On the weighted decay for solutions of the Navier-Stokes system

Igor Kukavica*

March 13, 2008

Department of Mathematics
University of Southern California
Los Angeles, CA 90089
e-mail: kukavica@usc.edu

Abstract

We consider the question to which extend the temporal decay \(k u(\cdot, t)k_{L^2} = O(t^{-\gamma_0})\) for solutions \(u\) of the Navier-Stokes equation influences the decay of weighted norms. We prove that \(\|\varepsilon|^{a}u(\cdot, t)\|_{L^2} = O(t^{-\gamma_0+a/2})\) holds under the condition \(0 < a < n/2 + 1\). This extends the range of weights obtained in [KT2]. A wider range of exponents is also obtained for the decay of \(L^p\) norms.

Keywords: Navier-Stokes equation, time decay, space decay, strong solutions

Mathematics Subject Classification: 35Q30, 76D05, 35K55, 35K15

1 Introduction

In this paper, we address the decay rates of weighted norms for solutions of the Navier-Stokes equation with potential forces. More specifically, we are interested in to which extent the temporal decay of \(L^2\) norms influences the decay rate of the weighted norms of \(u\). The question of decay to 0 of the energy norm \(\|u(\cdot, t)\|_{L^2}\) was posed by Leray in [L]. It was answered positively by Kato in [K] for dimension \(n = 2\) and by Schonbek in space dimension 3 [S1]. Schonbek’s Fourier splitting technique was also useful in addressing the relationship between the conditions on the initial datum \(u_0\) and the rate \(\gamma_0\) in

\[\|u(\cdot, t)\|_{L^2} = O(t^{-\gamma_0})\]

where the notation (1.1) means \(\sup_{t \to -\infty} t^{\gamma_0} \|u(\cdot, t)\|_{L^2} < \infty\). In particular, by [S2, KM], solutions \(u\) of the Navier-Stokes equations decay with the rate \(\gamma_0 = (n/2)(1/p - 1/2)\) if \(u_0 \in L^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)\).

*supported in part by the NSF grant DMS-0604886
Furthermore, Wiegner proved in [W] that if \(u_0 \in L^2 \cap B_2^{-\alpha, \infty} \) where \(0 < \alpha \leq (n + 2)/2 \) then we have (1.1) with \(\gamma_0 = \alpha/2 \). If the initial datum is localized, i.e., \(u_0 \in \mathcal{S} \), then by the divergence-free condition it follows \(u_0 \in B_2^{-(n+2)/2, \infty} \) which then implies (1.1) with \(\gamma_0 = -n/4 - 1/2 \). This results turns out to be optimal for such data as shown by Miyakawa and Schonbek in [MS], where it was shown that \(\|u(\cdot, t)\|_{L^2} = \alpha(t^{-n/4-1/2}) \) imposes special restrictions on \(u \) which most solutions do not satisfy. For further results, cf. [B1, B2, BV, GW, KT1, Ku, Le, SW, T].

The problem we consider is the following: Given (1.1), for which \(a, p, \) and \(\beta \) can we conclude

\[
\| |x|^a u(\cdot, t) \|_{L^2} = \mathcal{O}(t^{-\beta}).
\] (1.2)

This question was raised by Amrouche et al [AGSS], and based on explicit examples for the heat equation, the conjectured rate is \(\beta = -\gamma_0 + a/2 \). It is not difficult to obtain such rates for the linear heat equation; in the case of the Navier-Stokes equation, the presence of the pressure causes difficulties with obtaining the optimal \(\beta \) as well as the range of \(a \) for which it is valid.

Amrouche et al showed in [AGSS, Theorem 4.1] that (1.2) holds with \(\beta = \gamma_0 - a\gamma_0/n \) provided \(2 \leq n \leq 5 \) and \(a \in [0, n/2] \). In [BJ, Theorem 4.1], the obtained rate is \(\beta = n/4 - a/2 + \epsilon \) under the condition \(a \in [0, n/2] \). In [KT2], we proved the optimal rate of decay \(\beta = \gamma_0 - a/2 \) under the condition \(a \in [0, n/2] \), without any restriction on \(\gamma_0 \).

