The unstable n - \mathbb{A}^1 -connectivity theorem

Aravind Asok

April 1, 2009

1 Introduction

Fix k a commutative unital ring having finite Krull dimension. Let $\mathcal{S}m_k$ denote the category of Spec kschemes that are separated, smooth and have finite type over Spec k. Endow \mathcal{S}_{m_k} with the structure of a site by equipping this category with the Nisnevich topology. Recall the following definition.

Definition 1.1. A sheaf of groups G is said to be *strongly* \mathbb{A}^1 -invariant if for any $X \in \mathcal{S}m_k$, and for i either 0 or 1, the maps

$$
H^i_{Nis}(X, \mathcal{G}) \to H^i_{Nis}(X \times \mathbb{A}^1, \mathcal{G})
$$

induced by pullback along the projection $X \times \mathbb{A}^1 \to X$ are bijections.

We will use "standard" terminology from \mathbb{A}^1 -homotopy theory.

Definition 1.2. Let k be a commutative unital ring having finite Krull dimension. We say that the *strong* \mathbb{A}^1 -*invariance property* holds for k if, for any pointed space (\mathcal{X}, x) , the sheaf $\pi_1^{\mathbb{A}^1}(\mathcal{X}, x)$ is strongly \mathbb{A}^1 -invariant.

Definition 1.3. Let k be a commutative unital ring. We say that the unstable \mathbb{A}^1 -*n*-connectivity property holds over k if any simplicially *n*-connected space X is \mathbb{A}^1 -*n*-connected.

The goal of this note is to prove the following result.

Theorem 1.4. If k is a commutative unital ring for which the strong A^1 -invariance property holds, then, for every integer $n \geq 0$, the unstable \mathbb{A}^1 -n-connectivity property holds over k.

Theorem 3.1 of [\[Mor06\]](#page-3-0) establishes the strong A^1 -invariance property over any field k. Combining this with Theorem [1.4,](#page-0-0) one immediately deduces the following result, which is sometimes called the unstable \mathbb{A}^1 -n-connectivity theorem.

Corollary 1.5 (cf. [\[Mor06,](#page-3-0) Theorem 3.38]). If k is a field, then for every integer $n > 0$, the unstable \mathbb{A}^1 -n-connectivity property holds over k.

Remark 1.6. In [\[Mor06\]](#page-3-0), this result is stated without proof. Our goal here is to indicate that the result follows without any of the machinations appearing in §3.2 of [\[Mor06\]](#page-3-0) (where the result is stated). Ayoub has shown that if the Krull dimension of k is ≥ 2 , then the unstable \mathbb{A}^1 -connectivity property will fail, thus the strong \mathbb{A}^1 -invariance property cannot hold over 2-dimensional rings. However, Morel has indicated the hope (cf. [\[Mor06,](#page-3-0) Remark 3.32]) that if k is a Dedekind ring, the strong \mathbb{A}^1 -invariance property holds for k.

2 Preliminary results

In this section, we recall some general facts about the Postnikov towers in the setting of simplicial homotopy theory. Then, we recall some facts about \mathbb{A}^1 -local objects. The general reference for this material is [\[MV99\]](#page-3-1).

Postnikov towers

We begin by summarizing some consequences of existence and functoriality of the Postnikov tower; these statements hold quite generally. To this end, let *G* be an arbitrary sheaf of groups. By replacing BG by a simplicially fibrant model, we can assume it is fibrant. Furthermore, by its very definition, $\mathcal{B}G$ is simplicially 0-connected. Any pointed morphism of simplicial sheaves $X \to \mathcal{B}G$ induces a group homomorphism $\pi_1^s(\mathcal{X},x) \to \pi_1^s(\mathcal{B}\mathcal{G})$. Thus, we obtain a map

$$
\hom_{\Delta^{\circ}Shv_{Nis}(8m/k)_{\bullet}}((X,x),(\mathcal{B}\mathcal{G},*))\to \hom_{\mathcal{G}r_{k}}(\pi_{1}^{s}(X),\mathcal{G}).
$$

Since π_1^s is a simplicial homotopy invariant, two simplicially homotopy equivalent maps determine the same group homomorphism. Since $\mathcal{B}G$ is assumed fibrant, the observation of the last sentence shows that we obtain a well-defined map

$$
[(X,x),(\mathcal{B}\mathcal{G},*)]_s \to \hom_{\mathcal{G}_{r_k}}(\pi_1^s(X),\mathcal{G}).
$$

We will now show that under reasonable hypotheses, this map is a bijection.

