In what sense are algebraic varieties like manifolds?

Aravind Asok UCLA

January 20, 2009

Manifolds

- Throughout, M^n will denote an *n*-dimensional manifold.
 - The manifold M^n is constructed by gluing
 - locally looks an open subset of \mathbb{R}^n
 - global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness).
- The term *open manifold* means non-compact manifold without boundary.
- The term *closed manifold* means compact manifold without boundary.
- We'll write *I* for the unit interval [0, 1].

Algebraic varieties

- Algebraic varieties will be denoted by the letter X.
 - A variety X over a field k is constructed by gluing
 - *locally* looks like the the simultaneous vanishing locus of a finite collection of polynomials in an affine space with coefficients in k.
 - global conditions (separation and finiteness).
 - topologize with Zariski topology
- If L/k is an extension, we'll write X(L) for the set of L-valued solutions to the (local) equations defining X.
- We'll write \mathbb{A}^n for affine space of dimension n.
- We'll write \mathbb{P}^n for projective space of dimension n.

Comparisons

- Depends on the field in question, e.g., consider $x^2 + y^2 = -1$ and $x^2 + y^2 = 1$ over \mathbb{R} , and over \mathbb{C} .
- More "local models"
- If coefficients are in k to begin, one can also consider them to have coefficients in any extension L/k.
 - If $k = \mathbb{C}$, one can consider $\mathbb{C}(t)$: a $\mathbb{C}(t)$ solution is a 1-parameter family of solutions over \mathbb{C} .
- If k = ℝ or ℂ, the set of real or complex solutions is a manifold.
- If $k = \mathbb{Q}$, or a finite field, then the set of solutions looks like a discrete set of points!

Basic problem: Classify manifolds

- How? Construct invariants.
- A homotopy between two continuous maps f,g : M → M' is a continuous map H : M × I → M' such that H(x,0) = f and H(x,1) = g. (Think: continuous deformation)
- A cts. map $f: M \longrightarrow M'$ is a homotopy equivalence if there exists cts. $g: M' \longrightarrow M$ s.t. $g \circ f \sim Id_M$ and $f \circ g \sim Id_{M'}$.
- The *homotopy category* is the category whose objects are (nice) topological spaces and whose morphisms are homotopy classes of continuous maps.
- Basic invariants
 - Set of path connected components $\pi_0(M)$: maps $* \to M$ up to homotopy equivalence.
 - Homotopy groups $\pi_i(M, *)$ $(i \ge 1)$ are cts. maps $S^n \to M$ (preserving a chosen base-point) up to homotopy. (Easy to define, hard to compute)
 - Homology groups $H_i(M, \mathbb{Z})$, start w/ free abelian group generated by maps $\Delta^n \to M$, define boundary operator, take cycles modulo boundaries. (Harder to define, easier to compute)

Topological Observations

- In low dimensions classification is possible using only invariants (in fact π_1 is enough):
 - Dimension 1. Only connected closed manifold is S^1 . Only open manifold is \mathbb{R} .
 - Dimension 2. Connected closed manifolds are either S^2 , connected sums of $S^1 \times S^1$, connected sums of \mathbb{RP}^2 .
- In dimension 3 invariants are not enough: there exist homotopy equivalent non-diffeomorphic manifolds.
- In dimensions ≥ 4 there are "too many" invariants, e.g., any finitely presented group can appear as the fundamental group of a manifold of dimension ≥ 4.

Better problem:

Fix invariants (homotopy type) and try to classify!

Invariants in algebraic geometry

- Idea 1: Work over $\mathbb R$ or $\mathbb C$ and use topological invariants of the associated manifold.
 - Problem: (Over \mathbb{C}) Take a smooth cubic curve in \mathbb{P}^2 . Underlying topological space is a torus, though algebraically there are many models. Picture: quotient \mathbb{C}/Λ ; lattice can vary.
 - Problem: (Over \mathbb{R}) Might be the empty manifold, e.g., $x^2 + y^2 = -1$.
- Idea 2: Try to imitate topological constructions in algebraic geometry in less formal way.
 - E.g., fundamental group classifies regular covering spaces \rightarrow étale fundamental group.
- Idea 3: Do neither, i.e., use intrinsic structure of the ground field.
 - Smooth cubic curve in \mathbb{P}^2 with \mathbb{Q} -coefficients gives rise to a finitely generated abelian group (Mordell-Weil theorem). Take the rank of this group.
 - Use field of rational functions.

