t) \\
= c(\nu, \lambda_{1}) g_{m}^{A}(\epsilon) R_{m}^{A}(\epsilon) \left[1 + \frac{\epsilon^3 g_{m}^{A}(\epsilon)}{g_{m}^{A}(\epsilon)} \right] (1 + t),
\]
for \(0 < \epsilon \leq \epsilon_{1}, 0 \leq t < T^{\sigma}(\epsilon)\)

We set \(u_{2D}^{\epsilon} = (u_{1}^{\epsilon}, u_{2}^{\epsilon}, 0)\). We multiply (0.1) with \(A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}\) and integrate over \(\Omega_{\epsilon}\) to obtain:
\[
\frac{1}{2} \frac{d}{dt} |A_{\epsilon}^{1/2} M_{\epsilon} u_{2D}^{\epsilon}|^2 + \nu |A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}|^2 + b_{\epsilon}(M_{\epsilon} u_{2D}^{\epsilon}, M_{\epsilon} u_{2D}^{\epsilon}, A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}) + b_{\epsilon}(N_{\epsilon} u^{\epsilon}, N_{\epsilon} u^{\epsilon}, A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}) = (M_{\epsilon} f^{\epsilon}, A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}).
\]
(4.16)

Note that
\[
b_{\epsilon}(M_{\epsilon} u_{2D}^{\epsilon}, M_{\epsilon} u_{2D}^{\epsilon}, A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}) = \epsilon \tilde{b}(M_{\epsilon} u_{2D}^{\epsilon}, M_{\epsilon} u_{2D}^{\epsilon}, \tilde{A} M_{\epsilon} u_{2D}^{\epsilon}) = 0,
\]
due to a well-known orthogonality property in the periodic boundary conditions case; therefore (4.16) becomes:
\[
\frac{d}{dt} |A_{\epsilon}^{1/2} M_{\epsilon} u_{2D}^{\epsilon}|^2 + \nu |A_{\epsilon} M_{\epsilon} u_{2D}^{\epsilon}|^2 \leq \frac{|M_{\epsilon} f^{\epsilon}|^2}{\nu} + \frac{c \epsilon}{\nu} |A_{\epsilon}^{1/2} N_{\epsilon} u^{\epsilon}|^2 |A_{\epsilon} N_{\epsilon} u^{\epsilon}|^2,
\]
for \(0 < \epsilon \leq \epsilon_{1}, 0 \leq t < T^{\sigma}(\epsilon)\).

Hence, with the Gronwall lemma we have:
\[
|A_{\epsilon}^{1/2} M_{\epsilon} u_{2D}^{\epsilon}(t)|^2 \leq |A_{\epsilon}^{1/2} M_{\epsilon} u_{2D}^{\epsilon}(0)|^2 \exp(-\nu \lambda_{1} t) + \frac{|M_{\epsilon} f^{\epsilon}|^2}{\nu^2 \lambda_{1}} \\
+ \frac{c \epsilon}{\nu} \int_0^t |A_{\epsilon}^{1/2} N_{\epsilon} u^{\epsilon}(s)|^2 |A_{\epsilon} N_{\epsilon} u^{\epsilon}(s)|^2 ds,
\]
for \(0 < \epsilon \leq \epsilon_{1}, 0 \leq t < T^{\sigma}(\epsilon)\).
Using (4.11) and (4.12), we estimate

\[
\frac{c\epsilon}{\nu} \int_0^t |A^{1/2}_\epsilon N_\epsilon u^\epsilon(s)|^2 \epsilon|A_\epsilon N_\epsilon u^\epsilon(s)|^2 ds
\leq \frac{c\epsilon}{\nu} \sup_{0 \leq s \leq t} |A^{1/2}_\epsilon N_\epsilon u^\epsilon(s)|^2 \left[\int_0^t |A_\epsilon N_\epsilon u^\epsilon(s)|^2 ds \right]
\leq c(\nu) \epsilon R_m^2(\epsilon)(1 + t) = \text{(using (4.2))}
\leq c(\nu) \epsilon R_m^4(\epsilon)(1 + t) \leq \text{(using (4.7))}
\leq c(\nu) \epsilon^{-q} g_n^4(\epsilon) R_0^2(\epsilon)(1 + t).
\]