Lemma 2.1. For any pointed simplicially 0-connected space (X, x) the map

$$
[(\mathcal{X},x),(\mathcal{B}\mathcal{G},*)]_s\rightarrow \hom_{\mathcal{G}{r_k}}(\pi_1^s(\mathcal{X}),\mathcal{G})
$$

is a bijection.

Proof. Any homomorphism of sheaves of groups $H \to G$ induces by functoriality of classifying spaces a pointed morphism of simplicial sheaves $\mathcal{BH} \to \mathcal{BG}$. Since the higher simplicial homotopy group sheaves of \mathcal{BH} and \mathcal{BG} both vanish, the observations of the previous paragraph show that this map induces a bijection

$$
\hom_{\mathcal{G}r_k}(\mathcal{H},\mathcal{G}) \to [(\mathcal{BH},*),(\mathcal{BG},*)]_s;
$$

the inverse is provided by the functor π_1^s . The first stage in the simplicial Postnikov tower for any pointed connected space X can be identified with $\mathcal{B}\pi_1^s(\mathcal{X},x)$, the classifying space of the first *simplicial* homotopy group of *X*. By functoriality of the Postnikov tower, any pointed morphism $X \to \mathcal{B}G$ induces a morphism $\mathcal{B}\pi_1^s(\mathcal{X}) \to \mathcal{B}\mathcal{G}$. Thus, any pointed morphism $\mathcal{B}\pi_1^s(\mathcal{X}) \to \mathcal{B}\mathcal{G}$ can be lifted to a pointed morphism $X \to \mathcal{B}G$. This construction provides an inverse to the construction of the previous paragraph. \Box

Preservation of \mathbb{A}^1 -locality

We begin by stating the following well-known lemma.

Lemma 2.2. A sheaf of groups G is strongly \mathbb{A}^1 -invariant if and only if the simplicial classifying space $\mathcal{B}\mathcal{G}$ is \mathbb{A}^1 -local.

Notation 2.3. Let $\mathcal{G}r_k^{\mathbb{A}^1}$ denote the full subcategory of $\mathcal{G}r_k$ consisting of strongly \mathbb{A}^1 -invariant sheaves of groups.

Lemma 2.4. If *X* is a pointed, fibrant and \mathbb{A}^1 -local space, then $\Omega_s^1 X$ is again \mathbb{A}^1 -local.

Proof. We have to show that for any space \mathcal{Y} , the map

 $\hom_{\mathfrak{H}_s((\mathcal{S}m/k)_{Nis})}(\mathcal{Y}, \Omega^1_s X) \to \hom_{\mathfrak{H}_s((\mathcal{S}m/k)_{Nis})}(\mathcal{Y} \times \mathbb{A}^1, \Omega^1_s X)$

is a bijection. We can rewrite $\mathcal{Y} \times \mathbb{A}^1$ as $\mathcal{Y}_+ \wedge \mathbb{A}^1$. Then, by adjunction of suspension and looping, we have

$$
\hom_{\mathcal{H}_s((\mathcal{S}m/k)_{Nis})}(\Sigma^1_s(\mathcal{Y}_+\wedge\mathbb{A}^1),\mathcal{X})\overset{\sim}{\longrightarrow}\hom_{\mathcal{H}_s((\mathcal{S}m/k)_{Nis})}(\mathcal{Y}\times\mathbb{A}^1,\Omega^1_s\mathcal{X}).
$$

However, by associativity of smash products, we know that $\Sigma_s^1(\mathcal{Y}_+ \wedge \mathbb{A}^1) \cong (\Sigma_s^1 \mathcal{Y}_+) \wedge \mathbb{A}^1$. The result then follows immediately from the assumption that X is \mathbb{A}^1 -local. \Box

Suppose *X* is a pointed, simplicially 0-connected fibrant space. By the previous lemma $\Omega_s^1 L_{\mathbb{A}^1}(\mathcal{X})$ is \mathbb{A}^1 -local. Thus, the canonical map $\Omega_s^1 \mathcal{X} \to \Omega_s^1 L_{\mathbb{A}^1}(\mathcal{X})$ induced by functoriality of looping factors through a map

$$
L_{{\mathbb A}^1}(\Omega^1_s({\mathcal X})) \longrightarrow \Omega^1_s L_{{\mathbb A}^1}({\mathcal X}).
$$

We need the following somewhat difficult result regarding this map.

