Measuring Sample Quality with Stein’s Method

Lester Mackey*,†

Joint work with Jackson Gorham†

Microsoft Research* Stanford University†

July 4, 2017
Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to massive datasets?

- **MCMC Benefit:** Approximates intractable posterior expectations $\mathbb{E}_P[h(Z)] = \int_X p(x)h(x)dx$ with asymptotically exact sample estimates $\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$

- **Problem:** Each point x_i requires iterating over entire dataset!
Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to massive datasets?

- **MCMC Benefit:** Approximates intractable posterior expectations
 \[\mathbb{E}_P[h(Z)] = \int_X p(x)h(x)dx \]
 with asymptotically exact sample estimates
 \[\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \]

- **Problem:** Each point \(x_i \) requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors

- Approximate standard MCMC procedure in a manner that makes use of only a small subset of datapoints per sample.
- Reduced computational overhead leads to faster sampling and reduced Monte Carlo variance.
- Introduces **asymptotic bias:** target distribution is not stationary.
- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced.
Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and variance diagnostics assume convergence to the target distribution and do not account for asymptotic bias
Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and variance diagnostics assume convergence to the target distribution and do not account for asymptotic bias

This talk: Introduce new quality measures suitable for comparing the quality of approximate MCMC samples
Challenge: Develop measure suitable for comparing the quality of *any* two samples approximating a common target distribution.

Given a continuous target distribution P with support $X = \mathbb{R}^d$ and density p known up to normalization, integration under P is intractable. Sample points $x_1, ..., x_n \in X$ define a discrete distribution Q_n with

$$E_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

used to approximate $E_P[h(Z)]$.

We make no assumption about the provenance of the x_i.

Goal: Quantify how well E_{Q_n} approximates E_P in a manner that

I. Detects when a sample sequence is converging to the target
II. Detects when a sample sequence is not converging to the target
III. Is computationally feasible
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of *any* two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, **integration under P is intractable**
Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define discrete distribution Q_n with, for any function h,
 $$\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
 used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q_n with, for any function h,
 $$\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
 used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given
- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define discrete distribution Q_n with, for any function h,
 \[\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \]
 - used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P in a manner that
 1. Detects when a sample sequence is converging to the target
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q_n with, for any function h,
 $$\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
 - Used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P in a manner that

I. Detects when a sample sequence is converging to the target
II. Detects when a sample sequence is not converging to the target
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution.

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q_n with, for any function h,
 \[
 \mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)
 \]
 - Used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P in a manner that

I. Detects when a sample sequence is **converging** to the target
II. Detects when a sample sequence is **not converging** to the target
III. Is computationally feasible
Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_H(Q_n, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)
Integral Probability Metrics

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_H(Q_n, P) = \sup_{h \in H} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice
Integral Probability Metrics

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_{\mathcal{H}}(Q_n, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_{\mathcal{H}}(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!
⇒ Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0
- Then IPM computation only depends on Q_n!
Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_{\mathcal{H}}(Q_n, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_{\mathcal{H}}(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0

- Then IPM computation only depends on Q_n!
- How do we select this class of test functions?
Integral Probability Metrics

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_H(Q_n, P) = \sup_{h \in H} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions H
- When H sufficiently large, convergence of $d_H(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0

- Then IPM computation only depends on Q_n!
- How do we select this class of test functions?
- Will the resulting discrepancy measure track sample sequence convergence (Requirements I and II)?
Integral Probability Metrics

Goal: Quantify how well E_{Q_n} approximates E_P

Idea: Consider an **integral probability metric (IPM)** [Müller, 1997]

$$d_H(Q_n, P) = \sup_{h \in H} |E_{Q_n}[h(X)] - E_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (**Requirement II**)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice

Idea: Only consider functions with $E_P[h(Z)]$ known *a priori* to be 0

- Then IPM computation only depends on Q_n!
- How do we select this class of test functions?
- Will the resulting discrepancy measure track sample sequence convergence (**Requirements I and II**)?
- How do we solve the resulting optimization problem in practice?
Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} **and set** \mathcal{G} **of functions** $g : \mathcal{X} \to \mathbb{R}^d$ **with**

 \[
 \mathbb{E}_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}.
 \]
Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} **and set** \mathcal{G} **of functions** $g : \mathcal{X} \to \mathbb{R}^d$ with

 $$E_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}.$$

 Together, \mathcal{T} and \mathcal{G} define the **Stein discrepancy**

 $$S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |E_{Q_n}[(\mathcal{T}g)(X)]| = d_{\mathcal{T}\mathcal{G}}(Q_n, P),$$

 an IPM-type measure with no explicit integration under P.