We deduce from (4.18), (4.2) and the previous estimate that

\[
|A^{1/2}_\epsilon M_\epsilon u^\epsilon_2(t)|^2 \leq c(\nu, \lambda_1) R_m^2(\epsilon) + c(\nu) \epsilon^{-q} g_n^4(\epsilon) R_0^2(\epsilon)(1 + t)
= c(\nu, \lambda_1) g_m^2(\epsilon) \left[1 + \frac{c^{1-q} g_m^4(\epsilon)}{g_m^2(\epsilon)}(1 + t) \right] R_0^2(\epsilon), \text{ for } 0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon).
\]

Now we set \(\nu^\epsilon = (0, 0, M_\epsilon u_3^\epsilon) \). We multiply (0.1) with \(A_\epsilon M_\epsilon v^\epsilon \) and we integrate over \(\Omega_\epsilon \) to obtain

\[
\frac{1}{2} \frac{d}{dt} |A^{1/2}_\epsilon u^\epsilon_2|^2 + \nu|A_\epsilon v^\epsilon|^2 + b(\epsilon M_\epsilon u^\epsilon_2, \nu^\epsilon, A_\epsilon v^\epsilon) + b(N_\epsilon u^\epsilon, N_\epsilon u^\epsilon, A_\epsilon v^\epsilon) = (M_\epsilon f^\epsilon_3, A_\epsilon v^\epsilon)
\]

Note that

\[
|b(\epsilon M_\epsilon u^\epsilon_2, \nu^\epsilon, A_\epsilon v^\epsilon)| \leq c\epsilon |M_\epsilon u^\epsilon_2| L^2(\omega) |\nabla v^\epsilon| L^2(\omega) |\tilde{A}v^\epsilon| L^2(\omega)
\leq \frac{\nu}{8} |A_\epsilon v^\epsilon|^2 + \frac{c}{\nu^2 \epsilon^2} |M_\epsilon u^\epsilon_2|^2 |A^{1/2}_\epsilon M_\epsilon u^\epsilon_2|^2 |A^{1/2}_\epsilon v^\epsilon|^2.
\]

and

\[
|b(N_\epsilon u^\epsilon, N_\epsilon u^\epsilon, A_\epsilon v^\epsilon)| \leq \frac{\nu}{8} |A_\epsilon v^\epsilon|^2 + \frac{c\epsilon}{\nu} |A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 |A_\epsilon N_\epsilon u^\epsilon|^2.
\]

Hence (4.20)-(4.22) give:

\[
\frac{d}{dt} |A^{1/2}_\epsilon v^\epsilon|^2 + \nu|A_\epsilon v^\epsilon|^2 \leq c|M_\epsilon f^\epsilon_3|^2 + \frac{c\epsilon}{\nu} |A^{1/2}_\epsilon N_\epsilon u^\epsilon|^2 |A_\epsilon N_\epsilon u^\epsilon|^2
+ \frac{c}{\nu^2 \epsilon^2} |M_\epsilon u^\epsilon_2|^2 |A^{1/2}_\epsilon M_\epsilon u^\epsilon_2|^2 |A^{1/2}_\epsilon v^\epsilon|^2,
\]

for \(0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon) \), and Gronwall’s lemma yields:

\[
|A^{1/2}_\epsilon v^\epsilon(t)|^2 \leq |A^{1/2}_\epsilon v^\epsilon(0)|^2 \exp(-\nu\lambda_1 t) + \frac{c|M_\epsilon f^\epsilon_3|^2}{\nu^2 \lambda_1}
+ c(\nu) \epsilon \left[\sup_{0 \leq s \leq t} |A^{1/2}_\epsilon N_\epsilon u^\epsilon(s)|^2 \right] \left(\int_0^t |A_\epsilon N_\epsilon u^\epsilon(s)|^2 ds \right) \]
\[
+ \frac{c(\nu)}{\epsilon^2} \left[\sup_{0 \leq s \leq t} \lambda_1^{-1} |A^{1/2}_\epsilon M_\epsilon u^\epsilon_2(s)|^2 \right] \left(\int_0^t |A^{1/2}_\epsilon v^\epsilon(s)|^2 ds \right),
\]

