The unstable n- \mathbb{A}^1 -connectivity theorem

Aravind Asok

April 1, 2009

1 Introduction

Fix k a commutative unital ring having finite Krull dimension. Let Sm_k denote the category of Spec kschemes that are separated, smooth and have finite type over Spec k. Endow Sm_k with the structure of a site by equipping this category with the Nisnevich topology. Recall the following definition.

Definition 1.1. A sheaf of groups \mathcal{G} is said to be *strongly* \mathbb{A}^1 -*invariant* if for any $X \in \mathbb{S}m_k$, and for *i* either 0 or 1, the maps

$$H^i_{Nis}(X,\mathcal{G}) \to H^i_{Nis}(X \times \mathbb{A}^1,\mathcal{G})$$

induced by pullback along the projection $X \times \mathbb{A}^1 \to X$ are bijections.

We will use "standard" terminology from \mathbb{A}^1 -homotopy theory.

Definition 1.2. Let k be a commutative unital ring having finite Krull dimension. We say that the strong \mathbb{A}^1 -invariance property holds for k if, for any pointed space (\mathcal{X}, x) , the sheaf $\pi_1^{\mathbb{A}^1}(\mathcal{X}, x)$ is strongly \mathbb{A}^1 -invariant.

Definition 1.3. Let k be a commutative unital ring. We say that the unstable \mathbb{A}^1 -n-connectivity property holds over k if any simplicially n-connected space \mathcal{X} is \mathbb{A}^1 -n-connected.

The goal of this note is to prove the following result.

Theorem 1.4. If k is a commutative unital ring for which the strong \mathbb{A}^1 -invariance property holds, then, for every integer $n \ge 0$, the unstable \mathbb{A}^1 -n-connectivity property holds over k.

Theorem 3.1 of [Mor06] establishes the strong \mathbb{A}^1 -invariance property over any field k. Combining this with Theorem 1.4, one immediately deduces the following result, which is sometimes called the unstable \mathbb{A}^1 -n-connectivity theorem.

Corollary 1.5 (cf. [Mor06, Theorem 3.38]). If k is a field, then for every integer $n \ge 0$, the unstable \mathbb{A}^1 -n-connectivity property holds over k.

Remark 1.6. In [Mor06], this result is stated without proof. Our goal here is to indicate that the result follows without any of the machinations appearing in §3.2 of [Mor06] (where the result is stated). Ayoub has shown that if the Krull dimension of k is ≥ 2 , then the unstable \mathbb{A}^1 -connectivity property will fail, thus the strong \mathbb{A}^1 -invariance property cannot hold over 2-dimensional rings. However, Morel has indicated the hope (*cf.* [Mor06, Remark 3.32]) that if k is a Dedekind ring, the strong \mathbb{A}^1 -invariance property holds for k.

2 Preliminary results

In this section, we recall some general facts about the Postnikov towers in the setting of simplicial homotopy theory. Then, we recall some facts about \mathbb{A}^1 -local objects. The general reference for this material is [MV99].

Postnikov towers

We begin by summarizing some consequences of existence and functoriality of the Postnikov tower; these statements hold quite generally. To this end, let \mathcal{G} be an arbitrary sheaf of groups. By replacing $\mathcal{B}\mathcal{G}$ by a simplicially fibrant model, we can assume it is fibrant. Furthermore, by its very definition, $\mathcal{B}\mathcal{G}$ is simplicially 0-connected. Any pointed morphism of simplicial sheaves $\mathcal{X} \to \mathcal{B}\mathcal{G}$ induces a group homomorphism $\pi_1^s(\mathcal{X}, x) \to \pi_1^s(\mathcal{B}\mathcal{G})$. Thus, we obtain a map

$$\hom_{\Delta^{\circ}Shv_{Nis}(\mathfrak{S}m/k)_{\bullet}}((\mathcal{X},x),(\mathcal{B}\mathcal{G},*)) \to \hom_{\mathfrak{G}r_{k}}(\pi_{1}^{s}(\mathcal{X}),\mathcal{G}).$$

Since π_1^s is a simplicial homotopy invariant, two simplicially homotopy equivalent maps determine the same group homomorphism. Since \mathcal{BG} is assumed fibrant, the observation of the last sentence shows that we obtain a well-defined map

$$[(\mathcal{X}, x), (\mathcal{B}\mathcal{G}, *)]_s \to \hom_{\mathcal{G}r_k}(\pi_1^s(\mathcal{X}), \mathcal{G}).$$

We will now show that under reasonable hypotheses, this map is a bijection.

