Toward a meta-stable range in \mathbb{A}^1 -homotopy theory of punctured affine spaces Oberwolfach Report: June 2013

Aravind Asok, Jean Fasel

Suppose k is a perfect field having characteristic unequal to 2. Write \mathcal{S}_k for the category of schemes that are separated, smooth and of finite type over k. Write $\mathcal{H}_{\cdot}(k)$ for the Morel-Voevodsky unstable pointed \mathbb{A}^1 -homotopy category [MoVo99]. A (pointed) k-space \mathcal{X} (resp. (\mathcal{X}, x)) is a (pointed) simplicial Nisnevich sheaf on \mathcal{S}_k . Given two pointed k-spaces (\mathcal{X}, x) and (\mathcal{Y}, y) , we write $[(\mathcal{X}, x), (\mathcal{Y}, y)]_{\mathbb{A}^1}$ for $\operatorname{Hom}_{\mathcal{H}_{\cdot}(k)}(\mathcal{X}, \mathcal{Y})$. If (\mathcal{X}, x) is a pointed k-space, write $\pi_i^{\mathbb{A}^1}(\mathcal{X}, x)$ for the Nisnevich sheaf associated with the presheaf $U \mapsto [S_s^i \wedge U_+, (\mathcal{X}, x)]_{\mathbb{A}^1}$.

Point $\mathbb{A}^n \setminus 0$ by $(1, 0, \dots, 0)$, and suppress this base-point from notation. Results of Morel yield a description of $\pi_{n-1}^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0)$, $n \geq 2$, as the sheaf \mathbf{K}_n^{MW} of "unramified Milnor-Witt K-theory." In previous work, the authors provided a description of $\pi_2^{\mathbb{A}^1}(\mathbb{A}^2 \setminus 0)$ and $\pi_3^{\mathbb{A}^1}(\mathbb{A}^3 \setminus 0)$ [AsFa12a, AsFa12b]. The goal of the talk was to provide a conjectural description of $\pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0)$ for $n \geq 4$. The proposed description is in two parts.

Suslin matrices and the degree map

Schlichting and Tripathi constructed an orthogonal Grassmannian OGr and showed that $\mathbb{Z} \times OGr$ represents Hermitian K-theory in the unstable \mathbb{A}^1 -homotopy category [ScTr12]. They also establish a geometric form of Bott periodicity in Hermitian K-theory that identifies various loop spaces of $\mathbb{Z} \times OGr$ in terms of other natural spaces; we summarize this result as follows.

Proposition 1. There are weak equivalences of the form

$$\Omega^{1}_{s}\Omega^{i}_{\mathbb{P}^{1}}(\mathbb{Z}\times OGr) \xrightarrow{\sim} \begin{cases} O & \text{if } i \equiv 0 \mod 4\\ GL/Sp & \text{if } i \equiv 1 \mod 4\\ Sp & \text{if } i \equiv 2 \mod 4, \text{ and}\\ GL/O & \text{if } i \equiv 3 \mod 4; \end{cases}$$

Here $O := \operatorname{colim}_n O(q_{2n})$, where q_{2n} is the standard hyperbolic form, $Sp := \operatorname{colim}_n Sp_{2n}$, $GL/Sp := \operatorname{colim}_n GL_{2n}/Sp_{2n}$, and $GL/O := \operatorname{colim}_n GL_{2n}/O(q_{2n})$.

The class of $\langle 1 \rangle \in GW(k)$ yields a distinguished element in $GW(k) = [\text{Spec } k_+, \mathbb{Z} \times OGr]_{\mathbb{A}^1}$. An adjunction argument can be used to show that this element corresponds to a distinguished class in $[\mathbb{A}^n \setminus 0, P_n]_{\mathbb{A}^1}$, where P_n is either O, GL/O, Sp or GL/Sp depending on whether n is congruent to 0, 1, 2 or 3 modulo 4.