for \(0 < \epsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\epsilon) \).
We use (4.11), (4.12), (4.19) and (4.15) in (4.24) and we obtain:

\[
|A_{\varepsilon}^{1/2}v^\varepsilon(t)|^2 \leq c(\nu, \lambda_1)R_m^2(\varepsilon) + c(\nu)\varepsilon R_0^2(1 + t) + \frac{c(\nu, \lambda_1)}{\varepsilon^2}g_m^6(\varepsilon) \left[1 + \frac{\varepsilon^{1-q}g_n^4(\varepsilon)}{g_m^2(\varepsilon)}(1 + t)^2 \right]^2 \left[1 + \frac{\varepsilon^{3-q}g_n^4(\varepsilon)}{g_m^2(\varepsilon)} \right] R_0^6(1 + t).
\]

We use (4.7) and we obtain:

\[
|A_{\varepsilon}^{1/2}v^\varepsilon(t)|^2 \leq c(\nu, \lambda_1)\left\{ g_m^2(\varepsilon) + \varepsilon^{1-q}g_n^4(\varepsilon)(1 + t) + \varepsilon^{-2-2q}g_m^6(\varepsilon) \left[1 + \frac{\varepsilon^{1-q}g_n^4(\varepsilon)}{g_m^2(\varepsilon)}(1 + t)^2 \right]^2 \left[1 + \frac{\varepsilon^{3-q}g_n^4(\varepsilon)}{g_m^2(\varepsilon)} \right] (1 + t) \right\} R_0^2(\varepsilon) \tag{4.25}
\]

for \(0 < \varepsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\varepsilon)\).

Now we take into account the expressions of \(g_m\) and \(g_n\) given by (4.3) and we rewrite (4.19) and (4.25) as:

\[
|A_{\varepsilon}^{1/2}M_{\varepsilon}u_{2D}^\varepsilon(t)|^2 \leq c(\nu, \lambda_1)\frac{\varepsilon^{2(q+1)}}{|\ln \varepsilon|} \left[1 + \frac{1 + t}{|\ln \varepsilon|} \right] R_0^2(\varepsilon), \tag{4.26}
\]

for \(0 < \varepsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\varepsilon)\).

and

\[
|A_{\varepsilon}^{1/2}v^\varepsilon(t)|^2 \varepsilon \leq c(\nu, \lambda_1)\frac{\varepsilon^{2(q+1)}}{|\ln \varepsilon|^3} \left(1 + \frac{1 + t}{|\ln \varepsilon|} \right) R_0^2(\varepsilon)
+ c(\nu, \lambda_1)\frac{1 + t}{|\ln \varepsilon|^3} \left[1 + \frac{(1 + t)^2}{|\ln \varepsilon|} \right]^2 \left[1 + \frac{c^2}{|\ln \varepsilon|} \right] R_0^2(\varepsilon)
\leq c(\nu, \lambda_1)\frac{\varepsilon^{2(q+1)}}{|\ln \varepsilon|^3} \left(1 + \frac{1 + t}{|\ln \varepsilon|} \right) R_0^2(\varepsilon)
+ c(\nu, \lambda_1)\left[\frac{(1 + t)^3}{|\ln \varepsilon|^5} + \frac{(1 + t)^2}{|\ln \varepsilon|^4} + \frac{(1 + t)}{|\ln \varepsilon|^3} \right] R_0^2(\varepsilon) \tag{4.27}
\]

for \(0 < \varepsilon \leq \epsilon_1, 0 \leq t < T^\sigma(\varepsilon)\).

