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Classifying real vector bundles

Suppose M is a smooth manifold.

Write Vn(M) for the set of isomorphism classes of real
rank n vector bundles on M.
Write BO(n) for the Grassmannian of n-dim’l subspaces of
an∞-dim’l real vector space.

Theorem (N. Steenrod)
The map

[M,BO(n)]
∼−→ Vn(M),

given by pull-back of the universal vector bundle, is a bijection.
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Topological splitting problem

There is a fiber sequence

Sn−1 −→ BO(n − 1) −→ BO(n)

A map ξ : M → BO(n) that lifts to BO(n − 1) corresponds
to a rank n vector bundle V on M that splits as sum
V ∼= V ′ ⊕ 1M , where V ′ has rank n − 1 and 1M is a trivial
rank 1 bundle.
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Obstruction theory

There is a standard tool for solving the problem of
determining if a map ξ : M → BO(n) lifts along the map
BO(n − 1)→ BO(n): the Moore-Postnikov factorization.

Roughly, the homotopy theory of the fiber (in this case
Sn−1) controls existence of a lift.
We factor the map BO(n − 1)→ BO(n) as a tower of
fibrations where each successive stage is fibered over the
previous one with fiber an Eilenberg-MacLane space.
Thus, obstructions to lifting are cohomological.
If an obstruction vanishes, the set of lifts admits a
“cohomological parameterization”.
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Primary obstruction: Euler class

Fix ξ : M → BO(n) a rank n vector bundle.

Since π1(BO(n)) ∼= Z/2 (via the determinant), ξ yields an
orientation character ωξ : π1(M)→ Z/2⇐⇒ orientation
local system on M.
Also, πn−1(Sn−1) ∼= Z.

Theorem
The (twisted) Euler class

e(ξ) ∈ Hn(M,Z[ωξ]),

is the primary obstruction to splitting off a trivial rank 1
summand.If dim M ≤ n, then the vanishing of e(ξ) is the only
obstruction to splitting off a trivial rank 1 summand.
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The secondary obstruction

If e(ξ) = 0 there is a well-defined secondary obstruction to
splitting off a trivial rank 1 summand.

If n ≥ 4 (and ξ is orientable), πn(Sn−1) ∼= Z/2, and this
obstruction (S. Liao ’54, F. Peterson-N. Stein ’62) can be
shown to be an element of a coset

O(2)(ξ) ∈ Hn+1(M,Z/2)/(Sq2 + w2∪)Hn−1(M,Z/2).

These obstructions arise from unstable homotopy groups
of spheres;

n ≥ 4 =⇒ in the stable range for πn(Sn−1).
Since π3(S2) = Z, for n = 3 the obstruction is more
complicated (A. Dold-H. Whitney ’59).

If dim M ≤ n + 1, the primary and secondary obstructions
are the only obstructions to splitting.
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Moral of the story

Writing down higher obstructions is possible but, in
practice, cumbersome; it is limited by knowledge of
unstable homotopy groups of spheres.

If M is a manifold of dimension d , and ξ : V → M is a
vector bundle of rank r , the situation is both theoretically
and computationally satisfying for d − r “small” relative to d
(to guarantee homotopy groups of spheres are “regular,”
e.g., stable, meta-stable,...).
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Projective modules

Suppose X is a smooth affine variety of dimension d over k .

Write Vn(X ) for the set of isomorphism classes of rank n
algebraic vector bundles on X .

Consider the “stabilization” function

sr ,X : Vr (X ) −→ Vr+1(X )

given by E 7→ E⊕ 1X .

Problem (H. Bass ’64)
Characterize the image of sr .

(J.-P. Serre ’58) If r ≥ d , then sr ,X is surjective.
If r ≤ d the problem is much harder.
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The image of sd−i , i = 1,2

Theorem (R. Swan-M.P. Murthy ’76, N.M. Kumar-Murthy ’82,
Murthy ’94)
If k is algebraically closed, and X is a smooth affine d-fold over
k, then the image of sd−1,X consists of those E (of rank d) such
that 0 = cd (E) ∈ CHd (X ).