Lemma 2.1. For any pointed simplicially 0-connected space (X, x) the map

$$[(\mathcal{X}, x), (\mathcal{B}\mathcal{G}, *)]_s \to \hom_{\mathcal{G}r_k}(\pi_1^s(\mathcal{X}), \mathcal{G})$$

is a bijection.

Proof. Any homomorphism of sheaves of groups $\mathcal{H} \to \mathcal{G}$ induces by functoriality of classifying spaces a pointed morphism of simplicial sheaves $\mathcal{BH} \to \mathcal{BG}$. Since the higher simplicial homotopy group sheaves of \mathcal{BH} and \mathcal{BG} both vanish, the observations of the previous paragraph show that this map induces a bijection

$$\hom_{\mathcal{G}r_{k}}(\mathcal{H},\mathcal{G}) \to [(\mathcal{BH},*),(\mathcal{BG},*)]_{s};$$

the inverse is provided by the functor π_1^s . The first stage in the simplicial Postnikov tower for any pointed connected space \mathcal{X} can be identified with $\mathcal{B}\pi_1^s(\mathcal{X}, x)$, the classifying space of the first *simplicial* homotopy group of \mathcal{X} . By functoriality of the Postnikov tower, any pointed morphism $\mathcal{X} \to \mathcal{B}\mathcal{G}$ induces a morphism $\mathcal{B}\pi_1^s(\mathcal{X}) \to \mathcal{B}\mathcal{G}$. Thus, any pointed morphism $\mathcal{B}\pi_1^s(\mathcal{X}) \to \mathcal{B}\mathcal{G}$ can be lifted to a pointed morphism $\mathcal{X} \to \mathcal{B}\mathcal{G}$. This construction provides an inverse to the construction of the previous paragraph.

Preservation of \mathbb{A}^1 -locality

We begin by stating the following well-known lemma.

Lemma 2.2. A sheaf of groups \mathcal{G} is strongly \mathbb{A}^1 -invariant if and only if the simplicial classifying space $\mathcal{B}\mathcal{G}$ is \mathbb{A}^1 -local.

Notation 2.3. Let $\mathcal{G}r_k^{\mathbb{A}^1}$ denote the full subcategory of $\mathcal{G}r_k$ consisting of strongly \mathbb{A}^1 -invariant sheaves of groups.

Lemma 2.4. If X is a pointed, fibrant and \mathbb{A}^1 -local space, then $\Omega^1_s X$ is again \mathbb{A}^1 -local.

Proof. We have to show that for any space \mathcal{Y} , the map

 $\hom_{\mathcal{H}_s((\mathbb{S}m/k)_{Nis})}(\mathcal{Y},\Omega^1_s\mathcal{X}) \to \hom_{\mathcal{H}_s((\mathbb{S}m/k)_{Nis})}(\mathcal{Y}\times\mathbb{A}^1,\Omega^1_s\mathcal{X})$

is a bijection. We can rewrite $\mathcal{Y} \times \mathbb{A}^1$ as $\mathcal{Y}_+ \wedge \mathbb{A}^1$. Then, by adjunction of suspension and looping, we have

$$\hom_{\mathcal{H}_s((\mathbb{S}m/k)_{Nis})}(\Sigma^1_s(\mathcal{Y}_+ \wedge \mathbb{A}^1), \mathcal{X}) \xrightarrow{\sim} \hom_{\mathcal{H}_s((\mathbb{S}m/k)_{Nis})}(\mathcal{Y} \times \mathbb{A}^1, \Omega^1_s \mathcal{X}).$$

However, by associativity of smash products, we know that $\Sigma_s^1(\mathcal{Y}_+ \wedge \mathbb{A}^1) \cong (\Sigma_s^1\mathcal{Y}_+) \wedge \mathbb{A}^1$. The result then follows immediately from the assumption that \mathcal{X} is \mathbb{A}^1 -local.