At this stage we are able to prove that

\[
\lim_{\varepsilon \to 0} \frac{T^\sigma(\varepsilon)}{|\ln \varepsilon|^{1/2}} = \infty. \tag{4.28}
\]

If this were not true, we would have \((T^\sigma(\varepsilon) < \infty)\):

\[
(|A_{\varepsilon}^{1/2}N_{\varepsilon}u^\varepsilon|_{\varepsilon}^2 + |A_{\varepsilon}^{1/2}M_{\varepsilon}u_{2D}^\varepsilon|_{\varepsilon}^2 + |A_{\varepsilon}^{1/2}v^\varepsilon|_{\varepsilon}^2) (T^\sigma(\varepsilon)) = \sigma R_0^2(\varepsilon), \tag{4.29}
\]
so that, using (4.11), (4.26) and (4.27) we obtain
\[
\sigma \leq c(\nu) \frac{\epsilon^{5q-1}}{|\ln \epsilon|} + c(\nu, \lambda_1) \frac{\epsilon^{2(q+1)/4} + }{\ln \epsilon} \left[1 + \frac{1 + T^\sigma(\epsilon)}{|\ln \epsilon|} \right] + c(\nu, \lambda_1) \left[\frac{(1 + T^\sigma(\epsilon))^3}{|\ln \epsilon|^5} + \frac{(1 + T^\sigma(\epsilon))^2}{|\ln \epsilon|^4} + \frac{1 + T^\sigma(\epsilon)}{|\ln \epsilon|^3} \right].
\]
(4.30)

Since the right-hand side of the inequality (4.30) goes to zero as \(\epsilon \) goes to zero, we find \(\sigma = 0 \), a contradiction. Hence we have proved (4.28).

Now we will prove that \(T^\sigma(\epsilon) = \infty \).

We use the same notation as in (3.1), namely we set
\[
a_0(\epsilon) = |A^{1/2}_\epsilon u_0^\epsilon|, \quad b_0(\epsilon) = |A^{1/2}_\epsilon N_\epsilon u_0^\epsilon|, \quad \alpha(\epsilon) = |M_\epsilon f^\epsilon|, \quad \beta(\epsilon) = |N_\epsilon f^\epsilon|,
\]
We also consider:
\[
K_\epsilon^2 = |A^{1/2}_\epsilon M_\epsilon u_0^\epsilon|^2 + \frac{64}{\nu^2 \lambda_1} |M_\epsilon f^\epsilon|^2 + B_\epsilon^2,
\]
(4.31)

where
\[
B_\epsilon^2 = |A^{1/2}_\epsilon N_\epsilon u_0^\epsilon|^2 + |N_\epsilon f^\epsilon|^2
\]
(4.32)

Note that \(B_\epsilon \) and \(K_\epsilon \) are both bounded by \(c R_0 \) and therefore due to (4.1),
\[
\lim_{\epsilon \to 0} \epsilon^q B_\epsilon^2 = \lim_{\epsilon \to 0} \epsilon^q K_\epsilon^2 = 0.
\]
(4.33)

We choose \(\epsilon_4 = \epsilon_4(\nu, \lambda_1, q) > 0 \) satisfying the following conditions, where \(c_{10}(\nu) \) is defined below in (4.37)
\[
(i) \quad 0 < \epsilon_4 \leq 1,
(ii) \quad c_{10}(\nu) \epsilon^q B_\epsilon^2 \leq \frac{1}{32}, \quad \epsilon^{1-q}(1 + |\ln \epsilon|^{1/2}) \leq 2 \quad \text{for } 0 < \epsilon \leq \epsilon_4,
(iii) \quad \frac{2\epsilon^2}{\nu^2} \leq \frac{1}{8}, \quad \exp \left(-\frac{\nu |\ln \epsilon|^{1/2}}{2\epsilon^2} \right) \leq \frac{1}{4}, \quad \exp \left(-\nu \lambda_1 |\ln \epsilon|^{1/2} \right) \leq \frac{1}{8}, \quad \text{for } 0 < \epsilon \leq \epsilon_4,
(iv) \quad \frac{T^\sigma(\epsilon)}{|\ln \epsilon|^{1/2}} > 4 \quad \text{for } 0 < \epsilon \leq \epsilon_4.
\]
(4.34)

The existence of \(\epsilon_4 \) is obvious, since the left-hand side of the inequalities (ii) and (iii) go to zero as \(\epsilon \) goes to zero; and by (4.28) the left-hand side of (iv) goes to infinity as \(\epsilon \) goes to zero.

