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Manifolds

• Throughout, Mn will denote an n-dimensional man-
ifold.

– The manifold Mn is constructed by gluing

– locally looks an open subset of Rn

– global conditions, i.e., Hausdorff (separation),
and paracompactness (finiteness).

• The term open manifold means non-compact man-
ifold without boundary.

• The term closed manifold means compact manifold
without boundary.

• We’ll write I for the unit interval [0,1].



Algebraic varieties

• Algebraic varieties will be denoted by the letter X.

– A variety X over a field k is constructed by glu-
ing

– locally looks like the the simultaneous vanishing
locus of a finite collection of polynomials in an
affine space with coefficients in k.

– global conditions (separation and finiteness).

– topologize with Zariski topology

• If L/k is an extension, we’ll write X(L) for the set of
L-valued solutions to the (local) equations defining
X.

• We’ll write An for affine space of dimension n.

• We’ll write Pn for projective space of dimension n.



Comparisons

• Depends on the field in question, e.g., consider x2+
y2 = −1 and x2 + y2 = 1 over R, and over C.

• More “local models”

• If coefficients are in k to begin, one can also con-
sider them to have coefficients in any extension L/k.

– If k = C, one can consider C(t): a C(t) solution
is a 1-parameter family of solutions over C.

• If k = R or C, the set of real or complex solutions
is a manifold.

• If k = Q, or a finite field, then the set of solutions
looks like a discrete set of points!



Basic problem: Classify manifolds

• How? Construct invariants.

• A homotopy between two continuous maps f, g :
M −→ M ′ is a continuous map H : M × I −→ M ′

such that H(x,0) = f and H(x,1) = g.
(Think: continuous deformation)

• A cts. map f : M −→M ′ is a homotopy equivalence
if there exists cts. g : M ′ −→M s.t. g ◦ f ∼ IdM and
f ◦ g ∼ IdM ′.

• The homotopy category is the category whose ob-
jects are (nice) topological spaces and whose mor-
phisms are homotopy classes of continuous maps.

• Basic invariants

– Set of path connected components π0(M): maps
∗ →M up to homotopy equivalence.

– Homotopy groups πi(M, ∗) (i ≥ 1) are cts. maps
Sn →M (preserving a chosen base-point) up to
homotopy. (Easy to define, hard to compute)

– Homology groups Hi(M,Z), start w/ free abelian
group generated by maps ∆n →M , define bound-
ary operator, take cycles modulo boundaries.
(Harder to define, easier to compute)



Topological Observations

• In low dimensions classification is possible using only
invariants (in fact π1 is enough):

– Dimension 1. Only connected closed manifold
is S1. Only open manifold is R.

– Dimension 2. Connected closed manifolds are
either S2, connected sums of S1×S1, connected
sums of RP2.

• In dimension 3 invariants are not enough: there
exist homotopy equivalent non-diffeomorphic man-
ifolds.

• In dimensions ≥ 4 there are “too many” invariants,
e.g., any finitely presented group can appear as the
fundamental group of a manifold of dimension ≥ 4.

Better problem:

Fix invariants (homotopy type) and try to classify!



Invariants in algebraic geometry

• Idea 1: Work over R or C and use topological in-
variants of the associated manifold.

– Problem: (Over C) Take a smooth cubic curve
in P2. Underlying topological space is a torus,
though algebraically there are many models.
Picture: quotient C/Λ; lattice can vary.

– Problem: (Over R) Might be the empty mani-
fold, e.g., x2 + y2 = −1.

• Idea 2: Try to imitate topological constructions in
algebraic geometry in less formal way.

– E.g., fundamental group classifies regular cov-
ering spaces → étale fundamental group.

• Idea 3: Do neither, i.e., use intrinsic structure of
the ground field.

– Smooth cubic curve in P2 with Q-coefficients
gives rise to a finitely generated abelian group
(Mordell-Weil theorem). Take the rank of this
group.

– Use field of rational functions.



Algebro-geometric observations

• There are many varieties that have very few non-
trivial invariants: any smooth proper complex vari-
ety that can be rationally parameterized has trivial
fundamental group (cf. Serre)!

• There are too many different kinds of invariants!

– However, many of the invariants above are closely
connected (though in highly non-obvious ways).

– Can we unify the picture?

• Classification is possible using invariants in (com-
plex) dimension ≤ 1.

• In dimension 2 already things are a bit obscure, e.g.,
over non-algebraically closed fields. In dimension
≥ 4, essentially nothing is known.



Isolating invariance properties

• In topology, good invariants are characterized by
two properties: “gluing” and “homotopy invariance.”

– Gluing means invariants can be computed locally
and then glued together (e.g., Mayer-Vietoris
sequence for homology or van Kampen theorem
for fundamental group).

– Homotopy invariance means invariant takes the
same value on M and M × I.

• Many invariants have an algebro-geometric form of
homotopy invariance, i.e., value of an invariant on
X and X × A1 often coincides. Thus, perhaps one
can impose some kind of “gluing condition.”

• Even better than trying to define invariants, why
not try to define a good “homotopy category”?

Reorganize invariants then revisit classification!



A1-homotopy theory

• Start with Smk (smooth algebraic varieties).

• Enlarge this category so that one can form quo-
tients of varieties, or increasing unions of such things
(+ some other categorical properties)

• Impose “gluing” and A1-homotopy invariance.
Roughly speaking: invert homotopies parameter-
ized by the affine line.