Think of cd (the top Chern class) as an algebraic Euler class.

Conjecture (Murthy)
If k is algebraically closed, and X a smooth affine d-fold over k,
then the image of sd−2,X consists of those E (of rank d − 1)
such that 0 = cd−1(E) ∈ CHd−1(X ).

Thus, the Euler class is still the only obstruction to splitting!
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Results

Theorem (A., J. Fasel ’12)
If k has characteristic unequal to 2, X is a smooth affine d-fold
over k and d ≤ 4, then the image of sd−2,X consists of E such
that 0 = cd−1(E) ∈ CHd−1(X ).

Remark
We expect Murthy’s conjecture to be true in general (without
restriction on d).
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Algebraization

If k ↪→ C, then given X/k a smooth variety, consider
X an := X (C).

Induces Vn(X )→ V top
n (X an) (isomorphism classes of

complex vector bundles).
Call those vector bundles in the image of the above map
“algebraizable.”

Problem (Schwarzenberger, Horrocks, Atiyah, Rees...)

Characterize the algebraizable vector bundles.

Necessary condition: topological Chern classes (in
H2i(X an,Z)) must be algebraic, i.e., lie in the image of the
cycle class map from Chow groups.
If dim X <= 2, this condition is sufficient to guarantee
algebraizability (Schwarzenberger, Murthy-Swan).
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Algebraizability results

If X is smooth affine and dim X = 3, the necessary
condition is sufficient (Mohan Kumar, Murthy).

If X is smooth projective and dim X = 3 known in some
cases, open in general (cf. Atiyah-Rees).

Theorem (A., J. Fasel, M. Hopkins ’15)
Suppose X is a smooth complex affine 4-fold.

Given a topological rank 2 vector bundle E top with
topological Chern classes ctop

i , then E top is algebraizable if
and only if there exist ci ∈ CH i(X ) mapping to ctop

i under
the cycle class map such that
Sq2c2 + c1 ∪ c2 = 0 ∈ CH3(X )/2.
Moreover, there exists a smooth complex affine 4-fold
carrying a topological rank 2 vector bundle with algebraic
Chern classes that is not algebraizable.
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If X is smooth complex affine, it has the homotopy type of
a CW -complex of dimension dim X .

In the examples, the cycle class map is an isomorphism
CH i(X )→ H2i(X ,Z) with i ≤ 2, and CH3(X )/2 is
non-trivial.
Hard part: building algebraic vector bundles (especially of
low rank) on smooth varieties.
The proofs of all the results above are connected.
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Consider the variety Q2n+1 ⊂ A2(n+1) defined by
∑n

i=0 xiyi = 1.

Theorem (A., J. Fasel, M. Hopkins)

If p is a prime, there is a non-trivial rank 2 bundle on Q2p+1/C.

Q2n+1 is like a sphere.
Serre showed that there is a topologically non-trivial vector
bundle on S2p+1 (using π2p(S3) is non-trivial).
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Vector bundles in algebraic geometry

We can define Grn as an (ind-)algebraic variety.

Question
Can we expect some kind of representability result for the
functor X 7→ Vn(X )? Representability in which homotopy
category?

A1-homotopy category H(k) (F. Morel and V. Voevodsky ’99).
The functor X 7→ V1(X ) is A1-invariant, i.e.,
V1(X )→ V1(X × A1) is a bijection.
Algebraic K-theory is representable in H(k).
Various different models of BGLn become equivalent in this
category (e.g., the simplicial “bar” model and the infinite Grassmannian).
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Auto-critique

Algebraic vector bundles are much more complicated than
topological vector bundles.

Representability in the A1-homotopy
category implies X 7→ Vn(X ) is A1-invariant; this contains

the theorem of D. Quillen and A. Suslin (’76) solving Serre’s
problem, i.e., vector bundles on affine space are trivial, and
H. Lindel’s solution to the Bass-Quillen conjecture (’81),
i.e., A1-invariance for X smooth affine.
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Some (unfortunate?) counter-examples

The functor X 7→ Vn(X ) is not A1-invariant in general!