In this paper, we improve the result of [KT2] by extending the range to \(a \in [0, n/2 + 1] \). Also, we prove that (1.1) implies

\[
\| |x|^a u(\cdot, t) \|_{L^p} = \mathcal{O}(t^{-\gamma_0 + a - (n/2)(1/2 - 1/p)})
\] (1.3)

under the condition \(a \in [0, n/p' + 1] \) (in [KT2] the same was obtained with \(a \in [0, n/p'] \)). There is an argument suggesting that the range \(a < n/p' + 1 \) might indeed be optimal at least for the case \(\gamma_0 = n/4 + 1/2 \). Namely, by [M, BM, DS], there exist solutions with spatial decay \(n + 1 \) which is exactly \(n/p' + 1 \) if \(p = \infty \). It is not clear whether our result holds for the endpoint \(a = n/p' + 1 \).

2 Notation and the main theorem

Let \(u \in C([0, \infty), H^1(\mathbb{R}^n)) \) be a solution of the Navier-Stokes equation

\[
\begin{align*}
 u_t - \Delta u + (u \cdot \nabla)u + \nabla \pi &= 0 \\
 \nabla \cdot u &= 0
\end{align*}
\] (2.1)

with an initial condition \(u(\cdot, 0) = u_0 \). We have set the viscosity to 1, which can be achieved by rescaling. We assume that \(u_0 \) is divergence-free and well localized, i.e., \(u_0 \in \mathcal{S} \). We also assume that the solution
satisfies
\[\|u(\cdot, t)\|_{L^2} = O(t^{-\gamma_0}) \]
and
\[\|u(\cdot, t)\|_{L^\infty} = O(1) \]
as \(t \to \infty \). Throughout this paper, the notation \(\phi(t) = O(t^a) \) means \(\sup_{t \geq 1} t^{-a} |\phi(t)| < \infty \). The above assumption implies that the solution is strong and thus infinitely smooth in both space and time variables. By [W], we may assume \(\gamma_0 \geq n/4 + 1/2 \). The following is our main result.

Theorem 2.1. Let \(u \) be as above. Then
\[\|x|^a u(\cdot, t)\|_{L^p} = O(t^{-\gamma_0 + a/2 - (n/2)(1/2 - 1/p)}) \] (2.2)
for all \(p \in [2, \infty) \) and \(a \in [0, n/p' + 1) \), where \(p' = p/(p - 1) \).

In [KT2], we proved the same statement but with a weaker assertion \(a \in [0, n/p') \). In the proof, we need the following simple fact: If \(\eta \in \mathcal{C}_0^\infty(\mathbb{R}^n) \) and \(\alpha > 2 - n/p \). Then
\[\frac{x^\alpha}{|x|^2} \eta(x) \in L^p_x(\mathbb{R}^n), \quad p \in (1, \infty), \quad a \in \left[0, \alpha - 2 + \frac{n}{p}\right] \] (2.3)
where \(L^p_x(\mathbb{R}^n) \) denotes the standard Lebesgue-Sobolev space. The proof consists of partitioning the function smoothly into dyadic shells and using Sobolev type inequalities on every shell (cf. [KT2]).

Proof of Theorem 2.1. As the first step in the proof, we claim that
\[\|x|^a D_x u(\cdot, t)\|_{L^p} = O(t^{-\gamma_0 + a/2 - (n/2)(1/2 - 1/p)}) \] (2.4)
for all \(a \in [0, 2 + n - n/p) \), where \(D_x \) denotes the gradient in \(x \). The vorticity \(\omega_{ij} = \partial_i u_j - \partial_j u_i \) satisfies
\[\partial_t \omega_{ij} - \Delta \omega_{ij} + \partial_i (u_k \omega_{kj}) - \partial_j (u_k \omega_{ki}) = 0, \quad i, j = 1, \ldots, n. \] (2.5)
From [KT2], we recall
\[\|x|^a D^b_x \omega(\cdot, t)\|_{L^p} = O(t^{-\gamma_0 - 1/2 + a/2 - b/2 - (n/2)(1/2 - 1/p)}) \] as \(t \to \infty \) (2.6)
for all \(p \in [2, \infty) \), \(a \geq 0 \), and \(b \in \mathbb{N}_0 \), where \(D^b_x \) denotes the totality of all partial derivatives of order \(b \). As in [KT2], we have \(\hat{\omega}_{kij}(0, t) = 0 \), where \(\hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-i\xi \cdot x} dx \) is the Fourier transform (in the \(x \) variable). Moreover, we assert
\[\nabla \hat{\omega}_{kij}(0, t) = 0 \] (2.7)
for all \(t \in \mathbb{R}^n \), which is equivalent to
\[\int x_m \omega_{ij}(x, t) dx = 0, \quad i, j, m \in \{1, \ldots, n\}. \] (2.8)
Note that we can not conclude that \(\int x_m \partial_i u_j \) equals \(-\delta_{mi} \int u_j \) using integration by parts since we do not know whether \(\int |x||u| < \infty \) (here, \(\delta_{im} = 0 \) if \(i \neq m \) and \(\delta_{im} = 1 \) if \(i = m \)). Indeed, this property is not preserved by the evolution [BM]. We may conclude this at time \(t = 0 \):