Theorem 2.5 ([\[MV99,](#page-3-1) §2 Theorem 2.34]). If (X, x) is a pointed simplicially 0-connected and simplicially fibrant space, the map

$$
L_{{\mathbb A}^1}(\Omega^1_sX) \longrightarrow \Omega^1_s(L_{{\mathbb A}^1}({\mathcal X}))
$$

just constructed is a simplicial weak equivalence.

3 Proof of Theorem [1.4](#page-0-0)

Proof of Theorem [1.4.](#page-0-0) We prove the theorem by first establishing the result for $n = 1$ (see Proposition [3.1\)](#page-2-0), and then showing how to use homotopy theoretic results to deduce the result for $n > 1$ from the case where $n = 1$ (see Proposition [3.2\)](#page-3-2). \Box

Proposition 3.1. If (X, x) is a pointed simplicially 1-connected space, then X is an \mathbb{A}^1 -1-connected space.

Proof. If X is \mathbb{A}^1 -connected, its \mathbb{A}^1 -localization $L_{\mathbb{A}^1}(\mathcal{X})$ is simplicially 0-connected by definition. Conversely, the unstable \mathbb{A}^1 -0-connectivity theorem (i.e., [\[MV99,](#page-3-1) §2 Corollary 3.22]) shows that if *X* is simplicially 0-connected, X is \mathbb{A}^1 \mathbb{A}^1 -0-connected.¹ This establishes the result for $n = 0$.

Thus, assume $n \geq 1$, X is a simplicially *n*-connected space, and the theorem holds for $j \leq n-1$. We need to show that $\pi_n^{\mathbb{A}^1}(\mathcal{X},x)$ is trivial.

If $n = 1$, then by assumption $\pi_1^{\mathbb{A}^1}(\mathcal{X})$ is strongly \mathbb{A}^1 -invariant. Furthermore, since X is \mathbb{A}^1 -0connected, the \mathbb{A}^1 -localization $L_{\mathbb{A}^1}(\mathcal{X})$ is by definition simplicially 0-connected. Let $\mathcal G$ be an arbitrary strongly \mathbb{A}^1 -invariant sheaf of groups. By Lemma [2.2,](#page-1-0) the canonical map $\mathcal{BG}\to L_{\mathbb{A}^1}(\mathcal{BG})$ is a simplicial weak equivalence. Thus, we deduce that the map

$$
[\mathcal{X},\mathcal{B}\mathcal{G}]_{s} \longrightarrow [\mathcal{X},L_{{\mathbb A}^1}\mathcal{B}\mathcal{G}] := [\mathcal{X},\mathcal{B}\mathcal{G}]_{{\mathbb A}^1}
$$

is a bijection. We now relate the two sides of the above map to the connectivity properties of χ using the Postnikov tower.

¹In fact, this result is known to hold over a general base scheme, and even for the \mathbb{A}^1 -homotopy category considered in other topologies.

Consider $L_{\mathbb{A}^1}(\mathcal{X})$. By definition $\pi_1^{\mathbb{A}^1}(\mathcal{X},x) := \pi_1^s(L_{\mathbb{A}^1}(\mathcal{X}),x)$. By assumption, the latter sheaf of groups is strongly \mathbb{A}^1 -invariant. Applying Lemma [2.1](#page-1-1) to $L_{\mathbb{A}^1}(\mathcal{X})$, we deduce that the map