Example (P1)

Grothendieck’s theorem: vector bundles on P1 are isomorphic
to direct sums of line bundles. There is a rank 2 bundle E on
P1 × A1 such that E|P1×{0}

∼= O(1)⊕ O(−1), and
E|P1×{1}

∼= O⊕ O.

Varieties that are A1-contractible can have non-trivial vector
bundles (but their algebraic K-theory must be that of the base
field)!

Example (Another pathology (A., B. Doran ’07))

Start with Q4 ⊂ A5 given by x1x3 − x2x4 = x5(x5 + 1) = 0.Set
E2 = {x1 = x2 = x5 + 1 = 0} ⊂ Q4 (∼= A2),and X4 = Q4 \ E2.
Then, X4 is A1-contractible and has a non-trivial rank 2 vector
bundle (restrict a non-trivial bundle from Q4).
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Classification theorem

Assume k is a Noetherian commutative ring that is regular over
a Dedekind domain with perfect residue fields (e.g., k a field or
k = Z).

Theorem (A., M. Hoyois, M. Wendt ’15)
If X is a smooth affine k-scheme, then

[X ,Grn]A1 ∼= Vn(X ).

Due to Morel if k a perfect field and n 6= 2.
Idea of Proof. Establish an “affine representability”
theorem: if X a simplicial presheaf on Smk satisfying (i)
“affine Nisnevich excision” and (ii) π0(X ) is A1-invariant on
affines, then π0(X (U)) = [U,X ]A1 for any smooth affine
k -scheme U.
Apply this with X = BGLn; descent for vector bundles =⇒
excision, Bass-Quillen conjecture =⇒ homotopy
invariance.
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A1-fiber sequences

For applications, we want fiber sequences in A1-homotopy
theory; these are rather difficult to construct in general.
However, we have the following example.

Theorem (A., M. Hoyois, M. Wendt ’15)

There is an A1-fiber sequence of the form

An \ 0 −→ BGLn−1 −→ BGLn.

Due to F. Morel (+ L.-F. Moser) in case k is a perfect field.
Again, only restriction comes from Bass-Quillen conjecture.

Thus, using a version of the Postnikov tower in A1-homotopy
theory, the splitting problem is controlled by homotopy theory of
An \ 0.
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Homotopy theory of An \ 0 Part I

There are two circles in A1-homotopy theory: S1
s and Gm.

There are isomorphisms in H(k) of the form P1 ∼= S1
s ∧Gm

and An \ 0 ∼= Sn−1
s ∧Gm

∧n.
We must consider homotopy sheaves not homotopy
groups (gives correct form of the Whitehead theorem, etc.),
but those associated with Si

s are “most important.”

Assume henceforth k is a perfect field.

Theorem (F. Morel ’12)

For any n ≥ 2, the sphere An \ 0 is (n − 2)-A1-connected.

Theorem (F. Morel ’12)

For any n ≥ 2, there is an isomorphism πA
1

n−1(An \ 0) ∼= KMW
n .
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Both of Morel’s theorems admit “explanations”
Set ∆n = Spec k [x0, . . . , xn]/(

∑
i xi − 1) and define

SingA1
(X )(U) = Hom(U ×∆•,X ).

If X = An \ 0, and U affine, then the “naive” homotopy
groups πi(SingA1

(An \ 0)(U)) can be used to compute.
Connectivity theorem: move “algebraic” spheres to avoid 0
and then contract them.
Computation: It follows from results of Suslin that Milnor
K-theory measures the failure of stabilization for homology
of GLn, and Morel’s result is essentially this result after
“keeping track of the action of the fundamental group of
BGLn”.
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On Milnor-Witt K-theory

The sections of KMW
n over finitely generated extensions of the

base field can be explicitly described in terms of generators
and relations (assuming Milnor’s conjecture on quadratic forms,
now a theorem of D. Orlov-A. Vishik-V. Voevodsky ’07).