 Lower bound $S(Q_n, \mathcal{T}, \mathcal{G})$ by reference IPM $d_H(Q_n, P)$.

 ⇒ $S(Q_n, \mathcal{T}, \mathcal{G}) \to 0$ only if $(Q_n)_n \geq 1$ converges to P (Requirement II).

 Performed once, in advance, for large classes of distributions.

 Upper bound $S(Q_n, \mathcal{T}, \mathcal{G})$ by any means necessary to demonstrate convergence to 0 (Requirement I).

 Standard use: As analytical tool to prove convergence.

 Our goal: Develop Stein discrepancy into practical quality measure.
Stein’s Method

Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} **and set** \mathcal{G} **of functions** $g : \mathcal{X} \to \mathbb{R}^d$ with
 \[
 \mathbb{E}_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}.
 \]
 Together, \mathcal{T} and \mathcal{G} define the **Stein discrepancy**
 \[
 S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |\mathbb{E}_{Q_n}[(\mathcal{T}g)(X)]| = d_{\mathcal{T}g}(Q_n, P),
 \]
 an IPM-type measure with no explicit integration under P

2. **Lower bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ **by reference IPM** $d_{\mathcal{H}}(Q_n, P)$
 \[
 \Rightarrow S(Q_n, \mathcal{T}, \mathcal{G}) \to 0 \quad \text{only if} \quad (Q_n)_{n \geq 1} \text{ converges to } P \quad \text{(Req. II)}
 \]
 - Performed once, in advance, for large classes of distributions

Mackey (MSR) Kernel Stein Discrepancy July 4, 2017 6 / 25
Stein’s Method

Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} and set \mathcal{G} of functions $g : \mathcal{X} \rightarrow \mathbb{R}^d$ with
 \[\mathbb{E}_P[(\mathcal{T} g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}. \]
 Together, \mathcal{T} and \mathcal{G} define the **Stein discrepancy**
 \[S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |\mathbb{E}_{Q_n}[(\mathcal{T} g)(X)]| = d_{\mathcal{T} \mathcal{G}}(Q_n, P), \]
 an IPM-type measure with no explicit integration under P.

2. **Lower bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by reference IPM $d_{\mathcal{H}}(Q_n, P)$
 \[\Rightarrow S(Q_n, \mathcal{T}, \mathcal{G}) \rightarrow 0 \quad \text{only if} \quad (Q_n)_{n \geq 1} \text{ converges to } P \quad (\text{Req. II}) \]
 • Performed once, in advance, for large classes of distributions

3. **Upper bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by any means necessary to demonstrate convergence to 0 (Requirement I)
Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} and set \mathcal{G} of functions $g : \mathcal{X} \to \mathbb{R}^d$ with
 \[\mathbb{E}_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}. \]
 Together, \mathcal{T} and \mathcal{G} define the **Stein discrepancy**
 \[S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |\mathbb{E}_{Q_n}[(\mathcal{T}g)(X)]| = d_{\mathcal{T}G}(Q_n, P), \]
 an IPM-type measure with no explicit integration under P.