> $[(L_{\mathbb{A}^1}(\mathcal{X}),x),(\mathcal{B}\mathcal{G},*)]_s \longrightarrow \hom_{\mathcal{G}_{r_k}}(\pi_1^{\mathbb{A}^1})$ $\frac{\mathbb{A}^1}{1}$ $(\mathcal{X}), \mathcal{G}$

is a bijection. As $\mathcal{B}G$ is \mathbb{A}^1 -local, we deduce that the first set can be identified with $[(L_{\mathbb{A}^1}(\mathcal{X}), x),(\mathcal{B}G,*)]_{\mathbb{A}^1}$. But since the map $X \to L_{\mathbb{A}^1}(X)$ is a pointed \mathbb{A}^1 -weak equivalence, the induced map

$$
[(L_{\mathbb{A}^1}(\mathcal{X}),x),(\mathcal{B}\mathcal{G},*)]_{\mathbb{A}^1}\longrightarrow[(\mathcal{X}),x),(\mathcal{B}\mathcal{G},*)]_{\mathbb{A}^1}
$$

is a bijection. Thus, for any strongly \mathbb{A}^1 -invariant sheaf of groups \mathcal{G} , we deduce the existence of a bijection

$$
[(\mathcal{X},x),(\mathcal{B}\mathcal{G},*)]_{{\mathbb A}^1}\longrightarrow \hom_{\mathcal{G}r_k^{{\mathbb A}^1}}(\pi_1^{{\mathbb A}^1}(\mathcal{X},x),\mathcal{G}).
$$

Now, combining all of our observations, we deduce the existence of a bijection

hom<sub>$$
\mathcal{G}_{r_k}(\pi_1^s(\mathcal{X},x),\mathcal{G}) \longrightarrow \hom_{\mathcal{G}_{r_k}^{\mathbb{A}^1}}(\pi_1^{\mathbb{A}^1}(\mathcal{X}),\mathcal{G}).
$$</sub>

As *X* is assumed to be simplicially 1-connected, we deduce that the set $hom_{\mathcal{G}_{r_k}}(\pi_1^s(\mathcal{X}), \mathcal{G})$ is trivial for any strongly \mathbb{A}^1 -invariant sheaf of groups \mathcal{G} . Consequently the set hom $_{\mathcal{G}r_k^{\mathbb{A}^1}}(\pi_1^{\mathbb{A}^1}(\mathcal{X},x),\mathcal{G})$ is trivial in this situation as well. However, by the covariant form of the Yoneda lemma, we conclude that $\pi_1^{\mathbb{A}^1}(\mathcal{X},x)$ must be trivial, and therefore that *X* is \mathbb{A}^1 -1-connected. \Box

Proposition 3.2. If for any pointed space (X, x) simplicial 1-connectedness implies \mathbb{A}^1 -1-connectedness, then simplicial n-connectedness implies \mathbb{A}^1 -n-connectedness.

Proof. If X is a pointed, simplicially *n*-connected space, then without loss of generality we can assume X is simplicially fibrant. It follows immediately that $\Omega_s^{n-1} X$ is pointed, simplicially 1-connected and fibrant. Applying Proposition [3.1,](#page-2-0) we deduce that $L_{\mathbb{A}^1}(\Omega_s^{n-1} \mathcal{X})$ is simplicially-1-connected.

For any integer $n > 1$, the map of Theorem [2.5](#page-2-2) induces a map

$$
L_{{\mathbb A}^1}\Omega^n_sX\to \Omega^n_sL_{{\mathbb A}^1}X.
$$

that one may show is a simplicial weak equivalence by a straightforward induction argument. Combining this observation with the results of the previous paragraph, we deduce that $\Omega_s^{n-1} L_{\mathbb{A}^1} \chi$ is simplicially 1-connected. Again, by definition of the \mathbb{A}^1 -homotopy sheaves, it follows that $L_{\mathbb{A}^1}(\mathcal{X})$ is \mathbb{A}^1 -*n*-connected. \Box

References

- [Mor06] F. Morel. \mathbb{A}^1 -algebraic topology over a field. $2006.$ Preprint, available at [http://www.mathematik.](http://www.mathematik.uni-muenchen.de/~morel/preprint.html) [uni-muenchen.de/~morel/preprint.html](http://www.mathematik.uni-muenchen.de/~morel/preprint.html). [1](#page-0-1)
- [MV99] F. Morel and V. Voevodsky. A¹-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45-143 (2001), 1999. [2,](#page-1-2) [3](#page-2-3)