Theorem (F. Morel ’04)
There is a short exact sequence of the form

0 −→ In+1(F ) −→ K MW
n (F ) −→ K M

n (F ) −→ 0,

where In+1(F ) is the (n + 1)st power of
I(F ) = ker(GW (F )→ Z), and K M

n (F ) is Milnor K-theory.
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Homotopy theory of An \ 0 Part II

Theorem (A, J. Fasel)
The stabilization map Sp2 ↪→ Sp∞ gives a surjective map
πA

1

2 (A2 \ 0)→ KSp
3 = GW2

3 whose kernel is (almost) KM
4 /12

(witnessing π6(S3) = Z/12).

Theorem (A. J. Fasel)

The stabilization map SL4/Sp4 ↪→ GL4/Sp4 ↪→ GL/Sp gives a
surjective map πA

1

3 (A3 \ 0)→ GW3
4 whose kernel is (almost)

KM
5 /24 (and witnesses π8(S5) = Z/24).
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Determine a stable range for A1-homotopy of Sp2n or
GL2n/Sp2n.

Use results of M. Schlichting and G. Tripathi on geometric
representation for Hermitian K-theory (A1-representability,
etc.) to understand stable groups.
Understand the kernel of the stabilization map in terms of
Suslin style “Chern class” maps from Grothendieck-Witt
groups to Milnor-Witt K-thory.
In each case “almost” means that there are unstable
factors coming from suitable powers of the fundamental
ideal in the Witt ring.
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Many of the results on algebraic vector bundles follow by
combining these ingredients.

For the algebraizability results: compute enough of the
Postnikov tower of the map
(c1, c2) : BGL2 → BGm × K (KM

2 ,2).
For the lifting results: compute enough of the Postnikov
tower of the map BGLn−1 → BGLn.
Primary obstruction given by Euler class; using MC, this
gets identified with Chern class.
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Algebraic secondary obstructions

What about the secondary obstruction?

Theorem (A, J. Fasel)
If X is a smooth k-scheme, and k has characteristic unequal to
2, then

Hd (X ,GWd
d+1) = Chd (X )/Sq2Chd−1(X ),

where Chd (X ) = CHd (X )/2, and Sq2 is the Steenrod operation
defined by Voevodsky or Brosnan.

This looks similar to the secondary obstruction we saw in
topology.
It vanishes if k algebraically closed!
Murthy’s conjecture follows from this together with one
other vanishing theorem.
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To build low rank vector bundles on smooth affine varieties,
it suffices to construct maps X → BGL2.

Picard group of Q2n+1 is trivial, so it suffices to build maps
Q2n+1 → BSL2.
The variety Q2n+1 defined by

∑n
i=0 xiyi = 1 has the

A1-homotopy type of Sn
s ∧Gm

∧n+1.

Theorem (A., J. Fasel, M. Hopkins)
If k ↪→ C, and p is a prime, there is a non-trivial rank 2 bundle
on Q2p+1.

Construct a “p-local” splitting of punctured affine spaces using
“Suslin matrices” and use this to lift Serre’s generator to
A1-homotopy theory.
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Homotopy theory of An \ 0 Part III

For n ≥ 4, we expect a kind of stabilization.

Conjecture (A., J. Fasel)
For every n ≥ 4, there is an exact sequence of the form

KM
n+2/24

(νn)∗−→ πA
1

n (An \ 0)
(sn)∗−→ GWn

n+1.

Here the factor GWn
n+1 “incarnates” Z/2 = πm(Sm−1) (it is

detected by KO-degree map),Z/2 = πm+1(Sm−1), and
the factor KM

n+2/24 “incarnates” Z/24 = πn+2(Sn−1).
Roughly, homotopy sheaves have “weights”, which see
classical homotopy groups of spheres of different degrees.
Evidence in recent work with B. Williams and K. Wickelgren
(“unstable” stuff is killed after one further suspension).
Basic problem: there is no known Freudenthal suspension
theorem for P1-suspension!
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For n ≥ 4, we expect a kind of stabilization.

Conjecture (A., J. Fasel)
For every n ≥ 4, there is an exact sequence of the form
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Thank you!
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