2. **Lower bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by reference IPM $d_{\mathcal{H}}(Q_n, P)$
 \[\Rightarrow S(Q_n, \mathcal{T}, \mathcal{G}) \to 0 \quad \text{only if} \quad (Q_n)_{n \geq 1} \text{ converges to } P \quad \text{(Req. II)} \]
 Performed once, in advance, for large classes of distributions

3. **Upper bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by any means necessary to demonstrate convergence to 0 (Requirement I)

Standard use: As analytical tool to prove convergence

Our goal: Develop Stein discrepancy into practical quality measure
Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T}g)(Z)] = 0$ for all $g \in \mathcal{G}$
Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T} g)(Z)] = 0$ for all $g \in \mathcal{G}$

- Identify a Markov process $(Z_t)_{t \geq 0}$ with stationary distribution P
- Under mild conditions, its infinitesimal generator $(\mathcal{A}u)(x) = \lim_{t \to 0} \left(\mathbb{E}[u(Z_t) \mid Z_0 = x] - u(x) \right) / t$

satisfies $\mathbb{E}_P[(\mathcal{A}u)(Z)] = 0$

Overdamped Langevin diffusion: $dZ_t = \frac{1}{2} \nabla \log p(Z_t) dt + dW_t$

- Generator: $(\mathcal{A}_P u)(x) = \frac{1}{2} \langle \nabla u(x), \nabla \log p(x) \rangle + \frac{1}{2} \langle \nabla, \nabla u(x) \rangle$
Identifying a Stein Operator \mathcal{T}

Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T} g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Generator method of Barbour [1988, 1990], Götze [1991]

- Identify a Markov process $(Z_t)_{t \geq 0}$ with stationary distribution P
- Under mild conditions, its **infinitesimal generator**
 \[(\mathcal{A} u)(x) = \lim_{t \to 0} \frac{(\mathbb{E}[u(Z_t) | Z_0 = x] - u(x))/t}{t} \]
 satisfies $\mathbb{E}_P[(\mathcal{A} u)(Z)] = 0$

Overdamped Langevin diffusion:
\[dZ_t = \frac{1}{2} \nabla \log p(Z_t) dt + dW_t\]

- **Generator:** $(\mathcal{A}_P u)(x) = \frac{1}{2} \langle \nabla u(x), \nabla \log p(x) \rangle + \frac{1}{2} \langle \nabla, \nabla u(x) \rangle$
- **Stein operator:** $(\mathcal{T}_P g)(x) \overset{\Delta}{=} \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
 [Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]
 - Depends on P only through $\nabla \log p$; computable even if p cannot be normalized!
 - Multivariate generalization of **density method** operator
 \[(\mathcal{T} g)(x) = g(x) \frac{d}{dx} \log p(x) + g'(x)\] [Stein, Diaconis, Holmes, and Reinert, 2004]
Goal: Identify set G for which $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g \in G$
Identifying a Stein Set \mathcal{G}

Goal: Identify set \mathcal{G} for which $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$

- A reproducing kernel k is **symmetric** ($k(x, y) = k(y, x)$) and **positive semidefinite** ($\sum_{i,l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)

- e.g., Gaussian kernel $k(x, y) = e^{-\frac{1}{2}||x-y||^2}$
Identifying a Stein Set \mathcal{G}

Goal: Identify set \mathcal{G} for which $\mathbb{E}_P[(T_P g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$

- A reproducing kernel k is symmetric ($k(x, y) = k(y, x)$) and positive semidefinite ($\sum_{i,l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)
 - e.g., Gaussian kernel $k(x, y) = e^{-\frac{1}{2} \| x - y \|^2}$

- Yields function space $\mathcal{K}_k = \{ f : f(x) = \sum_{i=1}^{m} c_i k(z_i, x), m \in \mathbb{N} \}$ with norm $\| f \|_{\mathcal{K}_k} = \sqrt{\sum_{i,l=1}^{m} c_i c_l k(z_i, z_l)}$
Identifying a Stein Set G

Goal: Identify set G for which $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g \in G$

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

- A reproducing kernel k is symmetric ($k(x, y) = k(y, x)$) and positive semidefinite ($\sum_{i,l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)
 - e.g., Gaussian kernel $k(x, y) = e^{-\frac{1}{2} \|x-y\|^2}$

- Yields function space $\mathcal{K}_k = \{ f : f(x) = \sum_{i=1}^m c_i k(z_i, x), m \in \mathbb{N} \}$
 with norm $\|f\|_{\mathcal{K}_k} = \sqrt{\sum_{i,l=1}^m c_i c_l k(z_i, z_l)}$