Using (4.8), (4.10), (4.34) and \(|A^{1/2}_\epsilon N_\epsilon u^\epsilon| \leq \epsilon |A^{1/2}_\epsilon N_\epsilon u^\epsilon| \), we easily find
\[
\int_0^t |A^{1/2}_\epsilon N_\epsilon u^\epsilon(s)|^3 |A_\epsilon N_\epsilon u^\epsilon(s)| ds \leq \frac{\nu}{4} \max(1, \frac{1}{\nu^3}) B_\epsilon^2 (1 + t), \quad 0 \leq t \leq T^\sigma(\epsilon).
\]
(4.35)

Hence
\[
|A^{1/2}_\epsilon N_\epsilon u^\epsilon(t)|^2 \leq b_0^2(\epsilon) \exp \left(-\frac{\nu t}{2\epsilon^2} \right) + \frac{2\epsilon^2}{\nu^2} |\beta(\epsilon)|^2, \quad 0 \leq t \leq T^\sigma(\epsilon)
\]
(4.36)
We have shown that the claim holds for n.

We set n and σ. Observe that by (4.34)(iv), t and for a suitable constant $c(\nu)$,

$$
|A^{1/2}_\epsilon M_\epsilon u'(t)|^2 \leq a_0^2(\epsilon) \exp(-\nu_1 t) + \frac{2}{\nu^2 \lambda_1} |M_\epsilon f|^2 + c_{10}(\nu) \epsilon B^2_\epsilon (1 + t),
$$

$$
0 \leq t \leq T^\sigma(\epsilon).
$$

We set

$$
t_\epsilon = |\ln \epsilon|^{1/2} \quad \text{for } 0 < \epsilon \leq \epsilon_4.
$$

Observe that by (4.34)(iv), $t_\epsilon \leq T^\sigma(\epsilon)/4$. According to (4.36) and (4.37), we have:

$$
|A^{1/2}_\epsilon N_\epsilon u'(t_\epsilon)|^2 \leq b_0^2(\epsilon) \exp\left(-\frac{\nu t_\epsilon}{2\epsilon^2}\right) + \frac{2\epsilon^2}{\nu^2} \beta^2(\epsilon)
$$

\hspace{1cm} \leq b_0^2(\epsilon) \exp\left(-\frac{\nu |\ln \epsilon|^{1/2}}{2\epsilon^2}\right) + \frac{1}{8} \beta^2(\epsilon)

\hspace{1cm} \leq 1\frac{1}{4} b_0^2(\epsilon) + \frac{1}{8} \beta^2(\epsilon)

\hspace{1cm} \leq \frac{1}{4} B^2_\epsilon,

and

$$
|A^{1/2}_\epsilon M_\epsilon u'(t_\epsilon)|^2 \leq a_0^2(\epsilon) \exp(-\nu_1 t_\epsilon) + \frac{2\alpha^2(\epsilon)}{\nu^2 \lambda_1} + c_{10}(\nu)(\epsilon^2 B^2_\epsilon) \epsilon^{1-q}(1 + t_\epsilon) B^2_\epsilon
$$

\hspace{1cm} \leq a_0^2(\epsilon) \exp(-\nu_1 |\ln \epsilon|^{1/2}) + \frac{2\alpha^2(\epsilon)}{\nu^2 \lambda_1} + \frac{1}{32} \epsilon^{1-q}(1 + |\ln \epsilon|^{1/2}) B^2_\epsilon

\hspace{1cm} \leq 1\frac{1}{8} \left(a_0^2(\epsilon) + \frac{16\alpha^2(\epsilon)}{\nu^2 \lambda_1}\right) + \frac{1}{16} B^2_\epsilon

\hspace{1cm} \leq \frac{1}{4} K^2_\epsilon.