Let Q_{2n-1} be the smooth affine quadric defined as a hypersurface in \mathbb{A}^{2n} given by the equation $\sum_{i} x_i x_{n+i} = 1$. There is an \mathbb{A}^1 -weak equivalence $Q_{2n-1} \to \mathbb{A}^n \setminus 0$ defined by projecting onto the first *n* variables. Each variety P_n is an ind-algebraic variety, and Suslin inductively defined certain matrices S_n that correspond to morphisms $s_n : Q_{2n-1} \to P_n$ [Su77].

Proposition 2. The distinguished homotopy classes $[\mathbb{A}^n \setminus 0, P_n]_{\mathbb{A}^1}$ described in the previous paragraph is represented by the morphism $s_n : Q_{2n-1} \to P_n$ given by the matrix S_n .

The \mathbb{A}^1 -homotopy sheaves of O, GL/O, Sp and GL/Sp can be identified in terms of the Nisnevich sheafification of Schlichting's higher Grothendieck-Witt groups. Indeed, $\pi_i^{\mathbb{A}^1}(O) \cong \mathbf{GW}_{i+1}^0, \pi_i^{\mathbb{A}^1}(GL/O) \cong \mathbf{GW}_{i+1}^1, \pi_i^{\mathbb{A}^1}(Sp) \cong \mathbf{GW}_0^2$ and $\pi_i^{\mathbb{A}^1}(GL/Sp) \cong \mathbf{GW}_{i+1}^3$. In general, the sheaves \mathbf{GW}_i^j are viewed as 4 periodic in j. Therefore, the morphism s_n yields, upon applying the functor $\pi_n^{\mathbb{A}^1}(\cdot)$, a morphism

$$s_{n*}: \pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \longrightarrow \mathbf{GW}_{n+1}^n.$$

This morphism is not surjective for $n \geq 4$, but it does coincide with a corresponding morphism constructed in the computations of $\pi_2^{\mathbb{A}^1}(\mathbb{A}^2 \setminus 0)$ and $\pi_3^{\mathbb{A}^1}(\mathbb{A}^3 \setminus 0)$.

Recall the contraction of a sheaf \mathcal{F} is defined by the formula $\mathcal{F}_{-1}(U) := \ker((id \times e)^* : \mathcal{F}(\mathbf{G}_m \times U) \to \mathcal{F}(U))$, where $e : \operatorname{Spec} k \to \mathbf{G}_m$ is the unit section. One defines \mathcal{F}_{-i} inductively as $(\mathcal{F}_{-(i-1)})_{-1}$.

Theorem 3. The morphism s_{n*} becomes surjective after (n-3)-fold contraction and split surjective after n-fold contraction.

Motivic Hopf maps and the kernel of the degree map

In [AsFa12b], we introduced the geometric Hopf map $\nu : \mathbb{A}^4 \setminus 0 \to \mathbb{P}^{1^{\wedge 2}}$ and showed that it was \mathbb{P}^1 -stably essential (i.e., is not null \mathbb{A}^1 -homotopic after repeated \mathbb{P}^1 -suspension). For any integer $n \geq 2$, set

$$\nu_n := \Sigma_{\mathbb{P}^1}^{n-2} \nu : \mathbb{A}^{n+2} \setminus 0 \longrightarrow \mathbb{P}^{1 \wedge n}$$

Applying $\pi_n^{\mathbb{A}^1}(\cdot)$ to the above morphism yields a map

$$(\nu_n)_*: \mathbf{K}_{n+2}^{MW} \longrightarrow \pi_{n+1}^{\mathbb{A}^1}(\mathbb{P}^{1^{\wedge n}}).$$

For $n \geq 4$, Morel's Freudenthal suspension theorem yields isomorphisms

$$\pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \xrightarrow{\sim} \pi_{n+1}^{\mathbb{A}^1}(\mathbb{P}^{1 \wedge n}),$$

so in this range, we can view $(\nu_n)_*$ as giving a map $\mathbf{K}_{n+2}^{MW} \to \pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0)$.