- We define the **kernel Stein set** of vector-valued $g : \mathcal{X} \to \mathbb{R}^d$ as $G_{k,\|\cdot\|} \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{\mathcal{K}_k} \}$.
 - Each g_j belongs to reproducing kernel Hilbert space (RKHS) \mathcal{K}_k
 - Component norms $v_j \triangleq \|g_j\|_{\mathcal{K}_k}$ are jointly bounded by 1
Identifying a Stein Set \mathcal{G}

Goal: Identify set \mathcal{G} for which $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$

- A reproducing kernel k is symmetric ($k(x, y) = k(y, x)$) and positive semidefinite ($\sum_{i,l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)
 - e.g., Gaussian kernel $k(x, y) = e^{-\frac{1}{2} \|x-y\|_2^2}$
- Yields function space $\mathcal{K}_k = \{ f : f(x) = \sum_{i=1}^m c_i k(z_i, x), m \in \mathbb{N} \}$ with norm $\|f\|_{\mathcal{K}_k} = \sqrt{\sum_{i,l=1}^m c_i c_l k(z_i, z_l)}$

We define the **kernel Stein set** of vector-valued $g : \mathcal{X} \rightarrow \mathbb{R}^d$ as $\mathcal{G}_{k, \|\cdot\|} \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{\mathcal{K}_k} \}$.

- Each g_j belongs to reproducing kernel Hilbert space (RKHS) \mathcal{K}_k
- Component norms $v_j \triangleq \|g_j\|_{\mathcal{K}_k}$ are jointly bounded by 1

$\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g \in \mathcal{G}_{k, \|\cdot\|}$ whenever $k \in C_b^{1,1}$ and $\nabla \log p$ integrable under P [Gorham and Mackey, 2017]
Kernel Stein discrepancy (KSD) $S(Q_n, T_P, G_k, \| \cdot \|)$

- Stein operator $(T_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
- Stein set $G_{k, \| \cdot \|} \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{K_k} \}$
Kernel Stein discrepancy (KSD) \(S(Q_n, T_P, G_k, \|\cdot\|) \)

- Stein operator \((T_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle\)
- Stein set \(G_k, \|\cdot\| \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{K_k} \} \)

Benefit: Computable in closed form [Gorham and Mackey, 2017]

\[S(Q_n, T_P, G_k, \|\cdot\|) = \|w\| \text{ for } w_j \triangleq \sqrt{\sum_{i,i'=1}^{n} k_{ij}^0(x_i, x_{i'})}. \]

- Reduces to parallelizable pairwise evaluations of **Stein kernels**

\[k_{ij}^0(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x, y)p(y)) \]
Kernel Stein discrepancy (KSD) \(S(Q_n, T_P, G_k, \| \cdot \|) \)

- Stein operator \((T_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle\)
- Stein set \(G_k, \| \cdot \| \triangleq \{ g = (g_1, \ldots, g_d) \mid \| v \| \leq 1 \text{ for } v_j \triangleq \| g_j \|_{K_k} \}\)

Benefit: Computable in closed form [Gorham and Mackey, 2017]

\[S(Q_n, T_P, G_k, \| \cdot \|) = \| w \| \text{ for } w_j \triangleq \sqrt{\sum_{i, i'=1}^n k_0^j(x_i, x_{i'})}. \]

- Reduces to parallelizable pairwise evaluations of **Stein kernels**

\[k_0^j(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x, y)p(y)) \]

- Stein set choice inspired by control functional kernels

\[k_0 = \sum_{j=1}^d k_0^j \text{ of Oates, Girolami, and Chopin [2016]} \]
Kernel Stein discrepancy (KSD) \(S(Q_n, T_P, G_k, \|\cdot\|) \)

- Stein operator \((T_Pg)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle\)
- Stein set \(G_k, \|\cdot\| \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{K_k} \}\)

Benefit: Computable in closed form [Gorham and Mackey, 2017]

\[S(Q_n, T_P, G_k, \|\cdot\|) = \|w\| \text{ for } w_j \triangleq \sqrt{\sum_{i,i'=1}^n k_0^j(x_i, x_{i'})}. \]