Hence, adding the last two relations

$$
|A^{1/2}_\epsilon u'(t_\epsilon)|^2 \leq \frac{1}{4} B^2_\epsilon + \frac{1}{4} K^2_\epsilon \leq \frac{1}{2} K^2_\epsilon.
$$

We claim that for any $n \geq 1$

$$
nt_\epsilon \leq T^\sigma(\epsilon)
$$

and

$$
|A^{1/2}_\epsilon N_\epsilon (nt_\epsilon)|^2 \leq \frac{1}{4} B^2_\epsilon; \quad |A^{1/2}_\epsilon M_\epsilon (nt_\epsilon)|^2 \leq \frac{1}{4} K^2_\epsilon.
$$

We have shown that the claim holds for $n = 1$. Suppose now that the claim holds for some n. We want to prove the induction step. We obtain the following estimates:

$$
|A^{1/2}_\epsilon N_\epsilon u'(t)|^2 \leq |A^{1/2}_\epsilon N_\epsilon u'(nt_\epsilon)|^2 \exp\left(-\frac{\nu(t - nt_\epsilon)}{2\epsilon^2}\right) + \frac{2\epsilon^2}{\nu^2} \beta^2(\epsilon), \quad \text{for } nt_\epsilon \leq t \leq T^\sigma(\epsilon).
$$
and using the induction hypothesis we find:

\[
|A_\epsilon^{1/2} N_\epsilon u^\epsilon(t)|^2 \leq \frac{1}{4} B_\epsilon^2 \exp \left(-\frac{\nu(t - nt_\epsilon)}{2\epsilon^2} \right) + \frac{2\epsilon^2}{\nu^2} \beta^2(\epsilon) \\
\leq \frac{1}{4} B_\epsilon^2 \exp \left(-\frac{\nu(t - nt_\epsilon)}{2\epsilon^2} \right) + \frac{1}{8} \beta^2(\epsilon), \quad \text{for } nt_\epsilon \leq t < T^\sigma(\epsilon).
\]

(4.41)

Similarly we have

\[
|A_\epsilon^{1/2} M_\epsilon u^\epsilon(t)|^2 \leq |A_\epsilon^{1/2} M_\epsilon u^\epsilon(nt_\epsilon)|^2 \exp(-\nu\lambda_1(t - nt_\epsilon)) + \frac{2\alpha^2(\epsilon)}{\nu^2\lambda_1} \\
+ c_{10}(\nu)\epsilon \left[|A_\epsilon^{1/2} N_\epsilon u^\epsilon(nt_\epsilon)|^2 + |M_\epsilon f^\epsilon|^2 \right]^2 (1 + (t - nt_\epsilon))
\]

for \(nt_\epsilon \leq t < T^\sigma(\epsilon) \)

and using the induction hypothesis we obtain:

\[
|A_\epsilon^{1/2} M_\epsilon u^\epsilon(t)|^2 \leq \frac{1}{4} K_\epsilon^2 \exp(-\nu\lambda_1(t - nt_\epsilon)) + \frac{2\alpha^2(\epsilon)}{\nu^2\lambda_1} \\
+ c_{10}(\nu)\epsilon \left[\frac{5}{4} \right]^2 B_\epsilon^4 (1 + (t - nt_\epsilon)) \\
\leq \frac{1}{4} K_\epsilon^2 \exp(-\nu\lambda_1(t - nt_\epsilon)) + \frac{2\alpha^2(\epsilon)}{\nu^2\lambda_1} \\
+ c_{10}(\nu)(\epsilon^q B_\epsilon^2) \left[\frac{5}{4} \right]^2 B_\epsilon^2 \epsilon^{1-q} [1 + (t - nt_\epsilon)] \\
\leq \frac{1}{4} K_\epsilon^2 \exp(-\nu\lambda_1(t - nt_\epsilon)) + \frac{2\alpha^2(\epsilon)}{\nu^2\lambda_1} \\
+ \frac{1}{32} \left[\frac{5}{4} \right]^2 B_\epsilon^2 \epsilon^{1-q} [1 + (t - nt_\epsilon)].
\]

(4.42)

Now, if \(nt_\epsilon \leq t \leq (n + 1)t_\epsilon \), we obtain from (4.41) and (4.42)

\[
|A_\epsilon^{1/2} N_\epsilon u^\epsilon(t)|^2 \leq \frac{1}{4} B_\epsilon^2 + \frac{1}{8} \beta^2(\epsilon) \leq \frac{3}{8} B_\epsilon^2
\]