Suppose \mathcal{X} is a pointed, simplicially 0-connected fibrant space. By the previous lemma $\Omega_s^1 L_{\mathbb{A}^1}(\mathcal{X})$ is \mathbb{A}^1 -local. Thus, the canonical map $\Omega_s^1 \mathcal{X} \to \Omega_s^1 L_{\mathbb{A}^1}(\mathcal{X})$ induced by functoriality of looping factors through a map

$$L_{\mathbb{A}^1}(\Omega^1_s(\mathcal{X})) \longrightarrow \Omega^1_s L_{\mathbb{A}^1}(\mathcal{X}).$$

We need the following somewhat difficult result regarding this map.

Theorem 2.5 ([MV99, §2 Theorem 2.34]). If (X, x) is a pointed simplicially 0-connected and simplicially fibrant space, the map

$$L_{\mathbb{A}^1}(\Omega^1_s \mathcal{X}) \longrightarrow \Omega^1_s(L_{\mathbb{A}^1}(\mathcal{X}))$$

just constructed is a simplicial weak equivalence.

3 Proof of Theorem 1.4

Proof of Theorem 1.4. We prove the theorem by first establishing the result for n = 1 (see Proposition 3.1), and then showing how to use homotopy theoretic results to deduce the result for n > 1 from the case where n = 1 (see Proposition 3.2).

Proposition 3.1. If (X, x) is a pointed simplicially 1-connected space, then X is an \mathbb{A}^1 -1-connected space.

Proof. If \mathcal{X} is \mathbb{A}^1 -connected, its \mathbb{A}^1 -localization $L_{\mathbb{A}^1}(\mathcal{X})$ is simplicially 0-connected by definition. Conversely, the unstable \mathbb{A}^1 -0-connectivity theorem (i.e., [MV99, §2 Corollary 3.22]) shows that if \mathcal{X} is simplicially 0-connected, \mathcal{X} is \mathbb{A}^1 -0-connected.¹ This establishes the result for n = 0.

Thus, assume $n \ge 1$, \mathcal{X} is a simplicially *n*-connected space, and the theorem holds for $j \le n-1$. We need to show that $\pi_n^{\mathbb{A}^1}(\mathcal{X}, x)$ is trivial.

If n = 1, then by assumption $\pi_1^{\mathbb{A}^1}(\mathcal{X})$ is strongly \mathbb{A}^1 -invariant. Furthermore, since \mathcal{X} is \mathbb{A}^1 -oconnected, the \mathbb{A}^1 -localization $L_{\mathbb{A}^1}(\mathcal{X})$ is by definition simplicially 0-connected. Let \mathcal{G} be an arbitrary strongly \mathbb{A}^1 -invariant sheaf of groups. By Lemma 2.2, the canonical map $\mathcal{B}\mathcal{G} \to L_{\mathbb{A}^1}(\mathcal{B}\mathcal{G})$ is a simplicial weak equivalence. Thus, we deduce that the map

$$[\mathcal{X}, \mathcal{B}\mathcal{G}]_s \longrightarrow [\mathcal{X}, L_{\mathbb{A}^1}\mathcal{B}\mathcal{G}] := [\mathcal{X}, \mathcal{B}\mathcal{G}]_{\mathbb{A}^1}$$

is a bijection. We now relate the two sides of the above map to the connectivity properties of X using the Postnikov tower.

¹In fact, this result is known to hold over a general base scheme, and even for the \mathbb{A}^1 -homotopy category considered in other topologies.