- Reduces to parallelizable pairwise evaluations of Stein kernels

\[k_0^j(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x, y)p(y)) \]

- Stein set choice inspired by control functional kernels \(k_0 = \sum_{j=1}^d k_0^j \) of Oates, Girolami, and Chopin [2016]
- When \(\|\cdot\| = \|\cdot\|_2 \), recovers the KSD of Chwialkowski, Strathmann, and Gretton [2016], Liu, Lee, and Jordan [2016]
Kernel Stein discrepancy (KSD) $S(Q_n, T_P, G_k, \|\cdot\|)$

- Stein operator $(T_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
- Stein set $G_k, \|\cdot\| \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{K_k} \}$

Benefit: Computable in closed form [Gorham and Mackey, 2017]

$S(Q_n, T_P, G_k, \|\cdot\|) = \|w\|$ for $w_j \triangleq \sqrt{\sum_{i,i'=1}^n k_0^j(x_i, x_{i'})}$.

Reduces to parallelizable pairwise evaluations of Stein kernels

\[k_0^j(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x, y)p(y)) \]

- Stein set choice inspired by control functional kernels $k_0 = \sum_{j=1}^d k_0^j$ of Oates, Girolami, and Chopin [2016]
 - When $\|\cdot\| = \|\cdot\|_2$, recovers the KSD of Chwialkowski, Strathmann, and Gretton [2016], Liu, Lee, and Jordan [2016]
- To ease notation, will use $G_k \triangleq G_k, \|\cdot\|_2$ in remainder of the talk
Detecting Non-convergence

Goal: Show $S(Q_n, \mathcal{T}_P, G_k) \to 0$ only if Q_n converges to P
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- In higher dimensions, KSDs based on common kernels fail to detect non-convergence, even for Gaussian targets P
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- In higher dimensions, KSDs based on common kernels fail to detect non-convergence, even for Gaussian targets P

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose $d \geq 3$, $P = \mathcal{N}(0, I_d)$, and $\alpha \triangleq (\frac{1}{2} - \frac{1}{d})^{-1}$. If $k(x, y)$ and its derivatives decay at a $o(\|x - y\|_2^{-\alpha})$ rate as $\|x - y\|_2 \to \infty$, then $S(Q_n, T_P, G_k) \to 0$ for some $(Q_n)_{n \geq 1}$ not converging to P.

- Gaussian ($k(x, y) = e^{-\frac{1}{2}\|x-y\|_2^2}$) and Matérn kernels fail for $d \geq 3$
- Inverse multiquadric kernels ($k(x, y) = (1 + \|x - y\|_2^2)^{\beta}$) with $\beta < -1$ fail for $d > \frac{2\beta}{1+\beta}$
- The violating sample sequences $(Q_n)_{n \geq 1}$ are simple to construct

Problem: Kernels with light tails ignore excess mass in the tails
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \rightarrow 0$ only if Q_n converges to P

- Consider the inverse multiquadric (IMQ) kernel

 $$k(x, y) = (c^2 + \|x - y\|^2)^\beta$$

 for some $\beta < 0$, $c \in \mathbb{R}$.

- IMQ KSD fails to detect non-convergence when $\beta < -1$
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- Consider the inverse multiquadric (IMQ) kernel
 \[k(x, y) = (c^2 + \|x - y\|_2^2)^\beta \text{ for some } \beta < 0, c \in \mathbb{R}. \]
- IMQ KSD fails to detect non-convergence when $\beta < -1$
- However, IMQ KSD detects non-convergence when $\beta \in (-1, 0)$

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose $P \in \mathcal{P}$ and $k(x, y) = (c^2 + \|x - y\|_2^2)^\beta$ for $\beta \in (-1, 0)$. If $S(Q_n, T_P, G_k) \to 0$, then $(Q_n)_{n \geq 1}$ converges weakly to P.