Algebro-geometric observations

- There are many varieties that have very few nontrivial invariants: any smooth proper complex variety that can be rationally parameterized has trivial fundamental group (*cf.* Serre)!
- There are too many different kinds of invariants!
 - However, many of the invariants above are closely connected (though in highly non-obvious ways).
 - Can we unify the picture?
- Classification is possible using invariants in (complex) dimension ≤ 1 .
- In dimension 2 already things are a bit obscure, e.g., over non-algebraically closed fields. In dimension ≥ 4, essentially nothing is known.

Isolating invariance properties

- In topology, good invariants are characterized by two properties: "gluing" and "homotopy invariance."
 - Gluing means invariants can be computed locally and then glued together (e.g., Mayer-Vietoris sequence for homology or van Kampen theorem for fundamental group).
 - Homotopy invariance means invariant takes the same value on M and $M \times I$.
- Many invariants have an algebro-geometric form of homotopy invariance, i.e., value of an invariant on X and $X \times \mathbb{A}^1$ often coincides. Thus, perhaps one can impose some kind of "gluing condition."
- Even better than trying to define invariants, why not try to define a good "homotopy category"?

Reorganize invariants then revisit classification!

$\mathbb{A}^1\text{-homotopy}$ theory

- Start with Sm_k (smooth algebraic varieties).
- Enlarge this category so that one can form quotients of varieties, or increasing unions of such things (+ some other categorical properties)
- Impose "gluing" and \mathbb{A}^1 -homotopy invariance. Roughly speaking: invert homotopies parameterized by the affine line.
- The resulting category was first constructed by F. Morel and V. Voevodsky.
- Show this gives a good theory (e.g., recovers old invariants, proves old conjectures).

So what has it done for me lately?

- Most famously, it was a tool in Voevodsky's proof of the Milnor conjecture (which implies some classical conjectures about quadratic forms!)
- E.g., he showed (building on work of many others!) that algebraic K-theory could be constructed in this category.
- Organized many of the old cohomology theories.
- I claim it can be used to help organize geometric ideas as well.

Basic new objects of study

- Define homotopy groups.
 - Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).
 - Tate sphere: \mathbb{G}_m , e.g., $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ (pointed by 1)
 - We can form wedge sums of pointed spaces (i.e., one point unions)
 - We can form smash products of pointed spaces.
 - We define $S_s^i \wedge \mathbb{G}_m^{\wedge j}$, and call this a motivic sphere.
 - We define homotopy groups of a space: $\pi_i^{\mathbb{A}^1}(X, x) = [S_s^i, (X, x)]_{\mathbb{A}^1}$ (homotopy classes computed in new category).
 - Can also define homology $H_i^{\mathbb{A}^1}(X)$.
- Try to study simple spaces and low dimensions to get a handle on the theory.
- Understand how these invariants differ from (or are similar to) the topological situation.

Warm-up

Theorem 1 (A., Doran '08). The quadric hypersurface

$$\sum_{i} x_i x_{n+i} = 1$$

has the \mathbb{A}^1 -homotopy type of $S^{n-1}_s\wedge \mathbb{G}_m^{\wedge n}.$ The quadric hypersurface

$$\sum_{i} x_i x_{n+i} = x_{2n+1} (1 + x_{2n+1})$$

has the \mathbb{A}^1 -homotopy type of $S^n \wedge \mathbb{G}_m^{\wedge n}$. The spheres $S_s^i \wedge \mathbb{G}_m^{\wedge j}$, i > j can't be realized by smooth schemes.

Corollary 2. Over \mathbb{C} , the usual spheres are motivic spheres.

Theorem 3 (Morel '05). The first non-vanishing \mathbb{A}^{1} -homotopy group of a sphere can be computed explicitly. The answer is closely related to quadratic forms.