Consider $L_{\mathbb{A}^1}(\mathcal{X})$. By definition $\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) := \pi_1^s(L_{\mathbb{A}^1}(\mathcal{X}), x)$. By assumption, the latter sheaf of groups is strongly \mathbb{A}^1 -invariant. Applying Lemma 2.1 to $L_{\mathbb{A}^1}(\mathcal{X})$, we deduce that the map

 $[(L_{\mathbb{A}^1}(\mathcal{X}), x), (\mathcal{B}\mathcal{G}, *)]_s \longrightarrow \hom_{\mathfrak{G}r_k}(\pi_1^{\mathbb{A}^1}(\mathcal{X}), \mathcal{G})$

is a bijection. As $\mathcal{B}\mathcal{G}$ is \mathbb{A}^1 -local, we deduce that the first set can be identified with $[(L_{\mathbb{A}^1}(\mathcal{X}), x), (\mathcal{B}\mathcal{G}, *)]_{\mathbb{A}^1}$. But since the map $\mathcal{X} \to L_{\mathbb{A}^1}(\mathcal{X})$ is a pointed \mathbb{A}^1 -weak equivalence, the induced map

$$[(L_{\mathbb{A}^1}(\mathcal{X}), x), (\mathcal{B}\mathcal{G}, *)]_{\mathbb{A}^1} \longrightarrow [(\mathcal{X}), x), (\mathcal{B}\mathcal{G}, *)]_{\mathbb{A}^1}$$

is a bijection. Thus, for any strongly \mathbb{A}^1 -invariant sheaf of groups \mathcal{G} , we deduce the existence of a bijection

$$[(\mathcal{X}, x), (\mathcal{B}\mathcal{G}, *)]_{\mathbb{A}^1} \longrightarrow \hom_{\mathcal{G}r_k^{\mathbb{A}^1}}(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x), \mathcal{G}).$$

Now, combining all of our observations, we deduce the existence of a bijection

$$\hom_{\mathfrak{G}r_k}(\pi_1^s(\mathcal{X}, x), \mathcal{G}) \longrightarrow \hom_{\mathfrak{G}r_k^{\mathbb{A}^1}}(\pi_1^{\mathbb{A}^1}(\mathcal{X}), \mathcal{G}).$$

As \mathcal{X} is assumed to be simplicially 1-connected, we deduce that the set $\hom_{\mathcal{G}r_k}(\pi_1^s(\mathcal{X}), \mathcal{G})$ is trivial for *any* strongly \mathbb{A}^1 -invariant sheaf of groups \mathcal{G} . Consequently the set $\hom_{\mathcal{G}r_k^{\mathbb{A}^1}}(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x), \mathcal{G})$ is trivial in this situation as well. However, by the covariant form of the Yoneda lemma, we conclude that $\pi_1^{\mathbb{A}^1}(\mathcal{X}, x)$ must be trivial, and therefore that \mathcal{X} is \mathbb{A}^1 -1-connected. \Box

Proposition 3.2. If for any pointed space (X, x) simplicial 1-connectedness implies \mathbb{A}^1 -1-connectedness, then simplicial n-connectedness implies \mathbb{A}^1 -n-connectedness.

Proof. If \mathcal{X} is a pointed, simplicially *n*-connected space, then without loss of generality we can assume \mathcal{X} is simplicially fibrant. It follows immediately that $\Omega_s^{n-1}\mathcal{X}$ is pointed, simplicially 1-connected and fibrant. Applying Proposition 3.1, we deduce that $L_{\mathbb{A}^1}(\Omega_s^{n-1}\mathcal{X})$ is simplicially-1-connected.

For any integer n > 1, the map of Theorem 2.5 induces a map

$$L_{\mathbb{A}^1}\Omega^n_s \mathcal{X} \to \Omega^n_s L_{\mathbb{A}^1} \mathcal{X}.$$

that one may show is a simplicial weak equivalence by a straightforward induction argument. Combining this observation with the results of the previous paragraph, we deduce that $\Omega_s^{n-1}L_{\mathbb{A}^1}\mathcal{X}$ is simplicially 1-connected. Again, by definition of the \mathbb{A}^1 -homotopy sheaves, it follows that $L_{\mathbb{A}^1}(\mathcal{X})$ is \mathbb{A}^1 -*n*-connected. \Box

References

- [Mor06] F. Morel. A¹-algebraic topology over a field. 2006. Preprint, available at http://www.mathematik. uni-muenchen.de/~morel/preprint.html. 1
- [MV99] F. Morel and V. Voevodsky. A¹-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143 (2001), 1999. 2, 3