- No extra assumptions on sample sequence $(Q_n)_{n \geq 1}$ needed
- Proof sketch: Slow decay rate of kernel \Rightarrow unbounded (coercive) test functions in $T_P G_k \Rightarrow$ detects excess mass in the tails
Detecting Convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ when Q_n converges to P
Detecting Convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ when Q_n converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

If $k \in C_b^{(2,2)}$ and $\nabla \log p$ Lipschitz and square integrable under P, then $S(Q_n, T_P, G_k) \to 0$ whenever the Wasserstein distance $d_{W_2}(Q_n, P) \to 0$.

- Covers Gaussian, Matérn, IMQ, and other common bounded kernels k
A Simple Example

Left plot:

- For target $p(x) \propto e^{-\frac{1}{2}(x+1.5)^2} + e^{-\frac{1}{2}(x-1.5)^2}$, compare an i.i.d. sample Q_n from P and an i.i.d. sample Q'_n from one component.
- Expect $S(Q_{1:n}, \mathcal{T}_P, G_k) \to 0$ & $S(Q'_{1:n}, \mathcal{T}_P, G_k) \not\to 0$.
- Compare IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) with Wasserstein distance.
A Simple Example

Right plot: For $n = 10^3$ sample points,
- (Top) Recovered optimal Stein functions $g \in \mathcal{G}_k$
- (Bottom) Associated test functions $h \triangleq \mathcal{T}_P g$ which best discriminate sample Q_n from target P
The Importance of Kernel Choice

- Target $P = \mathcal{N}(0, I_d)$
- Off-target Q_n has all
 $\|x_i\|_2 \leq 2n^{1/d} \log n$, $\|x_i - x_j\|_2 \geq 2 \log n$
- Gaussian and Matérn KSDs driven to 0 by an off-target sequence that does not converge to P
- IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) does not have this deficiency
Approximate slice sampling [DuBois, Korattikara, Welling, and Smyth, 2014]

- Approximate MCMC procedure designed for scalability
 - Random subset of datapoints used to approximate each sampling step
 - Target P is not stationary distribution
- Tolerance parameter ϵ controls number of datapoints evaluated
 - ϵ too small \Rightarrow too few sample points generated
 - ϵ too large \Rightarrow sampling from very different distribution
- Standard MCMC selection criteria like effective sample size (ESS) and asymptotic variance do not account for this bias
Selecting Sampler Hyperparameters

- ESS maximized at tolerance $\epsilon = 10^{-1}$
- IMQ KSD minimized at tolerance $\epsilon = 10^{-2}$
Selecting Samplers

Stochastic Gradient Fisher Scoring (SGFS)

[Ahn, Korattikara, and Welling, 2012]

- Approximate MCMC procedure designed for scalability
 - Approximates Metropolis-adjusted Langevin algorithm but does not use Metropolis-Hastings correction
 - Target P is not stationary distribution

- **Goal:** Choose between two variants
 - SGFS-f inverts a $d \times d$ matrix for each new sample point
 - SGFS-d inverts a diagonal matrix to reduce sampling time

MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]

- 10000 images, 51 features, binary label indicating whether image of a 7 or a 9

- Bayesian logistic regression posterior P
Selecting Samplers

- **Left:** IMQ KSD quality comparison for SGFS Bayesian logistic regression (no surrogate ground truth used)
- **Right:** SGFS sample points ($n = 5 \times 10^4$) with bivariate marginal means and 95% confidence ellipses (blue) that align best and worst with surrogate ground truth sample (red).

Both suggest small speed-up of SGFS-d ($0.0017s$ per sample vs. $0.0019s$ for SGFS-f) outweighed by loss in inferential accuracy.
One-sample hypothesis testing

- Chwialkowski, Strathmann, and Gretton [2016] used the KSD $S(Q_n, T_P, G_k)$ to test whether a sample was drawn from a target distribution P (see also Liu, Lee, and Jordan [2016])
- Test with default Gaussian kernel k experienced considerable loss of power as the dimension d increased

<table>
<thead>
<tr>
<th>Test</th>
<th>d=2</th>
<th>d=5</th>
<th>d=10</th>
<th>d=15</th>
<th>d=20</th>
<th>d=25</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&H</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.91</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1.0</td>
<td>1.0</td>
<td>0.88</td>
<td>0.29</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>IMQ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Mackey (MSR)
Kernel Stein Discrepancy
July 4, 2017
One-sample hypothesis testing

Chwialkowski, Strathmann, and Gretton [2016] used the KSD \(\mathcal{S}(Q_n, \mathcal{T}_P, \mathcal{G}_k) \) to test whether a sample was drawn from a target distribution \(P \) (see also Liu, Lee, and Jordan [2016]).