High dimensional flexibility

- How "rigid" is this theory?
- Contractible manifolds measure the difference between homotopy theory and homeomorphism.
 - The space \mathbb{A}^n is contractible in this world. Are there other spaces like this? First recall:

Theorem 4 (Whitehead '34, Mazur '61, McMillan '62, Curtis-Kwun '65, Glaser '67). There exist uncountably many open contractible manifolds M^n of every dimension $n \ge 3$.

Theorem 5 (A., Doran '07). There exist arbitrary dimensional smooth families of \mathbb{A}^1 -contractible smooth varieties (over any field) of dimension ≥ 6 . Infinitely many in each dimension ≥ 4 .

Example 6. Take the variety Q_4 defined by the equation $x_1x_3 + x_2x_4 = x_5(x_5 + 1)$ and remove the locus of points where $x_1 = x_2 = 0, x_5 = -1$. This is \mathbb{A}^1 -contractible.

Thus, the theory is very flexible.

Idea of proof: take \mathbb{A}^n , equip it with a translation action of \mathbb{G}_a (additive group of the affine line) and construct a quotient.

Low dimensional results

- All the varieties constructed so far can be rationally parameterized.
- In fact, being connected from the standpoint of ¹-homotopy theory means that one is "nearly" ra-tionally parameterized.

Theorem 7. The only \mathbb{A}^1 -connected smooth proper algebraic curve (up to isomorphism) is \mathbb{P}^1 .

Theorem 8 (Morel '06). The group $\pi_1^{\mathbb{A}^1}(\mathbb{P}^1)$ is highly non-trivial and can be explicitly computed.

Theorem 9 (A., Morel '08). Suppose k is an algebraically closed field. Every \mathbb{A}^1 -connected smooth proper algebraic surface is \mathbb{A}^1 -homotopy equivalent to either $\mathbb{P}^1 \times \mathbb{P}^1$ or the blow-up of \mathbb{P}^2 at a fixed (possibly empty) finite set of distinct points.

- Up to isomorphism, there are many more such surfaces! E.g., over C, there are continuous families parameterizing non-isomorphic blow-ups of 5 points on P².
- The A¹-fundamental group is the only necessary invariant!

Topological interlude

- An h-cobordism between two closed manifolds M and M' of dim n is an n + 1-dimensional compact manifold W whose boundary is a disjoint union of M and M' and such that both the inclusion of M into W and the inclusion of M' into W are homotopy equivalences.
- Smale proved that an *h*-cobordism between simply connected closed manifolds of dimension $n \ge 5$ is necessarily diffeomorphic to a product of the form $M \times I$.
- Thus, to classify simply connected manifolds in a given homotopy type, it suffices to identify *h*-cobordism classes.
- Milnor and Kervaire did this for spheres!

Ideas of proof and for the future

 Key idea of proof is to do something intermediate between A¹-homotopy theory and geometry, and motivated by topology.

Definition 10. An \mathbb{A}^1 -*h*-cobordism is a pair (W, f) consisting of a smooth variety W and a morphism $f: W \to \mathbb{A}^1$ such that the inclusions of the fibers over 0 and 1 are \mathbb{A}^1 -homotopy equivalences.

Theorem 11. Any \mathbb{A}^1 -h-cobordism between smooth proper \mathbb{A}^1 -connected and \mathbb{A}^1 -simply connected varieties is trivial.

Why? The \mathbb{A}^1 -fundamental group of any smooth proper \mathbb{A}^1 -connected variety of dimension ≥ 1 is non-trivial!

Question 12. Can one classify smooth proper varieties up to \mathbb{A}^1 -homotopy?

Fundamental Problem 13. Identify the \mathbb{A}^1 -hcobordism classes of smooth proper varieties in a given \mathbb{A}^1 -homotopy type.

Fundamental Problem 14. Try to determine when two \mathbb{A}^1 -h-cobordant smooth proper varieties are isomorphic.

How? Look to topology! (Surgery theory)Need: More computations and examples!

Thank you!

See http://www.math.ucla.edu/~asok for more information.