• The resulting category was first constructed by F.
Morel and V. Voevodsky.

• Show this gives a good theory (e.g., recovers old
invariants, proves old conjectures).



So what has it done for me lately?

• Most famously, it was a tool in Voevodsky’s proof of
the Milnor conjecture (which implies some classical
conjectures about quadratic forms!)

• E.g., he showed (building on work of many others!)
that algebraic K-theory could be constructed in this
category.

• Organized many of the old cohomology theories.

• I claim it can be used to help organize geometric
ideas as well.



Basic new objects of study

• Define homotopy groups.

– Simplicial sphere A1/{0,1} (think I/∂I).

– Tate sphere: Gm, e.g., Gm(C) = C∗ (pointed by
1)

– We can form wedge sums of pointed spaces (i.e.,
one point unions)

– We can form smash products of pointed spaces.

– We define Sis∧G∧jm , and call this a motivic sphere.

– We define homotopy groups of a space: πA1

i (X,x) =
[Sis, (X,x)]A1 (homotopy classes computed in new
category).

– Can also define homology HA1

i (X).

• Try to study simple spaces and low dimensions to
get a handle on the theory.

• Understand how these invariants differ from (or are
similar to) the topological situation.



Warm-up
Theorem 1 (A., Doran ’08). The quadric hypersurface∑

i

xixn+i = 1

has the A1-homotopy type of Sn−1
s ∧ G∧nm . The quadric

hypersurface ∑
i

xixn+i = x2n+1(1 + x2n+1)

has the A1-homotopy type of Sn ∧ G∧nm . The spheres

Sis ∧G∧jm , i > j can’t be realized by smooth schemes.

Corollary 2. Over C, the usual spheres are motivic spheres.

Theorem 3 (Morel ’05). The first non-vanishing A1-
homotopy group of a sphere can be computed explicitly.
The answer is closely related to quadratic forms.



High dimensional flexibility

• How “rigid” is this theory?

• Contractible manifolds measure the difference be-
tween homotopy theory and homeomorphism.

– The space An is contractible in this world. Are
there other spaces like this? First recall:

Theorem 4 (Whitehead ’34, Mazur ’61, McMillan ’62,
Curtis-Kwun ’65, Glaser ’67). There exist uncountably
many open contractible manifolds Mn of every dimen-
sion n ≥ 3.

Theorem 5 (A., Doran ’07). There exist arbitrary di-
mensional smooth families of A1-contractible smooth
varieties (over any field) of dimension ≥ 6. Infinitely
many in each dimension ≥ 4.

Example 6. Take the variety Q4 defined by the equation
x1x3 +x2x4 = x5(x5 + 1) and remove the locus of points
where x1 = x2 = 0, x5 = −1. This is A1-contractible.

Thus, the theory is very flexible.

Idea of proof: take An, equip it with a translation action of Ga

(additive group of the affine line) and construct a quotient.



Low dimensional results

• All the varieties constructed so far can be rationally
parameterized.

• In fact, being connected from the standpoint of
A1-homotopy theory means that one is “nearly” ra-
tionally parameterized.

Theorem 7. The only A1-connected smooth proper al-
gebraic curve (up to isomorphism) is P1.

Theorem 8 (Morel ’06). The group πA1

1 (P1) is highly
non-trivial and can be explicitly computed.

Theorem 9 (A., Morel ’08). Suppose k is an alge-
braically closed field. Every A1-connected smooth proper
algebraic surface is A1-homotopy equivalent to either
P1× P1 or the blow-up of P2 at a fixed (possibly empty)
finite set of distinct points.

• Up to isomorphism, there are many more such sur-
faces! E.g., over C, there are continuous families
parameterizing non-isomorphic blow-ups of 5 points
on P2.

• The A1-fundamental group is the only necessary in-
variant!



Topological interlude

• An h-cobordism between two closed manifolds M
and M ′ of dim n is an n + 1-dimensional compact
manifold W whose boundary is a disjoint union of M
and M ′ and such that both the inclusion of M into
W and the inclusion of M ′ into W are homotopy
equivalences.

• Smale proved that an h-cobordism between simply
connected closed manifolds of dimension n ≥ 5 is
necessarily diffeomorphic to a product of the form
M × I.

• Thus, to classify simply connected manifolds in a
given homotopy type, it suffices to identify h-cobordism
classes.

• Milnor and Kervaire did this for spheres!



Ideas of proof and for the future

• Key idea of proof is to do something intermediate
between A1-homotopy theory and geometry, and
motivated by topology.

Definition 10. An A1-h-cobordism is a pair (W, f) con-
sisting of a smooth variety W and a morphism f : W →
A1 such that the inclusions of the fibers over 0 and 1
are A1-homotopy equivalences.

Theorem 11. Any A1-h-cobordism between smooth proper
A1-connected and A1-simply connected varieties is triv-
ial.

Why? The A1-fundamental group of any smooth proper
A1-connected variety of dimension ≥ 1 is non-trivial!

Question 12. Can one classify smooth proper varieties
up to A1-homotopy?



Fundamental Problem 13. Identify the A1-h-

cobordism classes of smooth proper varieties

in a given A1-homotopy type.

Fundamental Problem 14. Try to determine

when two A1-h-cobordant smooth proper vari-

eties are isomorphic.

How? Look to topology! (Surgery theory)

Need: More computations and examples!



Thank you!

See http://www.math.ucla.edu/˜asok

for more information.