Test with default Gaussian kernel \(k \) experienced considerable loss of power as the dimension \(d \) increased.

We recreate their experiment with IMQ kernel \((\beta = -\frac{1}{2}, c = 1) \)

- For \(n = 500 \), generate sample \((x_i)_{i=1}^{n} \) with \(x_i = z_i + u_i e_1 \)
 \(z_i \sim \mathcal{N}(0, I_d) \) and \(u_i \sim \text{Unif}[0, 1] \). Target \(P = \mathcal{N}(0, I_d) \).

- Compare with standard normality test of Baringhaus and Henze [1988]

Table: Mean power of multivariate normality tests across 400 simulations

<table>
<thead>
<tr>
<th></th>
<th>d=2</th>
<th>d=5</th>
<th>d=10</th>
<th>d=15</th>
<th>d=20</th>
<th>d=25</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&H</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.91</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1.0</td>
<td>1.0</td>
<td>0.88</td>
<td>0.29</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>IMQ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Improving sample quality

Given sample points \((x_i)_{i=1}^n\), can minimize KSD \(S(\tilde{Q}_n, T_P, G_k)\) over all weighted samples \(\tilde{Q}_n = \sum_{i=1}^n q_n(x_i)\delta_{x_i}\) for \(q_n\) a probability mass function

Liu and Lee [2016] do this with Gaussian kernel \(k(x, y) = e^{-\frac{1}{h}\|x-y\|_2^2}\)

- Bandwidth \(h\) set to median of the squared Euclidean distance between pairs of sample points

We recreate their experiment with the IMQ kernel
\(k(x, y) = (1 + \frac{1}{h}\|x - y\|_2^2)^{-1/2}\)
Improving Sample Quality

- MSE averaged over 500 simulations (±2 standard errors)
- Target $P = \mathcal{N}(0, I_d)$
- Starting sample $Q_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ for $x_i \overset{iid}{\sim} P$, $n = 100$.

![Graph showing average MSE vs dimension](image-url)
Many opportunities for future development

1. Improve scalability of KSD while maintaining convergence determining properties
 - Low-rank, sparse, or stochastic approximations of kernel matrix
 - Subsampling of likelihood terms in $\nabla \log p$

2. Addressing other inferential tasks
 - Design of control variates [Oates, Girolami, and Chopin, 2016, Oates and Girolami, 2016]
 - Training generative adversarial networks [Wang and Liu, 2016]

3. Exploring the impact of Stein operator choice
 - An infinite number of operators \mathcal{T} characterize P
 - How is discrepancy impacted? How do we select the best \mathcal{T}?
 - Thm: If $\nabla \log p$ bounded and $k \in C_0^{(1,1)}$, then
 $\mathcal{S}(Q_n, \mathcal{T}_P, G_k) \to 0$ for some $(Q_n)_{n \geq 1}$ not converging to P
 - Diffusion Stein operators $(\mathcal{T} g)(x) = \frac{1}{p(x)} \langle \nabla, p(x) m(x) g(x) \rangle$ of
 Gorham, Duncan, Vollmer, and Mackey [2016] may be more appropriate for these
 heavy-tailed targets
References I

Comparing Discrepancies

- **Left**: Samples drawn i.i.d. from either the bimodal Gaussian mixture target \(p(x) \propto e^{-\frac{1}{2}(x+1.5)^2} + e^{-\frac{1}{2}(x-1.5)^2} \) or a single mixture component.