For n = 3, Morel's Freudenthal suspension theorem only yields an epimorphism. We can refine this result to provide an analog of the beginning of the EHP sequence in \mathbb{A}^1 -homotopy theory. A particular case of the general result we can establish can be stated as follows. **Theorem 4.** There is an exact sequence of the form

$$\pi_5^{\mathbb{A}^1}(\mathbb{P}^{1\wedge 3}) \xrightarrow{H} \pi_5^{\mathbb{A}^1}(\Sigma_s^1(\mathbb{A}^3 \setminus 0)^{\wedge 2}) \xrightarrow{P} \pi_3^{\mathbb{A}^1}(\mathbb{A}^3 \setminus 0) \xrightarrow{E} \pi_4^{\mathbb{A}^1}(\mathbb{P}^{1\wedge 3}) \longrightarrow 0.$$

The morphism H in the above exact sequence *conjecturally* admits a description as a variant of the Hopf invariant in Chow-Witt theory. Assuming this, the results we have proven on $\pi_3^{\mathbb{A}^1}(\mathbb{A}^3 \setminus 0)$ show that ν_{3*} factors through an explicit quotient of \mathbf{K}_5^{MW} . In turn, this (conjectural) computation suggests the following conjecture.

Conjecture 5. For any integer $n \geq 3$, the morphism ν_{n*} factors through a morphism $\mathbf{K}_{n+2}^M/24 \to \pi_{n+1}^{\mathbb{A}^1}(\mathbb{P}^{1 \wedge n})$.

The structure of $\pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0)$

We now study the relationship between the two morphisms constructed above. Using an obstruction theory argument, one can demonstrate the following result.

Proposition 6. For any integer $n \ge 4$, the composite map

$$\mathbf{K}_{n+2}^{MW} \longrightarrow \pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \longrightarrow \mathbf{GW}_{n+1}^n$$

is zero.

Combining everything discussed so far, one is led to the following conjecture.

Conjecture 7. For any integer $n \geq 4$, there is an exact sequence of sheaves of the form

$$\mathbf{K}_{n+2}^M/24 \longrightarrow \pi_n^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \longrightarrow \mathbf{GW}_{n+1}^n.$$

The sequence becomes short exact after n-fold contraction.

Remark 8. The conjecture above stabilizes to an unpublished conjecture of F. Morel on the stable motivic π_1 of the motivic sphere spectrum. Using the motivic Adams(-Novikov) spectral sequence, K. Ormsby and P.-A. Østvær have checked that after taking sections over fields having 2-cohomological dimension ≤ 2 , the 2-primary part of the stable conjecture is true. Nevertheless, the stable conjecture does not imply the conjecture above (even for large n) because of a lack of a Freudenthal suspension theorem for \mathbb{P}^1 -suspension. On the other hand, the conjecture above for every n sufficiently large implies the stable conjecture.

Remark 9. By the results of [AsFa12b], the above conjecture immediately implies "Murthy's conjecture:" if X is a smooth affine (d + 1)-fold over an algebraically closed field k, and \mathcal{E} is a rank d vector bundle on X, then \mathcal{E} splits off a free rank 1 summand if and only if $0 = c_d(\mathcal{E}) \in CH^d(X)$. However, the conjecture is much stronger: it gives the complete secondary obstruction to splitting a free rank 1 summand of a vector bundle on a smooth affine scheme.

References

- [AsFa12a] A. Asok and J. Fasel., A cohomological classification of vector bundles on smooth affine threefolds. Preprint available at http://arxiv.org/abs/1204.0770, 2012. 1
- [AsFa12b] A. Asok and J. Fasel., Splitting vector bundles outside the stable range and homotopy theory of punctured affine spaces. Preprint; available at http://arxiv.org/abs/1209.5631, 2012. 1, 2, 3
- [MoVo99] F. Morel and V. Voevodsky., A¹-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143 (2001), 1999. 1
- [Mo12] F. Morel., A¹-algebraic topology over a field, volume 2052 of Lecture Notes in Mathematics. Springer, Heidelberg, 2012.
- [ScTr12] M. Schlichting and G.S. Tripathi., Geometric representation of Hermitian K-theory in A¹-homotopy theory. In preparation, 2012. 1
- [Su77] A. A. Suslin., Stably free modules. Mat. Sb. (N.S.), 102(144)(4):537–550, 632, 1977. 2