\[
\int x_m \omega_{ij}(x, 0) dx = \int x_m (\partial_i u_{0j} - \partial_j u_{0i}) = -\delta_{im} \int u_{0j} + \delta_{jm} \int u_{0i} = 0
\]

since \(u_0 \in \mathcal{S} \) is divergence-free. Now, fix an arbitrary \(\eta \in C_0^\infty(\mathbb{R}^n) \) such that \(\eta \equiv 1 \) on \(B_1(0) \) and \(\eta \equiv 0 \) on \(B_2(0)^c \). Then, using (2.5) and integration by parts,

\[
\int x_m \omega_{ij}(x, t) \eta \left(\frac{x}{R} \right) dx - \int x_m \omega_{ij}(x, 0) \eta \left(\frac{x}{R} \right) dx
\]

\[
= \int_0^t \int \left(\frac{2}{R} \delta_{km} \omega_{ij}(x, s) \partial_k \eta \left(\frac{x}{R} \right) + \frac{1}{R^2} x_m \omega_{ij}(x, s) \Delta \eta \left(\frac{x}{R} \right) + \delta_{im} u_k(x, s) \omega_{kj}(x, s) \eta \left(\frac{x}{R} \right) \right. \]

\[
\left. + \delta_{jm} u_k(x, s) \omega_{ik}(x, s) \partial_j \eta \left(\frac{x}{R} \right) - \frac{1}{R} x_m u_k(x, s) \omega_{ij}(x, s) \partial_j \eta \left(\frac{x}{R} \right) \right) dx \; ds
\]

and thus, writing \(\omega_{ij} = \partial_i u_j - \partial_j u_i \) and integrating by parts, we get

\[
\int x_m \omega_{ij}(x, t) \eta \left(\frac{x}{R} \right) dx - \int x_m \omega_{ij}(x, 0) \eta \left(\frac{x}{R} \right) dx
\]

\[
= \int_0^t \int \left(\frac{2}{R} \delta_{km} \omega_{ij}(x, s) \partial_k \eta \left(\frac{x}{R} \right) + \frac{1}{R^2} x_m \omega_{ij}(x, s) \Delta \eta \left(\frac{x}{R} \right) \right. \]

\[
- \frac{1}{R} \delta_{im} u_k(x, s) \omega_{kj}(x, s) \partial_k \eta \left(\frac{x}{R} \right) + \frac{1}{2R} \delta_{jm} u_k(x, s) \omega_{ik}(x, s) \partial_j \eta \left(\frac{x}{R} \right) \]

\[
+ \frac{1}{2R} \delta_{km} u_k(x, s) \omega_{ij}(x, s) \partial_j \eta \left(\frac{x}{R} \right) - \frac{1}{R} x_m u_k(x, s) \omega_{ij}(x, s) \partial_j \eta \left(\frac{x}{R} \right) \right) dx \; ds.
\]

The equation (2.8) follows for all \(t \geq 0 \) by sending \(R \to \infty \). (Note that \(x_m u_k \omega_{kj} \in L^1(\mathbb{R}^n \times (0, t)) \) for all \(t \geq 0 \).