- **Right**: Discrepancy computation time using \(d \) cores in \(d \) dimensions.
Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

- Consider the posterior distribution P induced by L datapoints y_l drawn i.i.d. from a Gaussian mixture likelihood
 \[Y_l | X \sim \frac{1}{2} \mathcal{N}(X_1, 2) + \frac{1}{2} \mathcal{N}(X_1 + X_2, 2) \]
 under Gaussian priors on the parameters $X \in \mathbb{R}^2$
 \[X_1 \sim \mathcal{N}(0, 10) \perp \perp X_2 \sim \mathcal{N}(0, 1) \]

- Draw $m = 100$ datapoints y_l with parameters $(x_1, x_2) = (0, 1)$
- Induces posterior with second mode at $(x_1, x_2) = (1, -1)$
- For range of parameters ϵ, run approximate slice sampling for 148000 datapoint likelihood evaluations and store resulting posterior sample Q_n
- Use minimum IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) to select appropriate ϵ
 - Compare with standard MCMC parameter selection criterion, effective sample size (ESS), a measure of Markov chain autocorrelation
 - Compute median of diagnostic over 50 random sequences
Selecting Samplers

Setup

- **MNIST handwritten digits** [Ahn, Korattikara, and Welling, 2012]
 - 10000 images, 51 features, binary label indicating whether image of a 7 or a 9
- Bayesian logistic regression posterior P
 - L independent observations $(y_l, v_l) \in \{1, -1\} \times \mathbb{R}^d$ with
 \[
 P(Y_l = 1|v_l, X) = \frac{1}{1 + \exp(-\langle v_l, X \rangle)}
 \]
 - Flat improper prior on the parameters $X \in \mathbb{R}^d$
- Use IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) to compare SGFS-f to SGFS-d drawing 10^5 sample points and discarding first half as burn-in
- For external support, compare bivariate marginal means and 95% confidence ellipses with surrogate ground truth Hamiltonian Monte chain with 10^5 sample points [Ahn, Korattikara, and Welling, 2012]
Goal: Show \(S(Q_n, T_P, G_k) \to 0 \) only if \((Q_n)_{n \geq 1}\) converges to \(P \)

- Let \(\mathcal{P} \) be the set of targets \(P \) with \(\text{Lipschitz } \nabla \log p \) and distant strong log concavity \(\langle \nabla \log(p(x)/p(y)), y - x \rangle \geq k \) for \(\|x - y\|_2^2 \geq r \)

- Includes Gaussian mixtures with common covariance, Bayesian logistic and Student’s t regression with Gaussian priors, ...

- For a different Stein set \(G \), Gorham, Duncan, Vollmer, and Mackey [2016] showed \((Q_n)_{n \geq 1}\) converges to \(P \) if \(P \in \mathcal{P} \) and \(S(Q_n, T_P, G) \to 0 \)

New contribution [Gorham and Mackey, 2017]

Theorem (Univarite KSD detects non-convergence)

Suppose \(P \in \mathcal{P} \) and \(k(x, y) = \Phi(x - y) \) for \(\Phi \in C^2 \) with a non-vanishing generalized Fourier transform. If \(d = 1 \), then \(S(Q_n, T_P, G_k) \to 0 \) only if \((Q_n)_{n \geq 1}\) converges weakly to \(P \).

- Justifies use of KSD with Gaussian, Matérn, or inverse multiquadric kernels \(k \) in the univariate case
The Importance of Tightness

Goal: Show \(S(Q_n, T_P, G_k) \to 0 \) only if \(Q_n \) converges to \(P \)

- A sequence \((Q_n)_{n\geq 1}\) is **uniformly tight** if for every \(\epsilon > 0 \), there is a finite number \(R(\epsilon) \) such that \(\sup_n Q_n(\|X\|_2 > R(\epsilon)) \leq \epsilon \)
- Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that \(P \in \mathcal{P} \) and \(k(x, y) = \Phi(x - y) \) for \(\Phi \in C^2 \) with a non-vanishing generalized Fourier transform. If \((Q_n)_{n\geq 1}\) is uniformly tight and \(S(Q_n, T_P, G_k) \to 0 \), then \((Q_n)_{n\geq 1}\) converges weakly to \(P \).

- **Good news**, but, ideally, KSD would detect non-tight sequences automatically...