(4.43)

\[
|A_\epsilon^{1/2} M_\epsilon u^\epsilon(t)|^2 \leq \frac{1}{4} K_\epsilon^2 + \frac{2\alpha^2(\epsilon)}{\nu^2\lambda_1} + \frac{1}{32} \left[\frac{5}{4} \right]^2 B_\epsilon^2 \epsilon^{1-q}(1 + |\ln \epsilon|^{1/2}) \\
\leq \frac{1}{4} K_\epsilon^2 + \frac{1}{32} K_\epsilon^2 + \frac{1}{32} \left[\frac{5}{4} \right]^2 2 B_\epsilon^2 \leq \frac{3}{8} K_\epsilon^2
\]

(4.44)
Hence
\[|A_{\varepsilon}^{1/2} u^\varepsilon(t)|^2 \leq \frac{3}{8} B_{\varepsilon}^2 + \frac{3}{8} K_{\varepsilon}^2 \leq K_{\varepsilon}^2 \text{ for } nt_{\varepsilon} \leq t \leq (n + 1)t_{\varepsilon}. \quad (4.45) \]

and if
\[\sigma > \max(1, \frac{16}{\nu^2 \lambda_1}), \quad (4.46) \]

we obtain
\[|A_{\varepsilon}^{1/2} u^\varepsilon(t)|^2 < \sigma R_0^2(\varepsilon), \text{ for } nt_{\varepsilon} \leq t \leq (n + 1)t_{\varepsilon}. \quad (4.47) \]

In addition, taking \(t = (n + 1)t_{\varepsilon} \) in (4.45) and (4.46), we obtain
\[
|A_{\varepsilon}^{1/2} N_{\varepsilon} u^\varepsilon((n + 1)t_{\varepsilon})|^2 \leq \frac{1}{4} B_{\varepsilon}^2 \exp \left(-\frac{\nu t_{\varepsilon}}{2\varepsilon^2}\right) + \frac{1}{8} \beta^2(\varepsilon)
\leq \frac{1}{16} B_{\varepsilon}^2 + \frac{1}{8} \beta^2(\varepsilon) \leq \frac{1}{4} B_{\varepsilon}^2,
\]

\[
|A_{\varepsilon}^{1/2} M_{\varepsilon} u^\varepsilon((n + 1)t_{\varepsilon})|^2 \leq \frac{1}{4} K_{\varepsilon}^2 \exp(-\nu \lambda_1 t_{\varepsilon}) + \frac{2\alpha^2(\varepsilon)}{\nu^2 \lambda_1} + \frac{1}{32} \left(\frac{5}{4}\right)^2 B_{\varepsilon}^2 \epsilon^{1-q}(1 + t_{\varepsilon})
\leq \frac{1}{32} K_{\varepsilon}^2 + \frac{2\alpha^2(\varepsilon)}{\nu^2 \lambda_1} + \frac{1}{16} \left(\frac{5}{4}\right)^2 B_{\varepsilon}^2
\leq \frac{1}{32} K_{\varepsilon}^2 + \frac{1}{8} B_{\varepsilon}^2 \leq \frac{1}{4} K_{\varepsilon}^2.
\]

This proves the claim for \(n + 1 \) and proves that \(T^\sigma(\varepsilon) > nt_{\varepsilon} \) for all \(n \) provided (4.46) is satisfied. Hence \(T^\sigma(\varepsilon) = \infty \) for \(0 < \varepsilon \leq \varepsilon_4 \). We can state the following result

Theorem 4.1. There exists \(\varepsilon_4 = \varepsilon_4(\nu, q, \sigma) \) such that if \(u_0, f \) are given, \(u_0 \in V_\nu^\varepsilon, f \in H_\nu^\varepsilon, u_0, f \) satisfying (4.1)-(4.4), and \(0 < \varepsilon \leq \varepsilon_4 \), then the strong solution \(u \) of (0.1)-(0.3) with periodic boundary conditions exists for all times, i.e.
\[
u^\varepsilon \in C([0, \infty), V_\nu^\varepsilon) \cap L^2(0, T; D(A_\nu)), \quad \forall T > 0.
\]

References