Using \(\dot{\omega}_{kj}(0, t) = 0 \) and (2.7), we have by the Taylor formula

\[
\dot{\omega}_{kj}(\xi, t) = \frac{1}{2} \xi_i \xi_m \partial_m \dot{\omega}_{kj}(0, t) + \frac{1}{2} \xi_i \xi_m \xi_n \int_0^1 (1 - s)^2 \partial_{lmq} \dot{\omega}_{kj}(s \xi, t) \; ds
\]

\[
= f^{(1)}_{kj}(\xi, t) + f^{(2)}_{kj}(\xi, t).
\]

Denote \(L = (-\Delta)^{1/2} \). By

\[
\partial_i u_j = \frac{\xi_i \xi_k}{|\xi|^2} \dot{\omega}_{kj}, \quad i, j = 1, \ldots, n
\]
and the Hausdorff-Young inequality, we obtain
\[
\| x^n \partial x_j \|_{L^p} \leq C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) \dot{\omega}_{kj}(\xi, t)}{|\xi|^2} \right) \right\|_{L^{p'}} + C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) (1 - \eta(\sqrt{t} \xi)) \dot{\omega}_{kj}(\xi, t)}{|\xi|^2} \right) \right\|_{L^{p'}}
\]
\[
\leq C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) f_{kj}(1)}{|\xi|^2} \right) \right\|_{L^{p'}} + C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) f_{kj}(2)}{|\xi|^2} \right) \right\|_{L^{p'}}
\]
\[
+ C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) \dot{\omega}_{kj}(\xi, t)}{|\xi|^2} \right) \right\|_{L^{p'}} = I_1 + I_2 + I_3.
\]

For the first term, we have
\[
I_1 = C \left\| L^a \left(\frac{\xi \xi_k \eta(\sqrt{t} \xi) \dot{\omega}_{kj}(0, t)}{|\xi|^2} \right) \right\|_{L^{p'}}
\]
\[
= \frac{C}{2} \left\| L^a \left(\frac{\xi \xi_k \xi \xi_m \eta(\sqrt{t} \xi)}{|\xi|^2} \right) \right\|_{L^{p'}} |\dot{\omega}_{kj}(0, t)|. \tag{2.9}
\]

The third factor in the far right expression of (2.9) is estimated as
\[
|\dot{\omega}_{kj}(0, t)| \leq C\|x|^2 \omega\|_{L^1} \leq C\|x|^2 \omega\|_{L^2}^{1/2} \|x^n \omega\|_{L^2}^{1/2} = O(t^{-\gamma_0 + n/4 + 1/2}).
\]

(Here we used the inequality \(\|f\|_{L^1} \leq \|f\|_{L^2}^{1/2} \|x^n \|_{L^2}^{1/2}\) which is, for nonzero \(f\), obtained by substituting \(b = (\|x^n \|_{L^2}/\|f\|_{L^2})^{1/2}\) in the inequality \(\|f\|_{L^1} \leq \|(x + b)^n \|_{L^2} \|x + b\|_{L^2}^n \leq Cb^{-n/2}(\|x^n \|_{L^2} + b^n \|f\|_{L^2})\).) For the second factor in the far right expression of (2.9), making a substitution and using a chain rule
\[
L^a(f(b\xi)) = b^a(L^a f)(b\xi) \tag{2.10}
\]
we get
\[
\left\| L^a \left(\frac{\xi \xi_k \xi \xi_m \eta(\sqrt{t} \xi)}{|\xi|^2} \right) \right\|_{L^{p'}} = t^{-(2-a)/2-n/2p'} \left\| L^a \left(\frac{\xi \xi_k \xi \xi_m \eta(\xi)}{|\xi|^2} \right) \right\|_{L^{p'}} = O(t^{-(2-a)/2-n/2p'})
\]
provided \(p' (2 - a) > -n\), i.e., \(2 + n - n/p > a\). We conclude
\[
I_1 = O(t^{-\gamma_0 - 1/2 + a/2-n/4+n/2})
\]
derived under the condition \(a < 2 + n - n/p\). Now, we find \(q, r \in (p', \infty)\) such that \(1/q + 1/r = 1/p'\) with \(q(a - 3) < n\) and \(r > n\). (For this, simply take \(r = 2n\) and \(q = (1/p' - 1/r)^{-1}\).) Then, by [KPV, p. 334],
\[
I_2 = \left\| \frac{\xi \xi_k \eta(\sqrt{t} \xi) f_{kj}(2)}{|\xi|^2} \right\|_{L^{p'}} \leq C \left\| L^a \left(\frac{\xi \xi_k \xi \xi_m \xi \xi_g \eta(\sqrt{t} \xi)}{|\xi|^2} \right) \right\|_{L^{p'}} \left\| \int_0^1 (1 - s)^2 \partial_{\xi \xi m q} \dot{\omega}_{kj} (s\xi, t) \right\|_{L^r} \leq C \left\| L^a \left(\frac{\xi \xi_k \xi \xi_m \xi \xi_g \eta(\sqrt{t} \xi)}{|\xi|^2} \right) \right\|_{L^{p'}} \left\| \frac{\xi \xi_k \xi \xi_m \xi \xi_g \eta(\sqrt{t} \xi)}{|\xi|^2} \right\|_{L^{p'}} \left\| \int_0^1 (1 - s)^2 \partial_{\xi \xi m q} \dot{\omega}_{kj} (s\xi, t) \right\|_{L^r}. \tag{2.11}
\]
By the change of variable, by (2.10), and by (2.3), we have

\[\left\| L^a \left(\frac{\xi_1 \xi_2 \xi_3}{|\xi|^4} \eta(\sqrt{T_\xi}) \right) \right\|_{L^q} \leq C t^{(a-3-n/q)/2}. \]

On the other hand, using the Hausdorff-Young inequality, we get

\[\left\| \int_0^1 (1-s)^2 \partial_t m q \omega_{kj}(s \xi, t) \, ds \right\|_{L^r} \leq \int_0^1 (1-s)^2 \| \partial_t m q \omega_{kj}(s \xi, t) \|_{L^q} \, ds. \]

Note that

\[\| \partial_t m q \omega_{kj}(s \xi, t) \|_{L^r} = \frac{1}{s^{n/r}} \| \partial_t m q \omega_{kj}(s \xi, t) \|_{L^r} \leq \frac{C}{s^{n/r}} \| x^3 \omega_{kj}(s \xi, t) \|_{L^r} = \frac{1}{s^{n/r}} \mathcal{O}(t^{-\gamma_0+1-(n/r)(1-2/r')}), \]

and thus since \(n/r < 1 \),

\[\left\| \int_0^1 (1-s)^2 \partial_t m q \omega_{kj}(s \xi, t) \, ds \right\|_{L^r} = \mathcal{O}(t^{-\gamma_0+1-(n/2)(1/2-1/r')}). \]

Therefore, the first term on the far right of (2.11) is less than or equal to \(C t^{-\gamma_0-1/2+a/2-(n/2)(1/2-1/p)} \).

The same estimate holds for the second term in (2.11), and we get

\[I_2 = \mathcal{O}(t^{-\gamma_0-1/2+a/2-(n/2)(1/2-1/p)}). \]

For the term \(I_3 \), we have

\[I_3 \leq C \left\| L^a \left(\frac{\xi_2}{|\xi|^4} (1-\eta(\sqrt{T_\xi})) \right) \right\|_{L^r} \| \xi^2 \omega_{kj} \|_{L^q} + C \left\| \frac{\xi_2}{|\xi|^4} (1-\eta(\sqrt{T_\xi})) \right\|_{L^r} \| \xi^2 L^a \omega_{kj} \|_{L^q} \]

\[= \mathcal{O}(t^{-\gamma_0-1/2+a/2-(n/2)(1/2-1/p)}) \]

using \(\| f \|_{L^s} \leq C \| f \|_{L^2}^{3/2-1/s} \| x^n f \|_{L^2}^{1/s-1/2} \) from [GK], valid for \(s \in [1, 2] \), with \(f = |\xi|^2 \omega_{kj} \) and \(f = |\xi|^2 L^a \omega_{kj} \). We conclude that (2.4) holds subject to \(a \in [0, 2 + n - n/p) \). Using the weighted inequality from [CKN] on (2.4), we get

\[\| |x|^a u \|_{L^p} \leq C \| x^{a+1} \nabla u \|_{L^p} \]

provided \(a < 1 + n - n/p \), and the theorem is proven.

\[\square \]

References

